人教版七年级数学下册第一章测试题
人教版七年级下册数学各章经典复习题
七年级数学下册 9、如图 5, a ∥b , M , N 分别在 a ,b 上, P 为两平行线间一点,那么 1 2 3( )第五章相交线与平行线A .180B . 270C . 360D . 540一、选择题10、已知:如图 6,AB//CD ,则图中 、 、 三个角之间的数量关系为( ).1、如图 1,如果 AB ∥CD ,那么下面说法错误的是( )A 、 + + =360B 、 + + =180C 、 + - =180D 、 - - =90A .∠3=∠7;B .∠ 2=∠6C 、∠ 3+∠4+∠5+∠6=1800D 、∠4=∠82、如图 2, AB ∥ DE , E 65 ,则 BC ()P2M 1aAB 120°α 135115 36 65 AB C D .. . .3、如图 3,PO ⊥OR ,OQ ⊥PR ,则点 O 到 PR 所在直线的距离是线段()的长3Nb25°CDA 、POB 、ROC 、OQD 、PQC图 4二、填空题图 5 图 6A 1D82711、把“等角的补角相等”写成“如果 ⋯ ,那么 ⋯ ”形式A12、如图 7,已知 AB ∥CD ,BE 平分∠ ABC ,∠ CDE =150°,则∠ C =BFB 3 4 56 C D 图 2E 图 313、如图 8,把长方形纸片沿 折叠,使 , 分别落在 ,的位置,若 ,则 等于图 114、如图 9,已知 , =____________4、下列语句:①直线外一点到这条直线的垂线段叫做点到直线的距离;②若两条直线被第三条截,则E 内错角相等;③过一点有且只有一条直线与已知直线平行,真命题有( )个 A . 1 B . 2C DC .3D .以上结论皆错 AB 5、如果 a ∥b ,b ∥c ,那么a ∥c ,这个推理的依据是( )A 、等量代换B 、两直线平行,同位角相等C 、平行公理D 、平行于同一直线的两条直线平行图 7图 8图 96、如图 4,小明从 A 处出发沿北偏东60°方向行走至 B 处,又沿北偏西20 方向行走至 C 处,此时需把 三、解答题 15、推理填空:方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100°7、如果两个角的两边分别平行,而其中一个角比另一个角的 4 倍少 30 ,那么这两个角是( )A . 42 、138 ;B . 都是 10 ;C . 42 、138 或 42 、10 ;D . 以上都不对如图: ① 若∠ 1=∠2,则 ∥() 若∠DAB+ ∠ABC=1800,则∥ ()3 D C12②当∥时,∠ C+∠ABC=180°()当∥时,∠3= ∠ CAB8、下列语句错误的是()()A.连接两点的线段的长度叫做两点间的距离;B.两条直线平行,同旁内角互补16.已知,如图∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+ ∠C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补BCD=180°.D.平移变换中,各组对应点连成两线段平行且相等将下列推理过程补充完整:- 1 -(1)∵∠1=∠ABC(已知),第六章实数∴AD∥______一、填空题(2)∵∠3=∠5(已知),1∴AB∥______, 1.169 的算术平方根为()(______________________________)_(3)∵∠ABC+∠BCD=180°(已知),2、已知5 11的整数数部分为m,5 11的小数部分为n,则m n ()∴_______∥________, 3、式子x 3 有意义,x 的取值范围()(_______________________________)_4、已知:y= x 5 + 5 x +3,则xy 的值为()17、已知:如图AB∥CD,EF 交AB 于G,交CD 于F,FH 平分∠EFD,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8 分)E 5、3 a b 4 0,求a+b 的值()A HB 6、9 的平方根是()G7、快速地表示并求出下列各式的平方根9 C F D⑴116⑵|-5| ⑶0.81 ⑷(-9)28、如果一个数的平方根是 a 1和2a 7 ,求这个数?9.用平方根定义解方程18、已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.⑴16(x+2)2=81 ⑵4x2-225=0AED110、下列说法正确的是( )FB 2G CA、16 的平方根是 4B、 6 表示6 的算术平方根的相反数C、任何数都有平方根D、2a 一定没有平方根11、求值:⑴3 0.512 = ⑵-3 729=⑶3 ( 2)3=⑷(3 8 )3=12、如果3 x 2 有意义,x 的取值范围为- 2 -13.用立方根的定义解方程3-27 =0 ⑵2(x+3)3=512 ⑴x公式四:∵(3 8 )3= (3 27 )3= (3 125)3=∴ 3 ) 3 ( a =重要公式综合公式三和四,可知,当满足a 条件时,3 a3 = 33 )( a公式一: ∵ 2 2 = 2 3 = 2 4 = 公式五:3a=2 2 2 知识点五:实数定义及分类( 2) ( 3) ( 4)= = = ∴ 2 a = 无理数的定义:实数的定义:有关练习:1.( 172)= 21999 =实数与上的点是一一对应的1、判断下列说法是否正确:2(a 3)(1)实数不是有理数就是无理数(2)无限小数都是无理数。
初中数学人教版七年级下册期末-章节测试习题(1)
