七年级数学下册第六章第2课时 平面直角坐标系(1)

合集下载

专题06 《平面直角坐标系》(解析版)七年级下学期数学(人教版)

专题06 《平面直角坐标系》(解析版)七年级下学期数学(人教版)

专题06 平面直角坐标系考点一、平面直角坐标系例1、(2020·山东威海市·中考真题)如图①,某广场地面是用A.B.C三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:m n位置恰第一行的第一块(A型)地砖记作(1,1),第二块(B型)地时记作(2,1)…若(,)好为A型地砖,则正整数m,n须满足的条是__________.【答案】m、n同为奇数或m、n同为偶数【分析】几何图形,观察A型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m、n满足的条件.【详解】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数,故答案为:m、n同为奇数或m、n同为偶数.【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.考点二、坐标方法的简单应用例2、(2020·甘肃金昌市·中考真题)如图,在平面直角坐标系中,OAB ∆的顶点A ,B 的坐标分别为,(4,0),把OAB ∆沿x 轴向右平移得到CDE ∆,如果点D 的坐标为,则点E 的坐标为__________.【答案】(7,0)【分析】根据B 点横坐标与A 点横坐标之差和E 点横坐标与D 点横坐标之差相等即可求解.【详解】解:由题意知:A 、B 两点之间的横坐标差为:431-=,由平移性质可知:E 、D 两点横坐标之差与B 、A 两点横坐标之差相等,设E 点横坐标为a ,则a -6=1,∴a=7,∴E 点坐标为(7,0) .故答案为:(7,0) .【点睛】本题考查了图形的平移规律,平移前后对应点的线段长度不发生变化,熟练掌握平移的性质是解决此题的关键.达标检测1.点(﹣4,2)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【详解】解:点(-4,2)所在的象限是第二象限.故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.已知点P 的坐标为(3,4)--,则点P 到y 的距离为( )A .3-B .3C .4D .4-【答案】B【分析】根据点到y 轴的距离等于横坐标的长度解答.【详解】解:∴点P 的坐标为(-3,-4),∴点P 到y 轴的距离为3.故选:B .【点睛】本题考查了点的坐标,熟记点到y 轴的距离等于横坐标的长度是解题的关键.3.在平面直角坐标系中,下列各点位于第三象限的是( )A .(0,3)B .(2,1)-C .(1,2)-D .(1,1)-- 【答案】D【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A 、(0,3)在y 轴上,故本选项不符合题意;B 、(−2,1)在第二象限,故本选项不符合题意;C 、(1,−2)在第四象限,故本选项不符合题意;D 、(-1,-1)在第三象限,故本选项符合题意.故选:D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.下列语句正确的是( )A .在平面直角坐标系中,(3,5)-与(5,3)-表示两个不同的点B .平行于x 轴的直线上所有点的横坐标都相同、C .若点(,)P a b 在y 轴上,则0b =D .点(3,4)P -到x 轴的距离为3【答案】A【分析】根据平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点逐一判断即可得.【详解】A.在平面直角坐标系中, (−3,5) 与 (5,−3) 表示两个不同的点,此选项正确;B.平行于 x 轴的直线上所有点的纵坐标都相同,此选项错误;C.若点 P (a ,b ) 在 y 轴上,则a =0 ,此选项错误;D.点 P (−3,4) 到 x 轴的距离为4,此选项错误;故选:A.【点睛】本题主要考查坐标与图形的性质,解题的关键是掌握平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点.5.将点A (2,1)向下平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(0,1)B .(2,﹣1)C .(4,1)D .(2,3) 【答案】B【分析】让点A 的横坐标不变,纵坐标减2即可得到平移后点A ′的坐标.【详解】解:将点A (2,1)向下平移2个单位长度得到点A ′,则点A ′的坐标是(2,1-2),即(2,-1).故选:B.【点睛】本题考查坐标与图形变化-平移,关键是要熟记:上下平移只改变点的纵坐标,上加下减.6.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【答案】D【分析】根据方位角的概念并结合平行线的性质,可得答案.【详解】解:过点B作BD∴AC,∴∴1=∴A=40°∴港口A相对货船B的位置可描述为(北偏东40°,35海里),故选:D.【点睛】本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.7.在平面直角坐标系中,将点A(x,y)向左平移3个单位长度,再向上平移5个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(0,﹣3)C.(﹣2,5)D.(5,﹣3)【答案】B【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【详解】解:∴点A(x,y)向左平移3个单位长度,再向上平移5个单位长度后与点B(﹣3,2)重合,∴x﹣3=﹣3,y+5=2,解得x=0,y=﹣3,所以,点A的坐标是(0,﹣3).故选:B.【点睛】本题考查了坐标平移变化规律;明白向左平移,横坐标减,向上平移纵坐标加是关键.8.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)【答案】B【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【详解】根据棋子“馬”和“車”的点的坐标可建立直角坐标系,如图所示:故棋子“炮”的点的坐标为:(0,2).故选:B .【点睛】本题主要考查了坐标确定位置,正确得出原点的位置建立直角坐标系是解题关键. 9.在直角坐标系中,点P (m ,2—2m )的横坐标与纵坐标互为相反数,则P 点在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据m +2-2m =0计算m 的值,后判定横坐标,纵坐标的正负求解即可【详解】∴点P (m ,2—2m )的横坐标与纵坐标互为相反数,∴m +2-2m =0,∴m =2,∴2-2m =-2,∴点P 位于第四象限,故选D【点睛】本题考查了坐标与象限的关系,利用相反数的性质构造等式计算m 的值是解题的关键. 10.如图,在平面直角坐标系中,已知点()2,1M ,()1,1N -,平移线段MN ,使点M 落在点()1,2M '-处,则点N 对应的点N '的坐标为( )A .()2,0-B .()0,2-C .()1,1-D .()3,1--【答案】A【分析】 根据()2,1M 平移后得到()1,2M '-,确定其平移规律是向左平移3个单位,后向上平移1个单位,根据规律确定点N 的平移坐标即可.【详解】∴()2,1M 平移后得到()1,2M '-,∴其平移规律是向左平移3个单位,后向上平移1个单位,∴()1,1N -,∴平移后的坐标为(1-3,-1+1)即()2,0-,故选A .【点睛】本题考查了坐标系中点的坐标平移,准确确定平移方向和平移距离,并熟记左减右加,上加下减的计算法则是解题的关键.二、填空题11.己知(82,1)P m m -+点在x 轴上,则点P 的坐标为___.【答案】(10,0)【分析】根据x 轴上点的横坐标为0列方程求出m 的值,然后求解即可.【详解】解:点(82,1)P m m -+在x 轴上,10m ∴+=,解得1m =-,828210m ∴-=+=,∴点P 的坐标为(10,0).故答案为:(10,0).【点睛】本题考查了点的坐标,熟记x 轴上点的横坐标为0是解题的关键.12.如图,点A 在射线OX 上,2OA =.若将OA 绕点O 按逆时针方向旋转30到OB ,那么点B 的位置可以用()2,30︒表示.若将OB 延长到C ,使5OC =,再将OC 按逆时针方向继续旋转45︒到OD ,那么点D 的位置可以用____表示.【答案】(5,75°)【分析】直接利用已知点的意义,进而得出点D 的位置表示方法.【详解】解:如图所示:由题意可得:OD =OC =5,∴AOD =75°,故点D 的位置可以用:(5,75°)表示.故答案为:(5,75°).【点睛】此题主要考查了坐标确定位置,正确得出坐标的意义是解题关键.13.已知点()2,3A --,将点A 先向右平移4个单位长度,再向上平移6个单位长度,得到A ',则A '的坐标为_________.【答案】()2,3【分析】根据平移规律左减右加,上加下减,进行平移计算即可;【详解】∴()2,3A --,向右平移4个单位长度,向上平移6个单位长度∴()24,36A '-+-+∴()2,3A '故答案为:()2,3【点睛】本题主要考查了平面直角坐标系坐标的平移变化,熟悉掌握坐标的变化规律是解题的关键.14.平面直角坐标系中,点(P 到x 轴的距离是_________.