初一数学上册《直线射线线段》
七年级数学(上册)直线,射线,线段
七年级数学(上册)(第四章)第二节:直线,射线,线段1:概念:直线射线线段图形端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB;作直线a作射线AB作线段a;作线段AB;连接AB 延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA 2:区别与联系:(1):(2):已知线段,你能得到射线和直线吗?将线段向一个方向无限延长就得到了射线。
将线段向两个方向无限延长就得到了直线。
线段、射线是直线的一部分。
3:直线的性质:(1):过一点有无数条直线(2):经过两点有且只有一条直线(或两点确定一条直线)。
(有体现了直线的存在性,只有体现了直线的唯一性,两者说明了数学语言的严密性。
并且这种将实际问题转化为数学问题的过程,体现了数学建模的思想。
)4:直线、射线和线段的表示方法:5:点与直线、直线与直线的位置关系:习题:1:下列说法中正确的个数有()①经过一点有且只有一条直线;②连接两点的线段叫做两点之间的距离;③射线比直线短;④ABC三点在同一直线上且AB=BC,则B是线段AC的中点;⑤在同一平面内,两条直线的位置关系有两种:平行与相交;⑥在8:30时,时钟上时针和分针的夹角是75∘.A. 1个B. 2个C. 3个D. 4个解:①经过两点有且只有一条直线,故本小题错误;②应为连接两点的线段的长度叫做两点的距离,故本小题错误;③射线与直线不能比较长短,故本小题错误;④因为A、B、C三点在同一直线上,且AB=BC,所以点B是线段AC的中点,故本小题正确;⑤在同一平面内,两条直线的位置关系有两种:平行,相交,故本小题正确;⑥在8:30时,时钟上时针和分针的夹角是75∘,正确.综上所述,正确的有④⑤⑥共3个.故选C.2:下列说法中正确的是()A. 画一条长3cm的射线B. 直线、线段、射线中直线最长C. 延长线段BA到C,使AC=BAD. 延长射线OA到点C解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使AC=BA,正确;D、延长射线OA到点C,错误,可以反向延长射线.故选:C.3:在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。
七年级数学上册1.3线段、射线和直线
C
练习:作出符合下列要求的图形 (1)直线AB经过点C . (4)直线m,n,l相交于点P
(2)点D不在直线EF上
( 3)直线a,b都过点G
课堂小结 1、线段、射线都是直线的一部分
3、平面上的两条直线有相交和不相交 (平行)两种位置关系
l
A
B
直线AB或线直BA或 者直线l
例1 如图 A,B,C是直线L上的3个点.
(1)图中共有几条线段?这些线段怎样表示?
(2)图中共有几条射线?以点B为端点的射线如何表示?
(3)直线L还可以怎样表示?
C B
A
解 (1)图中共有3条线段,分别是线段AB (或线段BA)、 线段AC (或线段CA)、线段BC(或线段CB). (2)由于每一个点都把直线分成了两题射线,所以图中 共有6条射线.以点B为端点 的射线是射线BA与射线BC. (3)直线L还可以表示为直线AB(或直线BA)、直线AC(或 直线CA)、直线BC(或直线CB).
练习;1.射线OA与射线AO相同吗?区别在哪里?
O
A
端点与方向不同
2.用直尺画图:延长线段AB,得到射线AB.
A
B
A
B
3.如图,看图填空:
O
C
(1)图中以点O为端点的射线有____射__线_O__A_射__线__O_B__射_ 线OC
(2)图中以点B为端点的线段有___线__段__B_A__线_段___B_O__线_ 段BC
(3)图中共有_6__条线段,它们分别是_____________
_线_段___O_A__线_段___O_B__线__段__O_C__线__段_A__B_线__段__A_C__线__段__B_C___.
知识点3:点与直线位置关系、直线的性质
七年级数学上册《直线、射线、线段》课件PPT
看谁反应快?
判断正误: 1.射线比直线短一半.( )
2.在直线上取一点可得两条射线.(√)
3.数轴是一条射线,因为它有方向.( )
连一连
请你把左边对图形的描述和右 边相应的图形用线连起来:
以A为端点,经过点B的射线
A
B
连结A,B两点的线段
A
B
经过A,B两点的直线
A
B
数一数
指出下图中线段、射线、直线分别有 多少条?
a 表示:直线 a
看图说话
点A在直线 l 上
A
l
A点A在直线 l 外 l
点与直线的位置关系:
1.一个点在一条直线上,也可以说这条直线经过这 个点.
2.一个点在一条直线外,也可以说这条直线不经过 这个点.
记住我哦
直线 a 和 b 相交于点O a 交点
b
当两条不同的直线有一个公共点时,我们就称这 两条直线相交,这个公共点叫做它们的交点。
两个 一个 无
可否 度量
可以
不可以
不可以
例题讲解
例1、已知平面上四个点A、B、C、D 读下列语句,并画出相应的图形
①画直线AB ②画线段AC ③画射线AD、DC、CB
画一画
按下列语句画出图形: (1)直线EF经过点C; (2)点A在直线l外; (3)经过点O的三条线段a、b、c; (4)线段AB、CD相交于点B。
探究活动2
你发现直线、射线、线段有哪些联系与区别?
A
B
A
B
A
B
联系:线段向一端无限延长形成射线, 向两端无限延长形成直线
你能分辨吗?
概念 线段 射线 直线
图形 表示方 向几个方 法 向延伸
人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解
4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。
七年级数学上册教学课件《直线、射线、线段》
课堂小结
平面图形
直线 射线 线段
没有端点 1个端点 2个端点
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
强化练习 1.按下列语句画出图形: a.点A在线段MN上 b.射线AB不经过点P
c.经过点O的三条线段a、b、c
随堂演练
1.下列语句准确规范的是( D)
A.直线 a,b 相交于一点 m B.延长直线 AB
C.延长射线 AD 到点 B ( A是端点) D.直线 AB、CD 相交于点 M
【课本P126 练习 第1题】
4.2 直线、射线、线段 第1课时 直线、射线、线段
七年级上册
新课导入
我们在小学就已经学过线段、射线和直 线,你能形象地说出它们的意义吗?你还 能说说它们的联系与区别吗?这节课我们 就开始进一步对它们的意义、表示法及联 系进行研究.
(1)知道直线公理,知道点和直线的位置关系. (2)知道直线、射线、线段的表示方法. (3)初步体会几何语言的应用.
推进新课
知识点1 直线 思考 经过一点画直线,能画几条?经过两 点呢?动手试一试.
· 无数条
O
A·
1条
B·
经过两点有一条直线,并且只有一条直 线.即两点确定一条直线.
思考 你能找出生活中应用“两点确定一条直线”原 理的例子吗?
砌墙时常在墙角分别 固定一木桩,可以拉 一条直的参照线.
做家具时弹墨线.
判断下列说法是否正确: a.线段 AB 与射线 AB 都是直线 AB 的一部分. b.直线 AB 与直线 BA 是同一条直线.
c.射线 AB 与射线 BA 是同一条射线. × d.端点重合的两条射线一定是同一条射线. ×
根据前面的讨论,你能总结出直线、 射线、线段之间的关系吗?