章节测试题1.【题文】已知关于的方程组(1)若求方程组的解;(2)若方程组的解满足求的取值范围.【答案】(1) ;(2) a>-.【分析】(1)将a=2代入方程组计算即可求出解;(2)将a看做已知数求出x与y,根据x大于y得到a的范围. 【解答】解:(1)当a=2时,方程组为,①-②得:3y=6,即y=2,将y=2代入①得:x=9,则方程组的解为;(2)方程组两方程相减得:3y=10-2a,即y=,将y=代入第一个方程得:x=,根据题意得:>,解得:a>-.2.【题文】为了了解某地区“雾霾天气的主要成因”,随机调查了该地区部分市民,并对调査结果随机调査了该市部分市民,并对调査结果进行整理,绘制了如下尚不完整的统计图表.根据图表中提供的信息解答下列问题:(1)求接受调查的总人数;(2)填空:扇形统计图中E组所占的百分比为______%;(3)扇形统计图中,C组所对应扇形圆心角的度数为________;(4)若该地区人口约有100万人,请你估计持D组观点的市民人数.【答案】(1)600人;(2)60,150,15%;(3)90°;(4)30万人.【分析】(1)根据A组的人数和所占的百分比可以求得接受调查的总人数;(2)根据接受调查的总人数和B组观点的百分比可以求得m,总人数减去其余各组的人数可以求得n的值,根据E组人数和总人数可求得所占的百分比;(3)根据C组观点的人数占的百分比可以求得C组所对应扇形圆心角的度数;(4)根据D组观点占的百分比可以求得持D组观点的市民人数.【解答】解:(1)由题意可得,接受调查的总人数是:120÷20%=600,即接受调查的一共有600人;(2)m=600×10%=60,n=600-180-120-90-60=150,扇形统计图中E组所占的百分比为:×100%=15%,故答案为:60,150,15%;(3)扇形统计图中,C组所对应扇形圆心角的度数为:360°×=90°,故答案为:90°;(4)100×=30(万人),答:持D组观点的市民有30万人.3.【题文】某体育器材公司最新推出A、B两种不同型号的跳绳,我区某学校第一次订购两种跳绳共计640条,该公司共获利2160元,两种跳绳的成本价、销售价如下表:(1)求学校第一次订购A、B两种跳绳各多少条?(2)第二次订购A、B两种跳绳的条数皆为第一次的2倍,销售时,A种跳绳按原售价销售,B种跳绳全部降价出售,该公司为使利润不小于4080元,则B种跳绳每条的最低销售价应为多少元?【答案】(1)学校第一次订购A种跳绳400条,B种跳绳240条;(2)第二次B 种跳绳每条的最低销售价应为9.5元.【分析】(1)设学校第一次订购A种跳绳x条B种跳绳y条,根据“两种跳绳共计640条,该公司共获利2160元”列出方程组进行求解;(2)设第二次B种跳绳每条的最低销售价应为a元,根据“该公司的利润不少于4080元”列出不等式,继而即可求解.【解答】解:(1)设学校第一次订购A种跳绳x条,B种跳绳y条,根据题意得:,解得:.答:学校第一次订购A种跳绳400条,B种跳绳240条.(2)设第二次B种跳绳每条的最低销售价应为a元,根据题意得:(8-5)×400×2+(a-6)×240×2≥4080,解得:a≥9.5.答:第二次B种跳绳每条的最低销售价应为9.5元.4.【题文】如图1,在平面直角坐标系中,点A(0,4),C(2,0).(1)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的使若存在,请求出的值;若不存在,请说明理由.(2)如图2,点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF,点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.【答案】(1) t=;(2)的值不变,其值为2.【分析】(1)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据,列出关于t的方程,求得t的值即可;(2)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.【解答】解:(1)由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=OP•y D=(2−t)×2=2−t,S△DOQ=OQ•x D=×2t×1=t,∵,∴2(2-t)=t,∴t=;(2)的值不变,其值为2.∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴==,不能确定.===2.5.【题文】已知,平面直角坐标系中,A(2,0),B(),且满足(1)求点B坐标;(2)P(0,)为轴上一点,求的取值范围;(3)若Q为直线AB上一点,连接OQ,且直接写出点Q 的纵坐标的取值范围.【答案】(1)B(-2,4);(2)m≥6或m≤-2;(3)≤y≤3或6≤y≤8.【分析】(1)根据非负数的性质列出方程组,解方程组求出a、b,得到点B的坐标;(2)先利用待定系数法求得直线AB的解析式为y=-x+2,进而得出直线AB交y 轴于(0,2),根据三角形的面积公式求出根据S△ABP不小于8时,×|y-2|×(2+2)≥8,得到点P的纵坐标m的取值范围;(3)分两种情况,当点Q在线段AB上时,可得2(4-y)≤y≤3(4-y)计算可得;当点Q在线段AB的延长线上时,可得2(y-4)≤y≤3(y-4)计算即可.【解答】解:(1)∵∴2a+b=0,3a+2b-2=0,解得a=-2,b=4,∴B(-2,4);(2)设直线AB的解析式为y=kx+b,把A(2,0),B(-2,4)代入,可得,解得,∴直线AB的解析式为y=-x+2,令x=0,则y=2,即直线AB交y轴于(0,2),=4,根据得,8,即×|m-2|×(2+2)≥8,解得m≥6或m≤-2;(3)≤y≤3或6≤y≤8.6.【答题】下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.4x+y=2C.D.6xy+9=0 【答案】B【分析】直接利用二元一次方程的定义分析得出答案.【解答】A、,是三元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是分式方程,故此选项错误;D、,是二元二次方程,故此选项错误;选B.7.【答题】若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0【答案】D【分析】根据不等式的性质即可求出答案.【解答】∵m<1∴m+1<2故D错误选D.8.【答题】在下列调查中,适宜采用全面调查的是()A.了解明德集团所有中学生的视力情况B.了解某校七(4)班学生校服的尺码情况C.