【答案】2【分析】根据点到x 轴的距离是纵坐标的绝对值,可得答案.【详解】解:点P (2)到x 轴的距离是|2|=2,故答案为:2.【点睛】本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值是解题关键.15.把点(2,3)-的向上平移4个单位长度,再向左平移3个单位长度,得到的点的坐标为________.【答案】(-5,7)【分析】根据点的平移方法可得把点(-2,3)的横坐标减3,纵坐标加4,然后计算即可.【详解】解:点(-2,3)向上平移4个单位长度单位再向左平移3个单位长度所到达点的坐标为(-2-3,3+4),即(-5,7),故答案为:(-5,7).【点睛】此题主要考查了点的平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.16.全英羽毛球公开赛混双决赛,中国组合鲁恺/ 黄雅琼,对阵马来西亚里约奥运亚军陈炳顺/吴柳萤,鲁恺/黄雅琼两名小将的完美配合结果获胜.如图是羽毛球场地示意图,x轴平行场地的中线,y轴平行场地的球网线,设定鲁恺的坐标是(3,1),黄雅琼的坐标是(0,-1),则坐标原点为__________.【答案】O1【分析】根据黄雅琼的位置即可确定坐标原点的位置.【详解】∴鲁恺的坐标是(3,1),黄雅琼的坐标是(0,−1),∴坐标原点为O1,故答案为:O1.【点睛】本题考查了坐标确定位置的知识,解题的关键是能够了解(0,−1)在坐标原点的下面一个单位,17.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步沿x轴向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度:当n被3除,余数为1时,则向右走1个单位长度:当n被3除,余数为2时,则向右走2个单位长度,当走完第6步时,棋子所处位置的坐标是,当走完第7步时,棋子所处位置的坐标是 ,当走完第2021步时,棋子所处位置的坐标是 . 【答案】A 6(6,2),A 7(7,2),(2021,673) 【分析】设走完第n 步,棋子的坐标用A n 来表示.列出部分A 点坐标,发现规律“A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n )”,根据该规律即可解决问题. 【详解】解:设走完第n 步,棋子的坐标用A n 来表示.观察,发现规律:A 0(0,0),A 1(1,0),A 2(3,0),A 3(3,1),A 4(4,1),A 5(6,1),A 6(6,2),A 7(7,2),…, …,∴A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n ). ∴2021=673×3+2, ∴A 2021(2021,673).故答案为:A 6(6,2),A 7(7,2),(2021,673). 【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 3n (3n ,n ),A 3n +1(3n +1,n ),A 3n +2(3n +3,n )”.本题属于基础题,难度不大,解决该题型题目时,根据棋子的运动情况,罗列出部分A 点的坐标,根据坐标的变化发现规律是关键.18.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.【答案】()4044,0 【分析】由题意可知,正方形的边长为2,每旋转一次半径增加2,每次旋转的角度为90°,据此解【详解】解:由题意可知:正方形的边长为2,∴A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,-12)…可发现点的位置是四个一循环,每旋转一次半径增加2,P在x轴正半轴,2021÷4=505……1,故点2021OP的长度为2021×2+2=4044,即:P2021的坐标是(4044,0),故答案为:(4044,0).【点睛】本题考查了直角坐标系内点的坐标运动变化规律,解题的关键是理解A点的坐标除符合变化之外,还由旋转半径确定,而且每旋转一次半径增加2.三、解答题19.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(-5,0),(-4,3),(-3,0),(-2,3),(-1,0),(-5,0)【答案】见解析【分析】将坐标表示的点分别在坐标系中标出来,然后用线段依次连接起来即可.【详解】解:如图所示:本题考查了平面直角坐标系中的作图,正确地将点在坐标系中标出来是解题的关键.20.如图所示,在平面直角坐标系中点()30A -,,()5,0B ,()3,4C ,()2,3D -.(1)求四边形ABCD 的面积(2)点P 为y 轴上一点,且ABP △的面积等于四边形ABCD 的面积的一半,求点P 的坐标.【答案】(1)23;(2)90,4⎛⎫ ⎪⎝⎭或90,4⎛⎫- ⎪⎝⎭. 【分析】(1)分别过C 、D 作x 轴的垂线,垂足分别为E 、F ,分别计算AF 、DF 、BE 的长,根据三角形面积公式、梯形面积公式分别解得32ADF S =△,4BCE S =△,352CEFD S =梯形即可解题;(2)设()0,P b ,根据题意,结合三角形面积公式及绝对值的性质化简解题即可. 【详解】解:(1)分别过C 、D 作x 轴的垂线,垂足分别为E 、F ,因为()30A -,,()B 5,0,()34C ,,()23D -,, 所以1AF =,34DF CE ==,25BE EF ==,所以131322ADF S =⨯⨯=△, 所以12442BCE S =⨯⨯=△,所以()353452CEFD S =+⨯=梯形,所以33542322ABCD S ++==四边形.(2)设()0P b ,则有123=22ABP ABCD S S =△四边形 即11238222AB OP b ⨯⨯=⨯⨯=解得:23||8b = 所以238b =± 所以点P 的坐标为904⎛⎫ ⎪⎝⎭,或904⎛⎫- ⎪⎝⎭,. 【点睛】本题考查坐标与图形的性质、三角形面积、绝对值的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.在平面直角坐标系中,完成以下问题:(1)请在坐标系中标出点(3,2)A 、(2,3)B -;(2)若直线l 经过点B 且//l y 轴.点C 是直线l 上的一个动点,请画出当线段AC 最短时的简单图形,此时点C 的坐标为 ;(3)线段AC 最短时的依据为 .【答案】(1)见详解;(2)画图见详解,C (﹣2,2);(3)点到直线的距离垂线段最短 【分析】(1)根据点坐标的定义直接在坐标系中标出点即可;(2)根据点到直线的距离垂线段最短即可判断点C 的坐标; (3)依据点到直线的距离垂线段最短. 【详解】(1)A,B 两点如下图;(2)AC 最短时的图形如下图所示,此时C 点坐标为:(﹣2,2); (3)点到直线的距离垂线段最短.【点睛】本题考查了平面直角坐标系中点的坐标问题,及对点到直线的距离垂线段最短的理解与应用,解题关键在于理解应用点到直线的距离垂线段最短.22.如图,在直角坐标系中,已知A (﹣1,4),B (﹣2,1),C (﹣4,1),将ABC 向右平移3个单位再向下平移2个单位得到111A B C △,点A 、B 、C 的对应点分别是点A 1、B 1、C 1.(1)画出111A B C △;(2)直接写出点A 1、B 1、C 1的坐标; (3)直接写出111A B C △的面积.【答案】(1)见解析;(2)A 1(2,2),B 1(1,﹣1),C 1(﹣1,﹣1);(3)3. 【分析】(1)直接利用平移的性质得出对应点位置,画出图形即可; (2)利用(1)中图形,利用平移的性质得出对应点坐标; (3)利用三角形面积公式可得出答案. 【详解】解:(1)如图所示:111A B C △,即为所求;(2)由平移的性质结合图形可得:A 1(2,2),B 1(1,﹣1),C 1(﹣1,﹣1); (3)111A B C △的面积为:12×2×3=3.【点睛】本题考查的是平移的性质,图形与坐标,三角形面积的计算,掌握以上知识是解题的关键. 23.在边长为的方格纸中有一个ABC .(1)作出ABC 的高CD ,并求出ABC 面积;(2)将ABC 向上平移3个单位,再向左平移2个单位,得到111A B C △,请画出111A B C △; (3)请任意写出一组平移前后两个三角形中平行且相等的线段.【答案】(1)8,画图见解析;(2)画图见解析;(3)11//A B AB ,11A B AB =. 【分析】(1)直接作高,得到高的长度,利用三角形面积公式计算即可.(2)图形的平移关键是点的平移.按平移的法则确定了A 、B 、C 平移后的对应点A 1、B 1、C 1位置,连接即可得到111A B C △;(3)根据平移前后,对应线段(不在同一直线上的)互相平行且相等,举例即可. 【详解】 (1)1144822ABC S AB CD =⨯⨯=⨯⨯=△. 如图所示:(2)先将点A ,B ,C 分别向上平移3个单位,再向左平移2个单位确定点1A ,1B ,1C ,再连接11A B ,11B C ,11AC ,此时111A B C △即为所求.(3)11//A B AB ,11//AC AC ,11//B C BC .三组线段任写一组. 【点睛】本题主要考查了图形的平移,图形的平移实质是点的平移,正确的确定对应点的位置是正确作图的关键,同时平移前后,对应线段(不在同一直线上的)互相平行且相等这一平移性质的运用.24.综合与探究.如图1,在平面直角坐标系中,点O ,A 的坐标分别为()0,0,()02,,将线段OA 沿x 轴方向向右平移,得到线段CB ,点O 的对应点C 的坐标为3,0,连接AB .