七年级数学上册数学 6.1线段、射线、直线(七大题型)(解析版)
6.1线段、射线、直线分层练习考察题型一线段、射线、直线的概念辨析1.如图中射线OA与OB表示同一条射线的是()A.B.C.D.【详解】解:A、方向相反,不是同一条射线;B、端点相同,方向相同,是同一条射线;C、端点相同,方向不同,不是同一条射线;D、方向相反,不是同一条射线.故本题选:B.2.下列说法错误的是()A.直线AB和直线BA表示同一条直线B.过一点能作无数条直线C.射线AB和射线BA表示不同射线D.射线比直线短【详解】解:直线AB和直线BA表示同一条直线,A选项正确;过一点能作无数条直线,B选项正确;射线AB和射线BA表示不同射线,C选项正确;射线、直线都是无限长的,不能比较长短,D选项错误.故本题选:D.3.线段、射线、直线的位置如图所示,图中能相交的是()A.B.C.D.【详解】解:A、图中两线段不能相交;B、图中射线与直线能相交;C、图中线段与直线不能相交;D、图中线段与射线不能相交.故本题选:B.4.如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.20【详解】解:图中线段有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10条,单程要10种车票,往返就是20种,即5(51)20⨯-=.故本题选:D.考察题型二符号语言和几何图形的匹配1.如图,已知三点A、B、C,画射线AB,画直线BC,连接AC.画图正确的是()A.B.C.D.【详解】解:如图,画射线AB,画直线BC,连接AC,.故本题选:B.2.下列几何图形与相应语言描述相符的是()A.如图1所示,延长线段BA到点CB.如图2所示,射线CB不经过点AC.如图3所示,直线a和直线b相交于点AD.如图4所示,射线CD和线段AB没有交点【详解】解:A、如图1,点C在线段BA的延长线上,与语言描述不相符;B、如图2,射线BC不经过点A,与语言描述不相符;C、如图3,直线a和直线b相交于点A,与语言描述相符;D、如图4,射线CD和线段AB有交点,与语言描述不相符.故本题选:C.考察题型三两点确定一条直线1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条【详解】解:A.点O在射线BA的反向延长线上,故此项错误;B.直线没有端点,故此项错误;C.直线无法比较长短,故此项错误;D.两点确定一条直线,故此项正确.故本题选:D.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是() A.钟表的秒针旋转一周,形成一个圆面B.把笔尖看成一个点,当这个点运动时便得到一条线C.把弯曲的公路改直,就能缩短路程D.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线【详解】解:A、钟表的秒针旋转一周,形成一个圆面,说明线动成面;B、把笔尖看成一个点,当这个点运动时便得到一条线,说明点动成线;C、把弯曲的公路改直,就能缩短路程,说明两点之间,线段最短;D、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线,说明两点确定一条直线.故本题选:D.3.平面上有3个点,并且这3个点不在同一直线上,经过每两点画一条直线,则共可以画()条直线.A.3B.4C.5D.6【详解】解:可以画的直线条数为3(31)32⨯-=.故本题选:A.考察题型四两点之间,线段最短1.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点,其中正确的有()A.1个B.2个C.3个D.4个【详解】解:①经过一点有无数条直线,说法正确;②两点之间线段最短,说法正确;③经过两点,有且只有一条直线,说法正确;④若线段AM等于线段BM,则当A、B、M三点共线时,点M是线段AB的中点,原说法错误;综上,说法正确的一共有3个.故本题选:C.2.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A .两点之间,直线最短B .两点确定一条直线C .两点之间,线段最短D .经过一点有无数条直线【详解】解: 两点之间线段最短,∴剩下树叶的周长比原树叶的周长小.故本题选:C .3.如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是()A .从点A 经过 BF 到点PB .从点A 经过线段BF 到点PC .从点A 经过折线BCF 到点PD .从点A 经过折线BCDF 点P 【详解】解:如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是从点A 经过线段BF 到点P .故本题选:B .4.在一条沿直线l 铺设的电缆一侧有P ,Q 两个小区,要求在直线l 上的某处选取一点M ,向P ,Q 两个小区铺设电缆,现有如下四种铺设方案,图中实线表示铺设的电缆,则所需电缆材料最短的是()A .B .C .D .【详解】解:观察四个选项中的图形发现:选项D 中,点Q 与点P 关于直线l 对称点的连线交l 于M ,根据轴对称的性质可知:PM QM +为最短,即所需电缆材料最短.故本题选:D .5.如图,3AB =,2AD =,1BC =,5CD =,则线段BD 的长度可能是()A.3.5B.4C.4.5D.5【详解】解:由“两点之间,线段最短”得:BD-<<+,15∴<<,BD3232BD∴<<,BD-<<+,465151BD∴<<.45四个选项中,只有4.5在这个范围内.故本题选:C.6.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE AB BC=+;(4)在线段BD上取点P,使PA PC+的值最小.【详解】解:如图所示:.考察题型五比较线段的大小1.如图,用圆规比较两条线段的长短,其中正确的是()A .A B A C ''''>B .A B A C ''''=C .A B A C ''''<D .不能确定【详解】解:如图用圆规比较两条线段的长短,A B A C ''<''.故本题选:C .2.如图,AC BD >,则AD 与BC 的大小关系是:AD BC .(填“>”或“<”或“=”)【详解】解:AC BD > ,AC CD BD CD ∴+>+,AD BC ∴>.故本题答案为:>.3.如图,下列关系式中与图不符合的式子是()A .AD CD AB BC-=+B .AC BC AD BD -=-C .AC BC AC BD -=+D .AD AC BD BC-=-【详解】解:A 、AD CD AB BC -=+,正确,B 、AC BC AD BD -=-,正确;C 、AC BC AB -=,而AC BD AB +≠,故本选项错误;D 、AD AC BD BC -=-,正确.故本题选:C .考察题型六线段的中点1.下列说法正确的个数有()①若AB BC =,则点B 是AC 中点;②两点确定一条直线;③射线MN 与射线NM 是同一条射线;④线段AB 就是点A 到点B 之间的距离.A .1B .2C .3D .4【详解】解:①没有说明A 、B 、C 在同一条直线上,故可能出现这种情况,不合题意;②两点确定一条直线,符合题意;③射线MN 是以M 为端点,射线NM 是以N 为端点,射线MN 与射线NM 不是同一条射线,不合题意;④线段AB 是指连接A 、B 两点的线段,是一条有长度的几何图形,点A 到点B 之间的距离是指点A 和点B 之间的直线距离,是线段AB 的长度,不合题意.故本题选:A .2.如图,点D 是线段AC 上一点,点C 是线段AB 的中点,则下列等式不成立的是()A .AD BD AB +=B .BD CD CB -=C .2AB AC =D .12AD AC =【详解】解:由图可知:AD BD AB +=,BD CD CB -=,故选项A 、选项B 符合题意; 点C 是线段AB 的中点,2AB AC ∴=,故选项C 符合题意;D 是不是线段AC 的中点,12AD AC ∴≠,故本题选项D 不合题意.故本题选:D .3.小亮正确完成了以下两道作图题:①“延长线段AB 到C ,使BC AB =”;②“反向延长线段DE 到F ,使点D 是线段EF 的一个三等分点”.针对小亮的作图,小莹说:“点B 是线段AC 中点”.小轩说:“2DE DF =”.下列说法正确的是()A .小莹、小轩都对B .小莹不对,小轩对C .小莹、小轩都不对D .小莹对,小轩不对【详解】解:①“延长线段AB 到C ,使BC AB =”,如图①所示,此时点B 是AC 的中点;2综上,小莹说得对,小轩说得不对.故本题选:D.考察题型七线段长度的有关计算1.平面上有三点A、B、C,如果10BC=,那么()AC=,3AB=,7A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外【详解】解: 1073==+=+,AB AC BC∴点C在线段AB上.故本题选:A.2.已知直线AB上有两点M,N,且8+=,则P点的位置()MP PN cmMN cm=,再找一点P,使10A.只在直线AB上B.只在直线AB外C.在直线AB上或在直线AB外D.不存在【详解】解: 108MP PN cm MN cm+=>=,∴分两种情况:如图,P点在直线AB上或在直线AB外.故本题选C.3.点A、B、C在同一直线上,10BC=)=,则(=,2AC cmAB cmA.12cm B.8cm C.12cm或8cm D.以上均不对【详解】解:①如图,点C在A、B中间时,=-=-=;BC AB AC cm1028()②如图,点C在点A的左边时,BC AB AC cm=+=+=;10212()综上,线段BC的长为12cm或8cm.故本题选:C.4.已知点A、B、C位于直线l上,其中线段4AB=,且23=,若点M是线段AC的中点,则线段BC ABBM的长为()A.1B.3C.5或1D.1或4综上,线段BM 的长为5或1.故本题选:C .5.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD ,BC 的中点,下列结论:①若AD BM =,则3AB BD =;②AC BD =,则AM BN =;③2()AC BD MC DN -=-;④2MN AB CD =-.其中正确的结论是()A .①②③B .③④C .①②④D .①②③④【详解】解:如图,AD BM = ,AD MD BD ∴=+,12AD AD BD ∴=+,2AD BD ∴=,2AD BD BD BD ∴+=+,即3AB BD =,故①正确;AC BD = ,AD BC ∴=,∴1122AD BC =,M 、N 分别是线段AD 、BC 的中点,AM BN ∴=,故②正确;AC BD AD BC -=- ,222()AC BD MD CN MC DN ∴-=-=-,故③正确;222MN MC CN =+ ,MC MD CD =-,22()2MN MD CD CN ∴=-+,12MD AD = ,12CN BC =,1122()22MN AD BC CD AD CD BC CD AB CD ∴=+-=-+-=-,故④正确.故本题选:D .6.已知A ,B ,C ,D 四点在同一直线上,线段8AB =,点D 在线段AB 上.(1)如图1,点C是线段AB的中点,13CD BD=,求线段AD的长度;(2)若点C是直线AB上一点,且满足:4:1AC BC=,2BD=,求线段CD的长度.:4:1AC BC=,8AB=,:4:1AC BC=,8AB=,7.(1)如图1,点C在线段AB上,M,N分别是AC,BC的中点.若12AB=,8AC=,求MN的长;(2)设AB a=,C是线段AB上任意一点(不与点A,B重合),①如图2,M,N分别是AC,BC的三等分点,即13AM AC=,13BN BC=,求MN的长;②若M,N分别是AC,BC的n等分点,即1AM ACn=,1BN BCn=,直接写出MN的值.8.如图1,已知B、C在线段AD上.(1)图1中共有条线段;(2)①若AB CD=,比较线段的长短:AC BD(填:“>”、“=”或“<”);②(图2)若18AD=,14MN=,M是AB的中点,N是CD的中点,求BC的长度.③(图3)若AB CD=,M是AB的中点,N是CD的中点,直接写出BC的长度.(用=,MN b≠,AD a含a,b的代数式表示)1.同一平面内的三条直线最多可把平面分成多少部分()A.4B.5C.6D.7【详解】解:任意画三条直线,相交的情况有四种可能:1、三直线平行,将平面分成4部分;2、三条直线相交同一点,将平面分成6部分;3、两直线平行被第三直线所截,将平面分成6部分;4、三条直线两两相交于不同的三个点,将平面分成7部分;综上,同一平面内的三条直线最多把平面分成7个部分.故本题选:D .2.如图,已知点A 、点B 是直线上的两点,12AB =厘米,点C 在线段AB 上,且8AC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发,在直线上运动,则经过秒时线段PQ 的长为6厘米.【详解】解:12AB = 厘米,8AC =厘米,1284CB ∴=-=(厘米);①点P 、Q 都向右运动时,(64)(21)-÷-21=÷2=(秒);②点P 、Q 都向左运动时,(64)(21)+÷-101=÷10=(秒);③点P 向左运动,点Q 向右运动时,(64)(21)-÷+23=÷23=(秒);④点P 向右运动,点Q 向左运动时,(64)(21)+÷+103=÷103=(秒);综上,经过2、10、23或103秒时线段PQ 的长为6厘米.故本题答案为:2、10、23或103.3.如图,点M 在线段AN 的延长线上,且线段20MN =,第一次操作:分别取线段AM 和AN 的中点1M ,1N ;第二次操作:分别取线段1AM 和1AN 的中点2M ,2N ;第三次操作:分别取线段2AM 和2AN 的中点3M ,3N ;⋯⋯连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010(M N M N M N ++⋯+=)A .910202-B .910202+C .1010202-D .1010202+【详解】解: 线段20MN =,线段AM 和AN 的中点1M ,1N ,4.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =-,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.【综合运用】(1)填空:①A 、B 两点间的距离AB =,线段AB 的中点表示的数为;②用含t 的代数式表示:t 秒后,点P 表示的数为;点Q 表示的数为.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,12PQ AB =;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.。
第四章 第5课 直线、射线、线段-七年级上册初一数学(人教版)
第四章第5课直线、射线、线段-七年级上册初一数学(人教版)1. 直线、射线、线段的定义在数学中,直线、射线和线段是我们研究几何关系常用的基本概念。
•直线是由无数个点无限延伸而成的连续直接路径,可以理解为没有端点的无限长线。
•射线是有一个起点,从这个起点出发只有一个方向无限延伸而成的连续路径。
•线段是有两个端点的有限长路径,端点之间的部分是线段的内容。
2. 直线、射线、线段的表示方法为了在数学中更方便地表示直线、射线和线段,可以使用字母来表示。
下面是常用的表示方法:•直线可以用一对大写字母表示,比如直线AB。
•射线可以用一个大写字母和一个箭头表示,箭头指向射线的延伸方向。
比如射线AB可以写作AB→。
•线段可以用两个大写字母表示,这两个大写字母分别是线段的两个端点。
比如线段AB可以写作AB。
在图形中,可以用实线来表示直线,用实心点来表示线段的端点。
3. 直线、射线、线段的性质在几何中,直线、射线和线段有一些重要的性质。
•直线上的任意两点可以确定一条直线。
•射线上的起点A和任意一点B可以确定一条射线AB,方向由起点A指向B。
•线段上的两个端点A、B之间的部分是线段AB,可以看作直线AB的一个有限部分。
4. 直线、射线、线段的应用直线、射线和线段在几何中具有广泛的应用,不仅出现在几何图形中,还可以用来解决实际问题。
在几何图形中,直线可以用来确定图形的边界,比如三角形的三边都是直线。
射线可以用来表示射线发射的路径,线段可以表示图形的一部分。
在实际问题中,直线、射线和线段可以用来表示路径、方向和距离等概念。
比如在地图上表示两个城市之间的直线距离。
5. 总结直线、射线、线段作为数学中的基本概念,对几何研究和问题解决都有很重要的作用。
通过本课的学习,我们了解了直线、射线和线段的定义、表示方法和性质。
它们在几何图形中使用广泛,并且可以应用于解决实际问题中。
熟练掌握直线、射线、线段的概念和相关知识,将有助于我们更好地理解数学和解决实际问题。
数学人教版七年级上册《直线、射线、线段》课件
向两方无限 延伸 只向一方无 限延伸
b
1
c
线段AB或线段 BA或线段c
2
不能延伸
能
有/有
拓展提升:
1、平面内有3个点,过其中两个画直线,可以画 几条?