点P 是y 轴上一动点.(1)请你直接写出点B 的坐标____________.(2)如图1,当点P 在线段OA 上时(不与点O 、A 重合),分别连接BP ,CP .猜想BPC ∠,ABP ∠,OCP ∠之间的数量关系,并说明理由.(3)①如图2,当点P 在点A 上方时,猜想BPC ∠,ABP ∠,OCP ∠之间的数量关系,并说明理由.②如图3,当点P 在y 轴的负半轴上时,请你直接写出BPC ∠,ABP ∠,OCP ∠之间的数量关系.【答案】(1)()3,2;(2)BPC ABP OCP ∠=∠+∠,理由见解析;(3)(3)①BPC OCP ABP ∠=∠-∠,理由见解析;②BPC ABP OCP ∠=∠-∠.【分析】(1)根据平移的规律即可求解;(2)过点P 作//PD AB ,得到BPD ABP ∠=∠,再证明//PD OC ,得到CPD PCO ∠=∠,即可得到BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;(3)①过点P 作//PE AB ,得到BPE ABP ∠=∠,再证明//PE OC ,得到EPC OCP ∠=∠,即可证明BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;②过点P 作//PF AB ,得到BPF ABP ∠=∠,再证明//PF OC ,得到FPC OCP ∠=∠,即可证明BPC FPB FPC ABP OCP ∠=∠-∠=∠-∠. 【详解】解:(1)∴线段OA 沿x 轴方向向右平移,得到线段CB ,点O 的对应点为C 坐标为(3,0), ∴点A (0,2)的对应点B 的坐标为(3,2), 故答案为:()3,2;(2)BPC ABP OCP ∠=∠+∠,理由如下: 如图1,过点P 作//PD AB , ∴BPD ABP ∠=∠, 由平移可知,//AB OC , 又//PD AB , ∴//PD OC , ∴CPD PCO ∠=∠,∴BPC BPD CPD ABP OCP ∠=∠+∠=∠+∠;∠=∠-∠,理由如下:(3)①BPC OCP ABPPE AB,如图2,过点P作//∠=∠,∴BPE ABPAB OC,又∴//PE OC,∴//∠=∠,∴EPC OCP∠=∠-∠=∠-∠.∴BPC EPC EPB OCP ABP∠=∠-∠,理由如下:②BPC ABP OCPPF AB,如图3,过点P作//∠=∠,∴BPF ABPAB OC,又∴//PF OC,∴//∠=∠,∴FPC OCP∠=∠-∠=∠-∠.∴BPC FPB FPC ABP OCP 【点睛】本题考查了平面直角坐标系中平移的规律、平行线的性质与判定等知识,熟知相关知识点并根据题意灵活应用是解题关键.25.在平面直角坐标系xOy 中描出下列两组点,分别将每组里的点用线段依次连接起来. 第一组:()3,3A -、()4,3C ;第二组:()2,1D --、()2,1E -.(1)直接写出线段AC 与线段DE 的位置关系;(2)在(1)的条件下,线段AC ,DE 分别与y 轴交于点B ,F .若点M 为射线OB 上一动点(不与点O ,B 重合).①当点M 在线段OB 上运动时,连接AM 、DM ,补全图形,用等式表示CAM ∠、AMD ∠、MDE ∠之间的数量关系,并证明.②当ACM △与DEM △面积相等时,求点M 的坐标.【答案】(1)线段AC 与线段DE 的位置关系;AC∥DE ,证明见详解;(2)AMD ∠=CAM∠+MDE ∠,证明见详解;(3)M (0,1711). 【分析】(1)AC∥DE ,由()3,3A -、()4,3C 两点纵坐标相同,-3≠4,可得AC∥x 轴,由()2,1D --、()2,1E -两点纵坐标相同,-2≠2,可得DE∥x 轴,利用平行同一直线两直线平行可得AC∥DE ; (2)AMD ∠=CAM ∠+MDE ∠,过M 作MN∥AC ,内错角相等得∴CAM =∴AMN ,由AC∥DE ,可得MN∥DE ,内错角相等∴NMD =∴MDE ,可证AMD ∠=CAM ∠+MDE ∠;(3)由AC ∴y 轴于B ,DE ∴y 轴于F ,求出B (0,3),F (0,-1),,可确BF =4,设OM =m ,MB =3-m ,MF =4-(3-m )=m +1,AC =7,DE =4,用含m 的式子表示S ∴ACM =()1732m ⨯⨯-,S ∴DEM =()1412m ⨯⨯+,当ACM △与DEM △面积相等时,可列方程()()1173=4122m m ⨯⨯-⨯⨯+,解之即可. 【详解】解:(1)直接写出线段AC 与线段DE 的位置关系;AC∥DE∴()3,3A -、()4,3C 两点纵坐标相同,-3≠4∴AC∥x 轴,∴()2,1D --、()2,1E -两点纵坐标相同,-2≠2∴DE∥x 轴,∴AC∥DE ,(2)AMD ∠=CAM ∠+MDE ∠过M 作MN∥AC ,∴∴CAM =∴AMN ,∴AC∥DE ,∴MN∥DE ,∴∴NMD =∴MDE ,∴∴AMD =∴AMN +∴NMD =∴CAM +∴MDE ,∴AMD ∠=CAM ∠+MDE ∠,(3)∴AC ∴y 轴于B ,DE ∴y 轴于F ,∴B (0,3),F (0,-1),,∴BF =OB +OF =3+1=4,设OM =m ,∴MB =3-m ,MF =4-(3-m )=m +1,∴AC =4-(-3)=7,DE =2-(-2)=4,S ∴ACM =()117322AC MB m ⨯⋅=⨯⨯-,S ∴DEM =()114122DE MF m ⨯⋅=⨯⨯+, 当ACM △与DEM △面积相等时,即()()1173=4122m m ⨯⨯-⨯⨯+, 整理得21744m m -=+, 解得1711m =, ∴M (0,1711).【点睛】本题考查画图,平行线的判定与性质,角的互相关系,三角形面积,一元一次方程,掌握画图技巧,平行线的判定与性质,角的和差关系,三角形面积求法,一元一次方程的解法是解题关键.26.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,点A (a ,b )+|b ﹣3|=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .(1)a = ,b = ,点C 坐标为 ;(2)如图1,点D (m ,n )是射线CB 上一个动点.①连接OD ,利用OBC ,OBD ,OCD 的面积关系,可以得到m 、n 满足一个固定的关系式,请写出这个关系式: ;②过点A 作直线1⊥x 轴,在l 上取点M ,使得MA =2,若CDM 的面积为4,请直接写出点D 的坐标 .(3)如图2,以OB 为边作⊥BOG =⊥AOB ,交线段BC 于点G ,E 是线段OB 上一动点,连接CE 交OG 于点F ,当点E 在线段OB 上运动过程中,OFC FCG OEC∠+∠∠的值是否发生变化?若变化请说明理由,若不变,求出其值.【答案】(1)6,3,(0,-3);(2)①m -2n =6;②(2,-2)或(4,-1);(3)不变,理由见解析【分析】(1)利用非负数的性质求解即可.(2)①如图1,过点D 分别作DM x ⊥轴于点M ,DN y ⊥轴于点N ,连接OD ,利用面积法求解即可.②如图11-中,设直线AM 交y 轴于T ,连接DT ,CM ,CM '.分两种情形:当点M 在点A 的左侧时,设(,3)2m D m -,根据4CDM CTD MTD CTD S S S S ∆∆∆∆=+-=,构建方程求解,当点M '在点A 的右侧时,同法可得.(3)OFC FCG OEC∠+∠∠的值不变,值为2.利用平行线的性质,三角形的外角的性质证明即可.【详解】解:(1)|3|0b -=,60a ∴-=,30b -=,6a ∴=,3b =,3AB OC ==,且C 在y 轴负半轴上,(0,3)C ∴-,故答案为:6,3,(0,3)-.(2)①如图1-1,过点D 分别作DM x ⊥轴于点M ,DN y ⊥轴于点N ,连接OD .AB x ⊥轴于点B ,且点A ,D ,C 三点的坐标分别为:(6,3),(,)m n ,(0,3)-, 6OB ∴=,3OC =,MD n =-,ND m =,192BOC S OB OC ∆∴=⨯=, 又BOC BOD COD S S S ∆∆∆=+1122OB MD OC ND =⨯+⨯ 116()322n m =⨯⨯-+⨯⨯ 332m n =-, ∴3392m n -=,26m n ∴-=, m ∴、n 满足的关系式为26m n -=.故答案为:26m n -=.②如图12-中,设直线AM 交y 轴于T ,连接DT ,DM ,CM '.当点M 在点A 的左侧时,设(,3)2m D m -,4CDM CTD MTD CTD S S S S ∆∆∆∆=+-=, ∴11164(33)4642222m m ⨯⨯+⨯⨯-+-⨯⨯=, 解得2m =,(2,2)D ∴-, 当点M '在点A 的右侧时,同法可得(4,1)D -,综上所述,满足条件的点D 的坐标为(2,2)-或(4,)1-.故答案为:(2,2)-或(4,)1-.(3)OFC FCG OEC∠+∠∠的值不变,值为2.理由如下: 线段OC 是由线段AB 平移得到,//BC OA ∴,AOB OBC ∴∠=∠,又BOG AOB ∠=∠,BOG OBC ∴∠=∠,根据三角形外角性质,可得2OGC OBC ∠=∠,OFC FCG OGC ∠=∠+∠,22OFC FCG FCG OBC ∴∠+∠=∠+∠2()FCG OBC =∠+∠2OEC =∠, ∴22OFC FCG OEC OEC OEC∠+∠∠==∠∠. 【点睛】本题属于几何变换综合题,主要考查了非负数,坐标与图形,平行线的性质以及平移的性质,解决问题的关键是作辅助线,运用面积法,角的和差关系以及平行线的性质进行求解.。

七年级数学《平面直角坐标系》教案

七年级数学《平面直角坐标系》教案

“三部五环”教学模式设计《6.1.2平面直角坐标系》教学设计问题4、如图是旬阳各学校示意图。

(1)你是如何确定各个学校的位置的?(2)如果以“中心广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“旬阳中学”的位置吗?“旬阳一中”的位置呢?(3)平面直角坐标系如何建立,怎样确定点的坐标,在坐标系中怎样描点,象限如何划分?(1)根据学生活动进程出示问题4。

(2)根据学生口述,板书问题结果,重点关注全体学生是否能用有序数对表示。

(3)发动学生评价矫正问题4过程,引导学生将结论用文字语言表述出来,并加以板书。

(4)强调平面直角坐标系的概念,如何建立平面直角坐标系,并详细介绍平面直角坐标系中点的坐标如何确定。

(5)细讲平面直角坐标系中象限的划分,强调坐标轴上的点不属于任何象限。

【学生活动】(1)思考问题4的解答过程。

(2)3名学生回答问题4。

(3)讨论问题4结论,其余学生参与纠正补充。

(4)认真听教师讲解平面直角坐标系的建立方法,点的坐标的确定以及象限的划分。

(5)学生思考四个象限内的点的坐(1)出示幻灯片旬阳各学校示意图。

(2)出示幻灯片“平面直角坐标系”。

【设计意图】1、从学生比较熟悉的例子引入,容易引起学生的注意,简单的几个问题,唤起学生的共鸣,使他们能很快地投入到学习的情境中。

2、通过一个实际问题的分析,使学生更加明确在现实生活中有序数对的作用,为后面建立平面直角坐标系做铺垫。

3、平面直角坐标系的建立以及象限的划分采用教师讲解的方法,学生更容易理解。

4、通过学生自己探究,既有利于对四个象限概念的理解,又有利于对点的坐标的理解,特别是横坐标、纵坐标的符号规律。

标的符号有什么规律。

活动三变式练习,巩固新知问题1、如图,写出图中A,B,C,D,E,F各点的坐标。

2、在如图的直角坐标系中描出下列各组点A(2,1),B(0,2),C(0,0),D(4,0)并将各点用线段依次连接起来。

7.1.2平面直角坐标系(1) (教学课件)- 人教版数学七年级下册

7.1.2平面直角坐标系(1) (教学课件)-  人教版数学七年级下册
解:如图,各点的横纵坐标相等,类似的点有(-5,-5),(-1,-1),(1,1),(2,2),(4,4)等.
答案图
5.(补图题)(人教7下P68、北师8上P66)如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,在图中画出y轴,并写出正方形的顶点A,B,C,D的坐标;(2)请另建立一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?




(1)点A( , ),在第 象限; (2)点B( , ),在第 象限; (3)点C( , ),在第 象限; (4)点D( , ),在第 象限.

2
-2

-2
y轴
向右
x轴
知识点二:点的坐标(1)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,这个有序数对就是点的坐标.(2)我们用有序数对表示平面上的点,这对数叫做 ,表示方法为(a,b),a是点对应 上的数值,b是点对应 上的数值. (3)注意:坐标平面内的点与有序数对是一一对应的关系.
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限










纵坐标为 0
横坐标为 0
归纳:轴、轴不属于任何象限
新知探究
知识点1:象限点的特征
练习巩固
1.点 <m></m> 在第____象限;2.下列各点中,在第三象限的点是( )A. <m></m> B. <m></m> C. <m></m> D. <m>3.在平面直角坐标系中,点 <m></m> 在( )A.第二象限 B. <m></m> 轴上 C.第四象限 D. <m></m> 轴上4.点 <m></m> 在直角坐标系的 <m></m> 轴上,则 <m></m> ____ ,点 <m></m> 的坐标为______;5.点 <m></m> 在直角坐标系的 <m></m> 轴上,则点 <m></m> 的坐标为________;</m>

平面直角坐标系说课稿

平面直角坐标系说课稿

《平面直角坐标系》说课稿我说的是人教版数学七年级下册第六章《平面直角坐标系》的第2课时的内容。

下面我从教材分析、学情分析、教学目标、教法学法、教学设计几个方面谈谈对本节课的理解。

一、教材分析本节课是在学习了有序数对的基础上进行的,是平面直角坐标系的起始课,是数轴的发展。

平面直角坐标系是进一步学习函数及其它坐标系必备的基础知识。

它是图形与数量之间的桥梁,是解决数学问题的一个重要工具,利用它可以使许多数学问题变得直观而简明,并实现了几何问题与代数问题的互化。

二、学情分析由于本节是七年级内容,是联系代数、几何的桥梁,对学生情况我从以下几方面分析:1、知识掌握上,七年级学生年龄小,思维正处于由具体形象思维向抽象思维转变的阶段,学生接受力强,正是学习的好时机。