拓展提升:
2、平面内有4个点,经过其中两个画直线,可以 画几条?
课后思考:
平面内有n个点,且不存在三点共线的情况, 经过其中两个画直线,可以画几条?
N
·
b
按下列语句画出图形:
①P是直线a外一点,过点P有一条直线b与直线a相交
于点Q;
②直线AB与直线CD相交于点C ;
本课要点:
种类 图形 表示方法 端点 个数
0
延伸情况
能否 度量
不能 不能
延长线/ 反向延 长线
无/无 无/有
直线 射线
线段
B · · O·A· A· B ·
a
A
直线AB或直线 BA或直线a 射线OA或射线b
练习:用两种方法表示下列图形
a
● ●
A
B c
●
●
M
O
探究三:点和直线的位置关系
画图: 画一条直线AB经过点O,另一条直线CD也经 过点O
归纳:
点与直线的位置关系只有两种: 点在直线上 点在直线外
——直线经过点 ——直线不经过点
练习:
用恰当的语句描述图中点与直线的位置关系。
l
M·
O ·
c A B C a
探究一:直线公理
木工师傅锯木板时用墨盒弹墨线
建筑工人在砌墙时拉参照线
探究二:直线的表示方法
种类
直线
射线 线段
图形
表示方法
七年级上-直线、射线、线段
直线、射线、线段知识集结知识元直线、射线、线段的概念以及表示方法知识讲解1.把线段向两端无限延伸形成的图形叫做直线.2.射线:把线段向一方无限延伸的图形叫做射线.3.线段:直线上两个点和他们之间的部分叫做线段,这两个点叫做线段的端点.类型端点延长线及反向延长线用两个大写字母表示直线个无无顺序射线个有反向延长线第一个表示端点线段个两者都有无顺序例题精讲直线、射线、线段的概念以及表示方法例1.下列语句中表述准确的是().A.延长射线OCB.射线BA与射线AB是同一条射线C.作直线AB=BCD.已知线段AB,作线段CD=AB例2.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是.例3.'读句画图.已知不在同一直线上的四个点A、B、C、D.(1)画直线AD.(2)连接AB.(3)画射线CD.(4)延长线段BA至点E,使BE=2BA.(5)反向延长射线CD至点F,使DC=2CF.'数直线、射线、线段的条数知识讲解根据直线、射线、线段的概念数即可.还考查了直线、射线、线段的应用,关键是能根据已知得出规律n个点之间有条线段.例题精讲数直线、射线、线段的条数例1.平面上有任意三点,过其中两点画直线,共可以画().A.1条B.3条C.1条或3条D.无数条例2.如果要在一条直线上得到6条不同的线段,那么在这条直线上应选个不同的点.例3.过两点最多可以画1条直线;过三点最多可以画3条直线;过四点最多可以画条直线;…;过同一平面上的n个点最多可以画条直线.车票和票价的种类确定知识讲解根据线段的定义求出线段的条数,再根据每一条线段根据起点站和终点站的不同需要两种车票解答.例题精讲车票和票价的种类确定例1.如图,AB是一段火车行驶路线图,图中字母所示的5个点表示5个车站,在这段路线上往返行车,需印制()种车票.A.21B.42C.6D.12例2.甲站到乙站另有8个中间停靠站,共需准备()种动车票.A.90B.56C.45D.28例3.建宁到永安的动车路线,途中停靠的车站依次是:建宁﹣﹣泰宁﹣﹣明溪﹣﹣沙县﹣﹣永安,那么要为这路动车制作的火车票有种.两点确定一条直线知识讲解直线的基本性质:经过两点有且只有一条直线(两点确定一条直线).例题精讲两点确定一条直线例1.小朋友在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为:.例2.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有()A.1个B.2个C.3个D.4个两点之间,线段最短知识讲解1.线段的基本性质:两点之间,线段最短.2.两点之间线段的长度叫做两点之间的距离.例题精讲两点之间,线段最短例1.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是().A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行例2.如图,一只蚂蚁从长方体的一个顶点A沿表面爬行到顶点C处,有多条爬行线路,其中沿AC 爬行一定是最短路线,其依据的数学道理是.例3.如图所示,小明家到学校有条路可走,一般情况下,小明通常走路,其中的数学道理是.线段中点的判定知识讲解线段的中点:把一条线段分成相等的两条线段的点叫做线段的中点.例题精讲线段中点的判定例1.如图,点M在线段AB上,则下列条件不能确定M是AB中点的是().B.AM+BM=ABA.BM=ABC.AM=BM D.AB=2AM例2.如图所示,点M,N是线段AB上的两个点,且M是AB的中点,N是MB的中点,若AB=a,NB=b,下列结论:①AM=a②AN=a﹣b③MN=a﹣b④MN=a.其中正确的有().A.1个B.2个C.3个D.4个两点间的距离计算知识讲解两点间的距离,作出图形更形象直观,渗透分类讨论的思想.例题精讲两点间的距离计算例1.线段AB=5厘米,BC=4厘米,那么A,C两点的距离是().A.1厘米B.9厘米C.1厘米或9厘米D.无法确定例2.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为().A.3cm B.4cm C.5cm D.6cm例3.'如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.'方程的思想求线段长度问题知识讲解根据题目中已知线段长度,和线段的比对应设x,结合已知条件找出等量关系,列出方程,在求解即可.例题精讲方程的思想求线段长度问题例1.如图,已知数轴上有三点A、B、C,AC=2AB,AB=60,点A对应的数是40.动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少4个单位长度/秒,经过5秒,点P、R之间的距离与点Q、R 之间的距离相等,动点Q的速度为个单位长度/秒.例2.'已知:如图,点C是线段AB上一点,且3AC=2AB.D是AB的中点,E是CB的中点,DE=6,求:(1)AB的长;(2)求AD:CB.'例3.'如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.'数轴和方程结合的求线段长度问题知识讲解一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.例题精讲数轴和方程结合的求线段长度问题例1.'已知m,n满足等式(m﹣8)2+2|n﹣m+5|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ 的长.'例2.'如图,数轴上A,B两点对应的有理数分别为﹣10和20,点P从点O出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q同时从点A出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)分别求当t=2及t=12时,对应的线段PQ的长度;(2)当PQ=5时,求所有符合条件的t的值,并求出此时点Q所对应的数;'例3.'如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.'练习题单选题练习1.从重庆北开往北京的特快车,途中要停靠四个站点,如果任意两个间的票价不同,那么不同票价有()种.A.10B.15C.20D.30练习2.