2、心理上,学生爱听小故事,我抓住这一点,介绍法国数学家笛卡尔以及他对数学发展的贡献,对学生进行数学文化的熏陶。

3、生理上,七年级学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中我运用身边的实例,引发学生的兴趣,使他们的注意力集中在课堂上;给他们创造条件和机会,让每一个学生都参与到课堂教学中来,感受成功的快乐。

三、教学目标根据新课标要求和学生现有的知识水平,我将本节课的教学目标定为以下三个方面:知识与技能目标理解平面直角坐标系的有关概念,能正确地画出平面直角坐标系,并会由点确定坐标、由坐标描点;知道平面直角坐标系内点的坐标特征.过程与方法目标通过身边的实例,让学生经历从实际生活中的具体问题抽象出数学模型—平面直角坐标系的过程;体验数学来源于生活,并服务于生活。

情感态度与价值观目标通过对情境问题的探索、交流等数学活动,培养学生合作意识和创新意识,让不同层次的学生得到不同的收获,感受成功,建立自信。

教学重点:平面直角坐标系的概念,在坐标系内由点确定坐标、由坐标描点。

教学难点:平面直角坐标系内点的坐标特征。

四、教法与学法:1、教法:本节课采用了“241”生态课堂教学模式的设计,以小组合作探究的方式推进,引导学生从已有的知识和生活经验出发,提出问题组内共同探索,讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。

《平面直角坐标系》说课稿

《平面直角坐标系》说课稿

《平面直角坐标系》说课稿(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职业道德、时事政治、政治理论、专业基础、说课稿集、教资面试、综合素质、教案模板、考试题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as professional ethics, current affairs and politics, political theory, professional foundation, lecture collections, teaching interviews, comprehensive qualities, lesson plan templates, exam question banks, other materials, etc. Learn about different data formats and writing methods, so stay tuned!《平面直角坐标系》说课稿今天,我说课的内容是《平面直角坐标系》,根据新课标的理念,我将从教什么、怎么教、为什么这么教来阐述本次说课。

人教版数学七年级下册平面直角坐标系(第二课时)教学设计

人教版数学七年级下册平面直角坐标系(第二课时)教学设计
作业布置要求:
1.作业量适中,难度分层,确保每个学生都能完成基础作业,同时满足学有余力的学生。
2.作业布置要有针对性,关注学生的薄弱环节,提高作业的实效性。
3.鼓励学生自主完成作业,培养独立思考和解决问题的能力。
4.教师应及时批改作业,给予学生反馈,指导学生改正错误,巩固所学知识。
7.课后巩固:布置适量的课后作业,巩固所学知识,提高学生的实际应用能力。
教学活动:设计具有层次性的课后作业,让学生在完成作业的过程中,进一步巩固平面直角坐标系的知识。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以生活实例引入新课,激发学生兴趣。
教师通过展示地图上的定位、电影院座位分布等生活场景,让学生感受到坐标系在生活中的应用,从而引出本节课的主题——平面直角坐标系。
2.提问方式:教师提出引导性问题,引导学生思考。
问题如:“我们在生活中是如何确定一个点的位置的?”“你能用自己的方法表示出教室内某个同学的位置吗?”
3.过渡语:通过学生的回答,自然过渡到本节课的学习内容。
教师总结:“今天我们要学习一种新的表示位置的方法——平面直角坐标系。通过这个工具,我们可以更准确地描述和解决实际问题。”
学生需要将探究过程和结果以书面形式提交,以提高学生的合作能力和探究精神。
5.创新题:鼓励学生发挥想象力,设计一道与坐标系相关的题目,并给出解题过程和答案。此题旨在培养学生的创新意识和数学思维能力。
6.家长评价:请家长协助学生完成作业,关注学生的学习过程,对孩子的进步给予肯定和鼓励,共同培养学生的数学兴趣。
本章节教学设计旨在帮助学生掌握平面直角坐标系的知识,提高学生的数学素养,培养学生解决问题的能力和团队协作精神,使学生能够更好地应对生活中的数学问题。在教学过程中,教师应注重启发式教学,关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习数学。

《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编为大家整理的《平面直角坐标系》优秀教案,仅供参考,欢迎大家阅读。

《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书,七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。

平面直角坐标系是图形与数量之间的桥梁,有了它我们便可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题。

本章内容从数的角度刻画了第五章有关平移的内容,对学生以后的学习起到铺垫作用,6.1.2节平面坐标系主要是介绍如何建立平面坐标系,如何确定点的坐标和由点的坐标寻找点的位置,以及平面坐标系中特殊部位点的坐标特征,根据学生的接受能力,我把本内容分为2课时,这是第一课时,主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。

2、教学目标根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。

知识能力:①认识平面直角坐标系,了解点与坐标的对应系;②在给定的直角坐标系中,能由点的位置写出点坐标。

数学思考:①通过寻找确定位置,发展初步的空间观念;②通过学习用坐标的位置,渗透数形结合思想解决问题:通过运用确定点坐标,发展学生的应用意识。

情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标,培养学生合作交流与探索精神;②通过介绍数学家的故事,渗透理想和情感的教育。

3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误,确定本节重难点为:重点:认识平面坐标系难点:根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征,以及他们现有知识水平,通过科学家发现点的坐标形成的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。

《平面直角坐标系》教学设计方案

《平面直角坐标系》教学设计方案

《平面直角坐标系》教学设计方案教学内容:人教版数学七年级下册第六章平面直角坐标系6.12平面直角坐标系(1课时)教学目标:1、知识与技能:认识并能画出平面直角坐标系;在给定的的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。

2、过程与方法:渗透对应关系,提高学生的数感。

3、情感、态度与价值观:体验数、符号是描述现实世界的重要手段。

教学重点:平面直角坐标系和点的坐标。

教学难点:根据点的位置写出它的坐标,根据点的坐标描出点的位置。

教学思路:复习有序数对,引入点的坐标,提示利用数轴表示直线上点的位置,引起思考表示平面内点的位置需要借助两条数轴,建立平面直角坐标系。

学习用有序数对(点的坐标)来表示坐标平面的点,已知点的坐标在坐标平面描出点。

归纳总结出象限内的点、坐标轴上的点、平行于x轴(y轴)直线上的点、两坐标轴夹角平分线上的点的坐标特征和点到坐标轴的距离。

教学方法:讲授法、谈论法、演示法、练习法相结合教学手段:多媒体和几何画板教学组织形式:班级授课制教学步骤:一、创设情境1、教师出示投影出示下题,由学生口答,复习有序数对的表示方法。

2、观察课件上的数轴及其上的各点,师生共同分析引出点的坐标的概念,体会数与点的一一对应的关系。

3、怎样确定平面内一个点的位置?设计理念:用一道实际生活但又富有挑战的例题来引入新课。

激发学生的学习兴趣,经历并体验解决问题的过程。

进一步提出问题,引发学生思考,带着问题进入下一环节。

二、探究新知1、平面直角坐标系学生讨论,师生借助几何画板演示,共同分析必须要两条数轴才能表示平面内一个点的位置,已知数轴都有原点,要在同一平面内两条数轴的原点必须重合。

明确概念:①平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,习惯上取向上为正方向。

两坐标轴的交点为平面直角坐标系的原点。

《平面直角坐标系》说课课件

《平面直角坐标系》说课课件
人教版数学教材七年级下
6.1.2 平面直角坐标系
纵轴 y 5 4 3 2 1 1 2 3 4 5 x 横轴
-4 -3 -2 -1 -10 -2 -3 -4
武陟县阳城一中
王先锋
一. 教材分析 1.说教材
《平面直角坐标系》是九年制义务教育人教版七年级下 册第六章《平面直角坐标系》第一节第二小节的内容。这节 课是在学习了数轴和有序数对后安排的一次概念性教学,也 是初中生与坐标系的第一次亲密接触。平面直角坐标系的建 立架起了数与形之间的桥梁,是数形结合的具体体现。这一 节课主要是让学生认识平面直角坐标系,了解点与坐标的对 应关系;在给定的平面直角坐标系中,能根据坐标描出点的 位置,能由点的位置写出点的坐标。因此,本节课的学习, 是今后进一步学习平面直角坐标系的有关知识和借助平面直 角坐标系学习一次函数、二次函数的一个基础,它在整个初 中数学教材体系中有着举足轻重的作用。
学 过 程
商 店
设计理念:当平面直角坐标系 呈现在学生面前时,学生会感 到是知识的自然流露。设计这 些情境,一方面体现数学来自 于生活,反过来对生活又有指 导作用,另一方面利用学生最 为熟悉的生活情境,激发学习 兴趣,培养思维能力。
(二)指导阅读,理解概念 四
平面直角坐标系概念多,但难度不大,学生完全 有能力自己阅读理解,因此我留给学生充足的时间去 阅读教材,并及时地给予指导,再由学生相互交流总 结完成。
设计理念:这样进行教学,不仅符合量力性教学原则, 更重要的是培养了学生的自学能力、语言表达能力和分析 问题、解决问题的能力,使学生在学习过程中实现了自己 的价值,有了成功感,增强了自信心、调动了学习数学的 积极性和主动性,同时真正实现了教师角色的转变。
教 学 过 程
(三)介绍历史,激发兴趣 四

最新新课标人教版初中数学七年级下册第六章《平面直角坐标系》教材分析名师优秀教案

最新新课标人教版初中数学七年级下册第六章《平面直角坐标系》教材分析名师优秀教案

新课标人教版初中数学七年级下册第六章《平面直角坐标系》教材分析新课标人教版初中数学七年级下册第六章《平面直角坐标系》教材分析一、教材解读:本单元的教学内容是平面直角坐标系的有关概念和点与坐标的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容。

要求学生理解并掌握点和坐标的对应关系,提高数学思维能力,通过合作交流和小组探讨,发现生活中的数学问题,了解数学的应用价值。

由于学生的年龄特点和认知结构,教师在教学过程中,引导学生回顾数轴知识,然后结合现实生活中的具体位置,让学生直观的感受有序实数对的应用,同时要采用多媒体等教学用具,生动形象地展现知识,让学生在轻松愉快的气氛中,掌握知识,提高技能。

(1)知识点上?本章主要研究平面直角坐标系及有关概念,坐标方法的简单应用。

本章是今后学习函数图象、函数与方程和不等式的基础,也是用代数方法研究几何问题的有力工具。

?本章内容与生活密切相关,利用平面直角坐标系可以解决生活中确定位置、平移等实际问题,通过学习可以让学生体会到平面直角坐标系在生活中的作用,培养学生“用数学”的意识。

?思想方法上平面直角坐标系的学习充分体现了数形结合的思想,而坐标方法的简单应用更是从平移及实际应用的角度让学生感受数形结合的思想。

?能力上掌握点与有序整数对的关系,能建立适当的平面直角坐标系确定点的位置,为今后函数的学习打好基础。

能将实际问题转化为几何问题,能实现几何问题与代数问题的转换建立起数形联系(应用)。

二、教学目标?知识与能力1.理解有序数对,掌握平面直角系的概念2.掌握平面内的点与有序数对的一一对应关系,能熟练地在给定的直角坐标系中,根据坐标描出点的位置,能由点的位置写出点的坐标。

3.了解象限的概念,能根据象限内和坐标轴的特征,熟练地由点的坐标判断点在的象限。

4.在同一平面直角坐标系中,能用坐标表示平移和说出坐标变换的平移。

?过程方法1.由生活事例引入,师生合作。

先从实际中需要确定物体的位置出发,引出有序数对的概念,指出有序数对可以确定物体的位置。

2023年《平面直角坐标系》说课稿_1

2023年《平面直角坐标系》说课稿_1

2023年《平面直角坐标系》说课稿2023年《平面直角坐标系》说课稿1《平面直角坐标系》是人教版九年义务教育七年级数学下册第六章第一节第二次课的内容,它是在学习了数轴和有序数对后安排的一次概念性教学,也是初中生与坐标系的第一次亲密接触。

平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体体现。

这一节课主要是让学生认识平面直角坐标系,了解点与坐标的对应关系;在给定的平面直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。

因此,本节课的学习,是今后进一步学习有关知识和借助平面直角坐标系学习一次函数、二次函数的一个基础,它在整个初中数学教材体系中有着举足轻重的作用。

说目标与重难点1.知识与能力目标:使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。

2.过程与方法目标:通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生自主获取知识的能力。

3.情感态度价值观目标:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。

其中认识平面直角坐标系,能正确地画出平面直角坐标系是本节课的教学重点;会用“坐标”表示平面内点的位置和坐标轴上的点的特征是本节课的教学难点。

说学情七年级的学生具有活泼好动,好奇的天性,他们正处于独立思维发展的重要阶段,对数学的求知欲较强,具有初步的自主、合作探究的学习能力,对数轴有一定的认识,因此,对于平面直角坐标系的构成和建立较为容易理解。

说教学策略数学课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,学生的数学学习内容应当是现实的,有趣的和富有挑战性的”。

初一下册数学平面直角坐标系的知识点

初一下册数学平面直角坐标系的知识点

初一下册数学平面直角坐标系的知识点初一下册数学平面直角坐标系的知识点在日复一日的学习中,大家最不陌生的就是知识点吧!知识点就是学习的重点。

为了帮助大家掌握重要知识点,下面是店铺为大家收集的初一下册数学平面直角坐标系的知识点,欢迎大家分享。

初一下册数学平面直角坐标系的知识点篇11、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。

2、平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做X轴或横轴,竖直的数轴叫做Y轴或纵轴,X 轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

6、特殊位置的点的坐标的特点(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

(4)点到轴及原点的距离。

点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;7、在平面直角坐标系中对称点的特点(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