如图,点P是线段AB上的点,其中不能说明点P是线段AB中点的是().A.AB=2AP B.AP=BPC.AP+BP=ABD.BP=AB练习3.如图,已知点C在线段AB上,则下列等式AB=2BC;AC+BC=AB;AC=AB;AC=BC.能说明点C 是线段AB的中点的等式有().A.1个B.2个C.3个D.4个练习4.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有()A.1个B.2个C.3个D.4个练习5.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线().A.A⇒C⇒D⇒B B.A⇒C⇒F⇒BC.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B练习6.植树时,为了使同一行树坑在一条直线上,只需定出两个树坑的位置,其中的数学道理是().A.两点之间线段最短B.两点之间直线最短C.两点确定一条射线D.两点确定一条直线练习7.如图,已知线段AB=9,BC=5,点D为线段AC的中点,则线段AD的长度是()A.2B.2.5C.4.5D.7练习8.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为().A.3cm B.4cm C.5cm D.6cm练习9.下列说法正确的是().A.线段AB和线段BA表示的不是同一条线段B.射线AB和射线BA表示的是同一条射线C.若点P是线段AB的中点,则PA=ABD.线段AB叫做A、B两点间的距离练习10.线段AB=5厘米,BC=4厘米,那么A,C两点的距离是().A.1厘米B.9厘米C.1厘米或9厘米D.无法确定填空题练习1.如图,一只蚂蚁从长方体的一个顶点A沿表面爬行到顶点C处,有多条爬行线路,其中沿AC 爬行一定是最短路线,其依据的数学道理是.练习2.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画条直线.解答题练习1.'如图,数轴上A,B两点对应的有理数分别为﹣10和20,点P从点O出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q同时从点A出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)分别求当t=2及t=12时,对应的线段PQ的长度;(2)当PQ=5时,求所有符合条件的t的值,并求出此时点Q所对应的数;'练习2.'如图:长度为12cm的线段AB的中点为M,点C将线段MB分成了MC:CB=1:2,则线段AC的长为多少cm?'练习3.'(1)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值.(2)在(1)的条件下,已知线段AB=12cm,点C是直线AB上一点,且AB:BC=1:k,若点D 是AC的中点,求线段BD的长.'练习4.'已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD 的长.'。
七年级数学上册《直线射线线段》教案、教学设计
5.理解并运用线段的垂直平分线、角的平分线的性质及其在实际问题中学生采用以下方法:
1.通过直观感知和操作体验,让学生从实际中抽象出直线、射线、线段的概念。
2.利用合作探究的学习方式,让学生在小组内讨论直线、射线、线段的性质和特点,培养学生的团队协作能力。
2.培养学生勇于探索、严谨治学的科学态度,让学生在解决问题的过程中体验成功的喜悦。
3.培养学生团结协作、互相帮助的精神,使学生学会倾听、学会表达、学会合作。
4.培养学生运用几何知识解决实际问题的能力,使学生认识到数学在生活中的重要性。
5.培养学生热爱祖国、热爱科学的情感,激发学生为国家和民族的发展贡献自己的力量。
1.教师出示一张地图,引导学生观察地图上的道路、铁路等线路,并提出问题:“这些线路有什么共同特点?它们在几何学中应该如何表示?”
2.学生通过观察和思考,发现这些线路都是直的,没有弯曲,从而引出直线的概念。
3.教师进一步提问:“除了直线,我们在生活中还见过哪些类似的线?”引导学生回忆射线的例子,如太阳光线、手电筒的光线等。
3.运用比较法,让学生分析直线、射线、线段的相同点和不同点,提高学生的逻辑思维能力。
4.设计丰富的例题和练习,让学生在实际操作中巩固所学知识,培养解决问题的能力。
5.引导学生运用几何画板等教学软件,探索直线、射线、线段的性质,提高学生的动手操作能力和探究能力。
(三)情感态度与价值观
1.培养学生对几何图形的观察和思考能力,激发学生对数学学科的兴趣和好奇心。
3.介绍线段的和、差、倍、分等基本运算,并通过实例进行讲解。
4.讲解线段的垂直平分线、角的平分线的性质,以及在实际问题中的应用。
人教版七年级上数学《 直线,射线,线段》课堂笔记
《直线,射线,线段》课堂笔记一、知识点梳理1.直线的性质:直线没有端点,无法度量,不能在直线上取点。
2.射线的性质:射线只有一个端点,可以向一侧无限延伸,不能在射线上取点。
3.线段的性质:线段有两个端点,可以度量,可以在线段上取点。
4.直线、射线、线段的表示方法:用直线上任意两点的大写字母表示(如直线AB或直线BA);射线用端点和射线上任意一点的大写字母表示(如射线OA或射线AO);线段用端点的大写字母表示,并在其上方或下方标出该点到另两个端点的距离。
5.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
平行线的性质包括:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
6.垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直。
其中一条直线叫做另一条直线的垂线。
7.点到直线的距离:从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
二、重点难点解析1.直线、射线、线段的表示方法及特性:直线、射线、线段是基本的几何图形,需要掌握它们的表示方法及特性,以便进行后续的学习和运用。
2.平行线的定义和性质:平行线是几何中非常重要的概念之一,需要深刻理解其定义和性质,以便解决相关问题。
3.垂线的定义和点到直线的距离:垂线和点到直线的距离是后续学习平面几何的基础,需要熟练掌握其定义和计算方法。
三、例题解析例1:下列说法正确的是()A. 直线AB和直线BA是不同的直线B. 射线AB和射线BA是不同的射线C. 线段AB和线段BA是不同的线段D. 直线、射线、线段都有两个端点【分析】根据直线的表示方法、射线的表示方法、线段的表示方法进行判断即可.【解答】解:A、直线AB和直线BA是同一条直线,故本选项错误;B、射线AB 和射线BA是不同的射线,故本选项正确;C、线段AB和线段BA是同一条线段,故本选项错误;D、直线没有端点,故本选项错误;故选B.。
初中数学七年级上册-线段、射线、直线
侵权必究
STRUGGLE
讲授新课
知识点 1 线段、射线、直线
思考:如何表示线段、射线、直线呢?
C
线段:
a
B
表示1: 线段 CB(或线段BC) 表示2:线段 a
射线: O
B
表示:射线 OB
直线: E
F
表示1:直线 EF(或直线FE)
l
表示2:直线l
侵权必究
STRUGGLE
判断下列正误:
(1) A
B 记作:直线AB ( √ )
解析: 在直线上任意两个大写字母都可以表示这条直线, 所以A错;表示射线时,第一个字母表示射线的端点.端点字 母不同,射线必然不同,所以B错;直线无长短,所以D错.
侵权必究
STRUGGLE
练一练
1.下列图形中表示射线AB的是( B )
2.下列关于直线的表示方法正确的是( C )
侵权必究
STRUGGLE
典例2
如图,已知平面上三点A、B、C.
(1)画线段AB; (2)画直线BC; (3)画射线CA;
解:(1)、(2)、(3)题解答如图所示.
侵权必究
STRUGGLE
由线段AB得到射线AB
由线段AB得到直线AB
常见说法:线段AB所在的直线
侵权必究
STRUGGLE
直线AB与直线BC有几个公共点?
答:直线AB与直线BC有一个公共点
侵权必究
STRUGGLE
活动2:当直线a上有n个点时,可得到2n条射线, n(n-1) 2 条线段.
·· · · a
A
O
B
C
1.当直线a上有1个点时,可得到 2条射线, 0 条线段; 2.当直线a上有2个点时,可得到 4条射线, 1 条线段; 3.当直线a上有3个点时,可得到 6条射线, 3 条线段; 4.当直线a上有4个点时,可得到 8条射线, 6 条线段; 5.当直线a上有5个点时,可得到 10 条射线, 10 条线段; 6.当直线a上有6个点时,可得到 12条射线,15条线段;
人教版初一数学上册 直线、射线、线段 讲义
直线、射线与线段知识点一、直线、射线、线段的概念1、直线:由无数个点构成,没有端点,向两端无限延长,长度是无穷的,无法测量2、射线:由无数个点构成,有一个端点,从这个端点开始向另一端无限延长,长度是无穷的,无法测量3、线段:由无数个点构成,有两个端点,从一个端点连向另一个端点,长度是有限的,可以测量1、下列说法正确的有_____________①直线比射线长②线段由无数个点构成③过三点一定能作一条直线④线段的长度是无穷的⑤直线有两个端点⑥射线有两个端点⑦线段有两个端点2、下列关于直线、射线、线段的说法正确的是()A、直线最长,线段最短B、射线是直线长度的一半C、直线没有端点D、直线、射线和线段的长度都不确定3、下列说法正确的是()A、线段不能延长B、延长直线AB到CC、延长射线AB到CD、直线上两个点和它们之间的部分是线段A、线段AB的长度是A、B两点间的距离B、若点P使PA=PB,则点P是AB中点C、画一条10厘米的直线D、画一条3厘米的射线知识点二、直线、射线、线段的表示方法1、直线用一个小写字母或两个大写字母表示,例如直线a或直线AB。
注意:直线AB和直线BA是同一条直线2、射线用一个小写字母或两个大写字母表示,例如射线a或射线AB注意:射线AB指从A射向B,射线BA指从B射向A,是不同的两条射线3、线段用一个小写字母或两个大写字母表示,例如线段a或线段AB注意:线段AB和线段BA是同一条线段思考:(1)直线AB和直线BA一样吗?_______(2)射线AB和射线BA一样吗?_______(3)线段AB和线段BA一样吗?_______1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线A、线段AB和线段a可以代表同一条线段B、直线AB和直线BA是同一条直线C、线段AB和线段BA是同一条线段D、射线AB和射线BA是同一条射线3、下列叙述正确的是()A、直线AB、线段ABC、射线abD、直线Ab4、下列叙述不正确的是()A、线段aB、射线bC、直线CDD、射线Ca知识点三、数学原理1、两点确定一条直线2、两点之间线段最短1、下列说法正确的有_______________①经过两点有且只有一条直线②两点之间线段最短③两点确定一条直线④到线段两个端点距离相等的点叫做线段的中点⑤线段的中点到线段两个端点的距离相等2、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,体现的原理是________________________3、小明是神枪手,他打靶时眼睛总要与枪上的准星、靶心在同一条直线上,这体现了什么道理_______________________4、从A到B有多条路,但是聪明的人都知道走走中间的直路比较近,这体现的数学原理是_____________________5、把弯曲的河流改成直的,可以缩小航程,这体现的原理是_____________________6、要把一根木条在墙上钉牢,至少需要______枚钉子,原理是_________________7、开学整理教室时,老师总是先把每一列最前和最后的课桌整理好,然后再依次摆中间的课桌,一会儿一列课桌就摆在一条线上,整整齐齐。
初一数学直线、射线、线段含答案
初一数学直线、射线、线段中考要求例题精讲直线、射线、线段的概念:① 在直线的基础上定义射线、线段:直线上的一点和这点一旁的部分叫射线,这个点叫做射线的端点. 直线上两点和中间的部分叫线段,这两个点叫线段的端点. ② 在线段的基础上定义直线、射线:把线段向一方无限延伸所形成的图形叫射线, 把线段向两方无限延伸所形成的图形是直线. 点与直线的关系:点在直线上;点在直线外. 两个重要公理:① 经过两点有且只有一条直线,也称为“两点确定一条直线”. ② 两点之间的连线中,线段最短,简称“两点之间,线段最短”. 两点之间的距离:两点确定的线段的长度.⑴ 点的表示方法:我们经常用一个大写的英文字母表示点:A ,B ,C ,D ,…… ⑵ 直线的表示方法:① 用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB ,如下图⑴ 也可以写作直线BA .(1) (2)lA B② 用一个小写字母来表示,如直线l ,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序. ⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO .② 用一个小写字母来表示,如射线l ,如图⑷.(3) (4)lAO注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.(5) (6)lAB注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.中点:模块一直线、射线、线段的概念【例1】下列说法正确的是()A. 直线上一点一旁的部分叫做射线B. 直线是射线的2倍C. 射线AB与射线BA是同一条射线D. 过两点P Q、可画出两条射线【解析】略【答案】A【巩固】下列说法中正确的是()A. 直线的一半是射线B. 延长线段AB至C,使BC AB=C. 从北京到上海火车行驶的路程就是这两地的距离D. 三条直线两两相交,有三个交点【解析】略【答案】C【例2】下列语句准确规范的是( )A. 直线a b、相交于一点mB. 延长直线ABC. 反向延长射线AO(O是端点)D. 延长线段AB到C,使BC AB=【解析】略【答案】D【巩固】下面说法中错误的是( )A. 直线AB和直线BA是同一条直线B. 射线AB和射线BA是同一条射线C. 线段AB和线段BA是同一条线段D. 把线段AB向两端无限延伸便得到直线BA【解析】略【答案】B【巩固】下列叙述正确的是()A.孙悟空在天上画一条十万八千里的直线B.笔直的公路是一条直线C.点A一定在直线A B上D.过点A、B可以画两条不同的直线,分别为直线A B和直线B A 【解析】略【答案】C【例3】 根据直线、射线、线段各自的性质,如下图,能够相交的是( )D.C.B.B AA.【解析】略【答案】B【巩固】下列四个图形中各有一条射线和一条线段,它们能相交的是( )C.B.A.【解析】略 【答案】C【巩固】下列叙述正确的是( )A .可以画一条长5cm 的直线B .一根拉紧的线是一条直线C .直线AB 经过C 点D .