平面直角坐标系说课稿子

平面直角坐标系说课稿子

中国人民大学附属中学孙芳各位专家、评委,各位老师:大家好!我叫孙芳,来自北京中国人民大学附属中学,能参加这次说课活动,与大家相互交流、共同提高,我感到非常高兴!我说课的题目是《平面直角坐标系》,这是人教版《数学》七年级下册第六章第2课时的内容.下面我从四个方面汇报我对这节课的教学设想与理解.一、教学内容的分析从学科知识体系看:用平面直角坐标系可以确定平面内任意一点的位置;有了平面直角坐标系,我们可以从“数”的角度进一步认识几何变换;平面直角坐标系也是后续学习函数、平面解析几何必备的知识.从学生认知角度看:学生已经具有借助数轴用一个数表示直线上点的位置的经验,也学习了用有序数对确定物体的位置.这些均为本节课的学习打下基础.从发展学生思维的角度看:从数轴到平面直角坐标系,再到空间直角坐标系,是从一维到二维,再到三维空间的发展,此过程渗透了数形结合思想、体现了类比方法,因此这节课是发展学生思维,提高能力的极好时机.二、教学目标与重难点的确定根据新课标的要求,结合教材的特点和学生的实际情况,我确定本节课的教学目标为:1.初步掌握平面直角坐标系及相关概念;能由坐标描点,由点写出坐标.2.经历知识的形成过程,用类比的方法思考和解决问题,进一步体会数形结合的思想,认识平面内的点与坐标的对应关系.3.通过了解相关数学史养成善于观察,勤于思考的品质.本节课的教学重点是平面直角坐标系的形成过程以及由坐标描点和由点写出坐标.认识点与坐标的对应关系是本节课教学的难点.三、教学过程的设计与实施整个教学过程是按照:四个环节逐一展开的.(一)创设情境、提出问题上节课我们学习了用有序数对确定物体的位置,我以60周年校庆为背景给学生布置了如下作业:作为校庆志愿者,你如何为嘉宾描述学校东门的位置?同学们在作业中提出各种描述方案,主要有以下两类:(一)用文字语言进行描述;(二)画图说明.1:我充分肯定学生将这个实际问题数学化:将马路抽象成直线,将人大并提出:提出问题1:你能分别用一个数表示附中东门和新中关东门的位置吗? 1 (2)线上点的位置,得到:利用数的正、分人大附中东门和新中关东门分别位于黄庄路铺垫.,并就学生在二维平面内的表示,置.(二)类比抽象、形成概念为了让学生经历知识的形成过程,我将此环节按照学生活动及思维发展,将此环节分为三个阶段. 1.自主思考、提出方案为了分流入场,还有一些嘉宾会从南门进入学校.并提出: 提出问题2:你能用数表示我校南门相对于黄庄路口的位置吗?选定黄庄路口作为参照点,主要是为了体会表示位置要有统一标准以及简化研究问题.学生通过独立思考提出两种方案:(1)分别表示南门到海淀南路和中关村南大街的距离;(2)可以测量附中南门到黄庄路口的距离,并结合方向用角度表示.至此,学生初步认识到用两个数可以表示平面内一点的位置.2.讨论交流、逐步完善为了更好地体会要用两个数才能表示平面内点的位置,教师追问:只用其中的一个数表示位置可以吗?①只用400(或500②只用一个数650,可以表示以黄庄路口为圆心,650米长为半径的圆上的所有点的位置;③只用表示方向的一个角度(如南偏西60゜)可以表示平面上的许多点,它们都在一条射线上.这说明学生已经认识到:不能只用一个数表示平面内的点,应该用两个数,并对点与数的对应关系,有了更清晰的认识.此时,我顺势提出“怎样用两个数表示?”,学生很自然地联想到有序数对.由于没有约定顺序,学生表示方法不唯一,如:(400,500),(500,400),(-400,-500),(-500,-400).Array通过讨论、交流,学生体会到:在用有序数对表示位置时要先规定顺序,以及利用正、负可以区分方向.在此基础上联想到:前面为了区分南北方向建立了一条竖直方向的数轴,学生类比提出:为了区分东西方向,可以再建一条水平方向的数轴.并进一步验证:利用这种方法可以表示平面内其它不同点的位置.至此,形成平面直角坐标系的概念已水到渠成.进入到第三阶段.3.提炼概括、形成概念我与学生一起概括出平面直角坐标系的概念:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系,此时我们把平面称作是坐标平面.学生进一步明确:平面直角坐标系的建立,可以使我们用有序数对表示平面内任为了巩固、落实本节课的知识,结合本节课的教学重点、难点,我设计了两个活动.活动1:由坐标描点1.为落实画出平面直角坐标系的基本技能,首先安排学生动手画平面直角坐标系.2.在你画的坐标系中,描出下列各点,并顺次连结,绘制出图案.(3,6),(3,3),(1,1),(1,-1),(3,-3),(-3,-3),(-1,-1),(-1,1),(-3,3),(-3,6).由坐标描点绘制图案.在得到最终的图案的喜悦.为了认识由坐标到点的对应,活动中我提出了3个问题:(1)怎样描点(3,6)?(2)点(3,-3)和点(-3,3)表示同一个点吗?说明什么?(3)每一个坐标对应一个点,你能用学过的知识解释吗?其中问题(3)是本节课的难点,为了突破难点,我引导学生从三个方面进行梳理:①数轴上一个数对应唯一一个点;②过一点做已知直线的垂线有唯一一条;③两条相交直线有唯一一个交点.活动2:由点写坐标: 在坐标平面内,怎样写出点P的坐标?问题2: 一个点的坐标有几个?为什么?再次利用学生熟知的校园生活实例,指出方队中某个同学的位置.借助闪烁的小人,练习说出对应点的坐标,体会由点到坐标的对应.平面直角坐标系点坐标一一对应相互评判−理突破难点.在“画平面直角坐标系”和“由坐标描点”后,学生2之间的相互检查,相互评判,更好地落实了基础,有助于养成细致严谨的学风.(四)融入史料、总结延伸介绍了关于笛卡尔建立平面直角另一关于平面直角坐标系,其实还有许多值得继续研究的问题,比如:特殊位置的点的坐标有哪些特征?学生很快发现不同象限点的坐标的特征;你还能发现哪些问题值得研究?这些问题是课堂教学的延伸,也为下节课的学习作了铺垫.因材施教,我设计了分层作业.A B C 、查阅资料:平面直角坐标系以外的各种坐标系.四、教学特点分析(一)联系学生的生活实际无论是六十年校庆做志愿者,还是课间操方队表演,都是选自贴近学生生活的素材,使学生经历由实际问题抽象出数学问题及通过对数学问题的研究解决实际问题的过程,让学生充分感受到数学来源于生活、服务于生活,感受到平面直角坐标系在解决实际问题中的作用. (二)注重概念的形成过程新课程标准指出:“展现数学知识的发生、发展过程,使学生能够从中发现问题、32-54-2-3-4-56-7-6-6-77提出问题,经历数学的发现和创造过程,了解知识的来龙去脉.”遵循新课标的这一理念,本节课充分揭示了“平面直角坐标系”的形成过程,使更符合学生的认知特点.这节课学生的学习兴致很高.置的方法;使同学们在轻松愉快的氛围中经历了概念的形成过程,体会了几种重要的数学思想或方法.结束语:以上是我对这节课的教学设计与分析,不足之处恳请各位专家、评委批评指正.谢谢!。

平面直角坐标系(1)

平面直角坐标系(1)

“平面直角坐标系”(第一课时)教学案例一、教学背景本节课的教学内容是人教版义务教育课程标准实验教科书《数学》七年级下册第六章第一节第二课时内容,它是在研究了数量的变化、位置的变化的基础上提出来的,学生对实际生活中某个位置与有序实数对之间的对应关系有了一个初步的理解.因为教材浓缩了思维过程,给学生理解造成了一定的困难.为此,作者在认真研究学情的基础上,对教材实行了加工和创新.二、教学过程1.创设情景(电脑显示)小明不会求图1中皇冠的面积,就打电话给他的哥哥,可他怎么也说不清,心中非常着急.热心的同学们,帮帮小明,好吗?(学生欲言又止,想说又不知从何说起.)师:相信通过本节课的学习,同学们一定会帮上这个忙.2.构建模型(电脑显示)图2是某时刻拍摄的某地区的俯视图,此时汽车A、B、C、D、E、F离站台O的距离分别为200米、100米、100米、200米、150米、100米;音乐喷泉G距南北路100米,距东西路150米.师:若把汽车、音乐喷泉、站台看成点,这两条路能够看成什么?生:(齐答)直线.师:你能用实数表示点A、B、O、C、D吗?谈谈你的想法.生1:因为我们知道数轴上每一个点都可用实数表示,而这些点又都在同一水平线上,所以,只需把水平线转化为数轴就能够了.师:说得很好,请继续.生1:因为A、B、C、D都是以点O为参照,到点O的距离都是100的倍数,故以点O为原点,100米为一个单位,规定以向东为正方向,该水平线就变成了水平数轴,点A、B、O、C、D可分别用-200、-100、0、100、200表示.(使用几何画板演示音乐喷泉、汽车、站台演变为点,东西路、南北路演变为直线,水平直线演变为数轴等过程,如图3所示.)师:说得太好了.回忆一下,数轴上点与实数之间存有着怎样的对应关系?生:(齐答)一一对应.师:能用水平数轴来描述点E、F 吗?为什么?生2:不能,因为点E、F不在这个数轴上.师:很好!如何描述点E、F呢?谈谈你的想法.生3:点E、F不在水平线上,但在竖直线上,模仿上面的方法,把竖直线转化为以点O为原点,100米为1个单位长度,向北为正方向的数轴,点E、F可分别表示为+150,-100.(使用几何画板演示竖直线演变为数轴的过程,如图4所示.)师:活学活用,很不简单.3.引入概念(1)平面直角坐标系.师:如何给这两条数轴命名,方能凸显它们特殊的位置?生4:一个是水平的,一个是竖直的,可分别称为水平轴、竖直轴.生5:一个是横向的,一个是纵向的,可分别称为横轴、纵轴.师:有创意,我们通常称水平方向的数轴为横轴或x轴;竖直方向的数轴为纵轴或y轴.师:这两条数轴有何特殊的位置关系?生6:相交于点O,且互相垂直.师:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系.因为它是由伟大的科学家笛卡儿创立的,所以又称为笛卡儿坐标系.其中,公共原点O称为坐标原点,横轴和纵轴统称为坐标轴.(2)象限.师:坐标轴将平面分成的四个区域称为象限,按逆时针顺序分别记为第一象限、第二象限、第三象限、第四象限.如图5坐标轴上的点(如点A、B、O、C、D、E、F)不属于任何象限.(3)点的坐标.师:以y轴为参照,如何描述点G的位置?生7:点G在y轴的左边.师:能再具体一点吗?生8:点G在y轴的左边100米处.师:以x轴为参照,如何描述点G的位置?生9:点G在x轴的上面150米处.师:他们的描述能确定点G的位置吗?。

七年级下数学第六章平面直角坐标系知识点总结

七年级下数学第六章平面直角坐标系知识点总结

平面直角坐标系是数学中常用的一种坐标系,用来描述平面上的点的位置。

它由两条互相垂直的直线(通常称为x轴和y轴)组成。

1.坐标系的建立平面直角坐标系是由一组互相垂直的数轴组成的。

我们可以将其中一条数轴作为x轴,另一条数轴作为y轴。

两条轴的交点称为原点O,它的坐标为(0,0)。

2.坐标表示在平面直角坐标系中,每个点的位置都可以用一个有序数对表示,称为坐标。

其中第一个数表示x轴上的位置,第二个数表示y轴上的位置。

例如,点A的坐标是(2,3),表示它在x轴上距离原点2个单位,在y轴上距离原点3个单位。

3.坐标的正负在平面直角坐标系中,x轴向右延伸为正方向,向左延伸为负方向;y轴向上延伸为正方向,向下延伸为负方向。

4.坐标轴和象限平面直角坐标系由x轴和y轴组成。

x轴将平面分为上半平面和下半平面,y轴将平面分为右半平面和左半平面。

根据点的位置,可以将平面分为四个象限。

第一象限:x>0,y>0。

第二象限:x<0,y>0。

第三象限:x<0,y<0。

第四象限:x>0,y<0。

5.关于坐标原点的对称性对于任意一个点P(x,y),与原点O之间有以下关系:关于x轴对称点的坐标为P'(x,-y)。

关于y轴对称点的坐标为P'(-x,y)。

关于原点对称点的坐标为P'(-x,-y)。

6.坐标系上的线段和中点在平面直角坐标系中,可以用两点的坐标表示一条线段。

例如,线段AB的两个端点的坐标分别是A(x1,y1)和B(x2,y2)。

线段的中点的坐标可以用以下公式计算:中点的横坐标为(x1+x2)/2中点的纵坐标为(y1+y2)/27.坐标系上的距离在平面直角坐标系中,可以用两点之间的距离来度量两点的位置关系。

两点P1(x1,y1)和P2(x2,y2)之间的距离可以用以下公式计算:距离d=√((x2-x1)²+(y2-y1)²)。

8.斜率和直线的方程直线可以通过两点确定,例如,通过点A(x1,y1)和点B(x2,y2)可以确定一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17课时 6.1 .2 平面直角坐标系(1)
【教学目标】
1、认识平面直角坐标系,了解点与坐标的对应关系;
2、在给定的直角坐标系中,能由点的位置写出点的坐标(坐标都为整数);
3、渗透数形结合的思想;
4、通过介绍数学家的故事,渗透理想和情感的教育.
【重点难点】
重点:认识平面直角坐标系。

难点:根据点的位置写出点的坐标。

【教学过程】
一、情境导入
1、在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置如图1所示,你能根据图示确切地描述他们三个人的位置关系吗?
2、如果我们画一条数轴,取小红的位置为原点,取向右的方向为
正方向,取两盏路灯间的距离为一个单位长度,那么小华的位置(A)
就可以用-3来表示,小明的位置(B)就可以用6来表示(如图2).
此时,我们说点A在数轴上的坐标是-3,点B在数轴上的坐标是6.这
样数轴上的点的位置与坐标之间就建立了对应关系.
设计意图:将数轴上点的坐标的概念学习置于具体的问题情境中。

问题:(1)在上述情境中,如果小兵位于小明左侧的第二盏路灯处,你能说出小兵在数轴上对应的点的坐标吗?(2)如果小兵站在一个长方形的操场上,你用什么方法可以确定小兵的位置?(3)如果小兵站在一个大操场上,你用什么方法可以确定小兵的位置?设计意图:三个问题的安排有一定的层次性,为下一步引出平面直角坐标系作铺垫。

二、探究新知
1、平面直角坐标系的引入对于上述第(2)个问
题,我们可以用图3来表示:这时,小兵(P)的位置就可以用两个数来表示.如点P离AB边1 cm,离AD边1. 5 cm,如果1 cm代表20 m,那么小兵离AB边20 m,离AD边30 m. 对于上述第(3)个问题,我们是否也可以借助于这样的一些线来确定小兵的位置呢?我们在小兵所在的平面内画上一些方格线(如图4),利用上节课所学的知识,就可以解决这个问题了.
受上述方法的启发,为了确定平面内点的位置,我们可以画一些纵横交错的直线,便于标记每一条直线的顺序,我们又可以以其中的两条为基准(如图5).
最早采用这种方法的是法国数学家笛卡儿,然后向学生简要介绍笛卡儿的有关故事.
2、平面直角坐标系的概念教师边在黑板上画图(见教材第41页图6.1-4),边介绍平面直角坐标系、x轴(或横轴),y轴(或纵轴)、原点等的概念.注意:在一般情况下,两条坐标轴所取的单位长度是一致的.
3、点的坐标,有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.如下图,由点A分别向x轴和y轴作垂线,垂足M 在x上的坐标是3,垂足N在y轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.
注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开。

尝试:请在图6中写出点B、C、D的坐标。

设计说明:这一步是教学中的难点,教师一方面应强调点的坐标的书写规范,另一方面也必
须安排一定的练习时间。

1、坐标轴上点的坐标
问题:(1)在图7的平面直角坐标系中,你能分别说出点A,B,C,D的坐标是什么吗?
(2)从上面的练习中你有什么发现?原点O的坐标是什么?x 轴和y轴上的点的坐标有什么特点?在这里教师必须再次强调点的横坐标写在前面,纵坐标写在后面的坐标写法。

三、巩固练习
教材第49页“练习”第1题。

四、总结归纳
1、平面直角坐标系的作用;
2、平面直角坐标系的有关概念;
3、已知一个点,如何确定这个点的坐标;
五、布置作业
1、必做题:教材第50页习题6.1第3,4题.。

相关文档
最新文档