直线AB 与直线BA 是不同的直线【解析】略 【答案】C【例4】 如图所示根据要求作图:⑴连结AB ;⑵作射线AC ;⑶作直线BC .ABC【解析】略 【答案】如图A模块二 直线公理公理:两点确定一条直线【例5】如图,图中共有条线段.【解析】1234515++++=.【答案】15【巩固】平面上有三个点,经过两点画一条直线,则可以画几条直线? 【解析】略【答案】1条或3条.模块三线段的相关计算【例6】如图所示,M是线段A B的中点,则1______2A M=,2_____2_____AB==.【解析】12AM AB=,22AB AM BM==.【答案】AM;AM;BM.【巩固】判断:若3c mA BBC==,则说明B是A C的中点.【解析】错误,如图,虽然3c mA BB C==,但B不是A C的中点,要明确点B把线段A C分成两条相等的线段才可.【答案】错误AB C【巩固】判断:已知A,B,C三点在同一条直线上,12AC AB=,那么C是A B的中点.【解析】错误,几何中的题目如果无图,要特别注意读准题意,适时分类求解.如下图⑴,⑵,均满足题意.【答案】错误(1) (2)【例7】如图,已知线段AB上依次有三个点C D E,,把线段AB分成2:3:4:5四个部分,56AB=,求BD的长度.【解析】根据题意可设2345AC x CD x DE x EB x ====,,,,所以有:1456436AB AC CD DE EB x x BD DE EB =+++====+=,,.【答案】36【巩固】已知14cm AD =,B C ,是AD 上顺次两点,且::2:3:2AB BC CD =,E 为AB 的中点,F 为CD的中点,求EF 的长.E【解析】设2AB x =,3BC x =,2CD x =,23214x x x ++=,2x =,510EF x == 【答案】10【例8】 如图,已知线段A B 上依次有三个点,,C D E 把线段A B 分成2:3:4:5四个部分,,,,M P Q N 分别是,,,A C C D D E E B的中点,若21,M N =求P Q 的长度. EQDPA【解析】根据题意可设234510.5212 3.57AC x CD x DE x EB x MN x x PQ x =========,,,,,, 【答案】7【巩固】摄影组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中 午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A B ,两市相距多少千米?【解析】根据题意画图,D 为中午赶到的小镇,E 为傍晚赶到的地方,根据题意可得:1140022AD DC BE CE DE ===,,,所以有111200222AD BE DC CE DE +=+==,则600AB AD DE EB =++=(千米).【答案】600千米模块四 两点之间线段最短【例9】 从家到学校共有条路可以走,如图所示,若想走最近的路,应选择 (填序号).这是根据 .学校家【解析】略【答案】②;两点之间,线段最短.【例10】 如图,已知A B ,在直线的两侧,在l 上求一点P ,使PA PB +最小;B l图1【解析】如图,连接,A B ,A B 与的交点即为所求的P 点,利用“两点之间线段最短”, 教师不妨可在其他出处取一点P ,显然''A P B PA B+>.l图1-1【答案】如图l图1-1【巩固】如图,有一个正方体的盒子1111ABCD A B C D -,在盒子内的顶点A 处有一只蜘蛛,而在对角的顶点1C 处有一只苍蝇。
初一数学上册:如何区分线段、直线、射线
初一数学上册:如何区分线段、直线、射线一、定义线段是直的,有两个端点,可以测量长度。
要判断一个图形是不是线段一定要满足上面三个条件。
接着,我们就学习了直线,直线没有端点,是直的,没有办法度量长度。
要判断一个图形是不是线段要满足上面的三个条件。
最后我们学习了射线,射线只有1个端点,直的,也没有办法度量长度,要判断一个图形是不是线段要满足上面的三个条件。
由一个点引出的两条射线构成了一个角,这个点叫做角的顶点,这两条射线叫做角的边。
二、表示方法1.线段的表示方法:先给线段的两个端点大写字母命名,一个端点是A,一个端点是B,那么这条线段就是AB。
这里就有一个知识点,两点确定一条线段。
2.直线的表示方法:先给直线上的两个点用大写字母命名,一个点是A,一个点是B,那么这条直线就是直线AB。
这里就有一个知识点,两点确定一条直线。
也可以用一个小写字母来表示直线,比如线段l。
3.射线的表示方法:射线可以用端点和射线上的另一点表示,端点(起点)的字母写在前面,不能调换位置。
射线的端点是A,另一个点是B,那就是射线AB;射线的端点是B,另一个点是A,那就是射线BA。
4.角的表示方法:认识“∠”,知道角的符号怎么写,如“∠1”读作角1。
那么在上述内容中,我们学习了线段、直线、射线和角的专项练习,下面我们就通过4道典型的例题,进一步让大家学会怎么区分线段、直线、射线和角。
在例1当中,一条直线上有A、B、C三个端点,根据规律在一条直线上,射线的条数是端点数的两倍,线段的条数=(端点数-1)+(端点数-2)+ (1)直线的条数是1条,射线的条数是3×2=6条,线段的条数是2+1=3条。
在例2当中,一条射线上有ABCDEF共6个端点,根据规律,在一条射线上,射线的条数等于端点数,线段的条数=端点数-1)+(端点数-2)+……+1;直线的条数是0条,射线的条数的6条,线段的条数是5+4+3+2+1=15条。
在例3当中,甲地到乙地之间有3个站点,根据规律,在一条线段上,线段的条数=(端点数-1)+(端点数-2)+……+1;所以火车的票价就有4+3+2+1=10种,但是因为火车票有往返两种情况,所以,就有10×2=20种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•a
•b
(•√ ) (•√ )
(•× )
( •√ )
( •× ) ( •× )
•例1、已知平面上四个点A、B、C、D •读下列语句,并画出相应的图形 • ①画直线AB • ②画线段AC • ③画射线AD、DC、CB
•随堂练习一
1. 按下列语句画出图形.
•(1)直线EF经过点C •(2)经过点O的三条线段a、b、 c
•(3)线段AB、CD相交于点B
•E
•F •C
•随堂练习一
•(2)经过点O的三条线段a、b、
c
•c
•a
•o
•b
•随堂练习一 •(3)线段AB、CD相交于点B
•D •A
•B •C
•随堂练习一 •2、看图说话
•点A在直线 l 上
•A •l
•点A在直线 l 外 •A
•l
•点与直线的位置关系: •1.一个点在一条直线上,也可以说这条直线经过这个点. •2.一个点在一条直线外,也可以说这条直线不经过这个点.
•只有1条直线,是直线BC
•B •C
•D •E
•随堂练习二
• 1、往返重庆、成都两地的汽车,中途需要 停靠永川、隆昌、资阳三个站点,根据你所学 的知识回答: 需要制定多少种不同的票价?
•A重庆 •永川B •答:10种
•实际问 题
•隆C
•资D阳
•成E都
昌
•转 化 为 •数学问题
•活动三:比一比看谁的反应快
•A
•B
•C
•D
•度量法
•A
•B
•(3.8㎝)
•C
•D •(4.1㎝)
•叠合法
•A
•B
•(1)如果点B在线段CD上
•C
•D
,
• 记作AB<CD
•A
•B
•(2)如果点B在线段CD外
•C
•D
,
• 记作AB>CD
•A
•B
•(3)如果点B与点D重合,
• 记作AB=CD
•C
•D
•情景活动二
•你能帮小强用这根绳子做一双鞋带吗?
•1、下列说法正确的是( ) •A、两点确定两条直线 •B、三点确定一条直线 •C、过一点只能作一条直线 •D、过一点可以作无数条直线
•答案:D
•2、如图所示的直线、射线、线段能相交 的是( )
•D •C
•A •B
•C •D •A •B
•A •B
•A
•B
•D •C •C •D
•(A
•(B
)
)
•答案:C
•B、叠合法
2、怎样比较多边形中各边的长短?
•A
•B •AC•< CD
•C•D>
AB
•D •C
•3、M是线段AB上的一点,其中不能判定点M是线段AB中点的是( •A) •A、AM+BM=AB B、AM=BM •C、AB=2BM
•4、线段AB=6厘米,点C在直线AB上,
•c 且BC=3厘米,则线段AC的长为( ) •A、3厘米 B、9厘米 •C、3厘米或9厘米
•A
•B •P
•A •P •P •B
•(A) •(B )
•答案:C
•(C)
•A、点A在直线m上
•B、点A在直线 l 上
•C、点B在直线 l 上
•D、直线m不经过B点
•l
•答案:C
•B •A
•m
• 线段的大小比较
基本作图
• 在几何里,把限定用直尺和圆规来画图,称
•(2)如果点C,D三等分AB,则 AC=CD=•_D_ = _••13_ AB B
•(3)CP可以表示成哪两条线段的差?你有几种 不同的表示?
•(4)现在告诉你CP=1.5cm,求线段AB的长。
•线段的性质:两点的所有连线中, 线段最短,简单地说,两点之间线段最短
•一天,小丑鱼和它 的朋友在海里游玩 ,碰到了凶恶的鲨 鱼NICK,小丑 鱼和 它的朋友为了逃到 安全地带,有三条 路可以选择,你猜 它们将选择哪条路
• (或2AC•=2BC=AB)
•练习:如图,已知点C是线段AB的中点,点D是线 段AC的中点,完成下列填空:
•(1)AB=•_2_ BC ,BC= •_2_ AD
•A •D •C
•B
•(2)BD= _•3_ AD
•例1如图
•(1)如果点P是AB的中点,
则AP= _••12_ AB
•A •C •P •D •B
•3、下列说法正确的是( •D ) • A、连结两点的线段叫做两点间的距离 • B、两点间的连线的长度,叫做两点间的距离 • C、连结两点的直线的长度,叫做两点的距离 • D、连结两点的线段的长度,叫做两点间的距离
•练习
•1、下面两根粗细不同的木料,哪一根较长,你可用哪 几种方法来比较?
•A、度量法
•直 线
•直线AB(直线BA) •m•(字母m标在线的一旁)
•直线 m
• 在射线的表示法中,要注意两点:
•①端点的字母 O 写在首位;② 两个字母不能调换位置;
•O •A
•表示: ① 用两个大写字母表示,
必须端点写在前,射线上另一个字母
写在后,射线 OA 。说明:①同
一条射线有不同的表示;②端点相同的 射线不一定是同一条射线,端点不同的 射线一定不是同一条射线;③两条射线 是同一条射线,必须具备两个条件:a.
•运动场爬竿 •探照灯光
•跑道线
•输 油 管
•探究活动一
•1、如果你想将一根细木条固定在墙上,至少 需要几个钉子?
•探究活动一
•2、过一点A可以画几条直线? •3、过两点A、B可以画几条直线?
•·A
•·A
•·B
•一、直线的基本性质 :
•A
•B
•经过两点有一条直线,并且只有一条直线 。
•或简述为:
•随堂练习一 •2、看图说话
•a
•O •b
•直线a和直线b相交于点O
•当两条不同的直线有一个公共点时,我们就 称两条直线相交,这个公共点叫做它们的交点
.
•例2.指出下图中线段、射线、直线分 别有多少条?
•解:有10条线段分别是AB、AC、AD、AE、 BC、BD、BE、CD、CE、DE.
•A
•有8条射线
测测眼力吧!
•观察下列三组图形,你能看出每组图形 中线段a与b的长短吗 •b
•a
•b
•(1)
•a
•a •(2) •b
•(3)
•根据图形填空:
•AC=•1_•、_A_B_ + •_ _B_C_ •A •B •D
•C
•2、(如图)增加一个D点,则,AC= _•_ _A_B+ _•_ B_ D_+•_ _D_C
•B
•作法与示范
: 作
法
示
范
(1) 作射线A’C’ ;
•(2) 以点A’为圆心,
•以AB的长为半径•画弧,
•交射线A’ C’于点B’,
•A’B’ 就是所求作的线段。 •A’ •A’ •B’
C’
•情景活动一
•哪个高
• 贝贝
•明明
•怎样比较他们的高矮呢?
•已知线段AB,线段CD, •如何比较两条线段的长短?
端点相同 b.延伸的方向相同
•l
•② 用一个小写字母表示,射
线l
•A
•B •表示:用两个端点的大写
字母表示线段 AB(或线段
BA)
•a
•表示:用一个小写 字母表示 , 线段
a
•针对训练
•判断:
•1、射线是直线的一部分。 •2、线段是射线的一部分。 •3、画一条射线,使它的长度为3cm。 •4、线段AB和线段BA是同一条线段。 •5、射线OP和射线PO是同一条射线。 •6、如图,画一条线段ab。
•3、射击的时候,你知道是如何瞄准目标的吗?
•探究活动二
•你发现直线、射线、线段有哪些联系与区别 ?
•A
•B
•A
•B
•A
•B
•二、直线、射线、线段的区别与联系
: •射线、线段都是直线的一部分
。
类型 •端点
•延伸
•度量
数 线段 •2个
•可度
射线 直线
量
•1 个
•向一个方 向无限延伸
•不可度 量
•无端点
?
• 连接两点间的线段的长度,叫做这两点的距离 。
•①
•② •③
•安全 的家
•练一
练
•(1)判断:两点之间的距离是指两点之间的线段。
(
•错 )
•(2)如图:这是A、B两地之间的公路,在公路工程改 造计划时,为使A、B两地行程最短,应如何设计线路
?在图中画出。你的理由是
•B•.
•A
•两点之间线段最短
•向两个方向无限 延伸
•不可度量
•联系•线段向一端无限延长形成射线,向两端无限延长形成直线
三、线段、射线、 直线的表示法
图形
表
示
•A
•B
•线段 AB、线段BA
•线 段 射 线 •O
•a •(字母 a 放在线段中•央线)段 a
•A
•射线 OA
•( 端点的字母 O 写在首位 )
•A
•B •(点A、B不能取在线尽头。 )
•两点确定一条直线 。
•想一想
经过两点有一条直线,并且只 有一条直线可以用来说明生活 中的哪些现象?
•两点确定一条直线的应用:
•1、植树时,只要定出两个树坑的位 置就能确定同一行的树坑所在的直线 。
•2、建筑工人在砌墙时,这样拉出的参照线就是直的(如 图所示);木工师傅用墨盒弹出的墨线也是直的,你能用 刚才学过的几何知识解释来他们这样做的道理吗?