调查北京2017年的游客流量D.调查中国“2018俄罗斯世界杯”栏目的收视率【答案】B【分析】根据实际问题的需要选择合适的调查方式.【解答】A、适合用抽样调查;B、适合用全面调查;C、适合用抽样调查;D、适合用抽样调查,所以答案选B.9.【答题】不等式组的解在数轴上表示正确的是()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解得:x<3,x≥-1故不等式组的解集为:-1≤x<3在数轴上表示为:.选C.10.【答题】已知是二元一次方程2x+y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【答案】A【分析】根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程进行求解.【解答】将代入二元一次方程2x+y=14,得7k=14,解得k=2.选A.11.【答题】在一个三角形中,一个外角是其相邻内角的2倍,那么这个外角是()A.150B.120°C.100°D.90°【答案】B【分析】设与外角相邻的内角为x°,根据平角的定义得到方程3x=180,求出x即可.【解答】设与外角相邻的内角为x°,∵一个三角形中,一个外角是其相邻内角的2倍∴这个外角为2x°∴3x=180∴x=60.即这个外角为120°选B.12.【答题】由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9【答案】A【分析】本题考查了二元一次方程组的解法。
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。
七年级下册数学第一章测试题及答案人教版
七年级下册数学第一章测试题及答案人教版
一、选择题(每小题3分,共30分)
1. 如果在一个数的两倍和三倍中间,则这个数是()
A. 五分之一
B. 五分之二
C. 五分之三
D. 五分之四
2. 两个数的和是18,其中一个数是6,那么另一个数是()
A. 12
B. 14
C. 16
D. 18
3. 下列四个数中,最大的数是()
A. -8
B. -3
C. 5
D. 8
4. 下列四个数中,最小的数是()
A. -8
B. -3
C. 5
D. 8
5. 下列四个数中,绝对值最大的数是()
A. -8
B. -3
C. 5
D. 8
二、填空题(每小题3分,共15分)
6. -2的相反数是____________。
7. -5的相反数是____________。
8. 两个数的和是5,其中一个数是3,另一个数是____________。
9. 两个数的和是10,其中一个数是-2,另一个数是____________。
10. 两个数的积是-24,其中一个数是4,另一个数是____________。
答案:1. D 2. A 3. D 4. A 5. A 6. 2 7. 5 8. 2 9. 8 10. -6。
人教版七年级数学第一章《有理数》单元测试带答案解析
人教版七年级数学第一章《有理数》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km .将数字55000000用科学记数法表示为( )A .80.5510⨯B .75.510⨯C .65.510⨯D .65510⨯2.2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( )A .4557510⨯B .555.7510⨯C .75.57510⨯D .80.557510⨯3.实数a ,b 在数轴上对应点位置如图所示,则下列不等式正确的是( )A .0a b <B .0a b ->C .0ab >D .0a b +>4.据国家统计局公布,我国第七次全国人口普查结果约为14.12亿人,14.12亿用科学记数法表示为( )A .914.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯ 5.如图,将数轴上6-与6两点间的线段六等分,这五个等分点所对应数依次为12345,,,,a a a a a .则与1a 相等的数是( )A .2aB .3aC .4aD .5a6.2022的相反数的倒数是( )A .2022B .12022-C .12022D .2022- 7.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A .3B .1-C .2-D .3-8.若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( )A .5B .2C .1D .0 9.数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-10.实数a ,b ,c 在数轴上的对应点的位置如图所示,如果0a c +=,那么下列结论正确的是( )A .0b <B .a b <-C .0ab >D .0b c -> 11.如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字5,4,3,2,1,0,1,2,3,4,5,6-----这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则a 的值为( )A .4-B .3-C .3D .412.一电子跳蚤落在数轴上的某点k 0处,第一步从k 0向左跳一个单位到k 1,第二步从k 1向右跳2个单位到k 2,第三步由k 2处向左跳3个单位到k 3,第四步由k 3向右跳4个单位k 4…按以上规律跳了100步后,电子跳蚤落在数轴上的数是0,则k 0表示的数是( )A .0B .100C .50D .﹣50二、填空题13.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米.14.2022年2月4日,第24届冬奥会在北京开幕,据统计中国地区观看开幕式的人数约为316000000人,请将数字316000000用科学记数法表示出来_________.15.目前,我国基本医疗保险覆盖已超过13.5亿人,数据13.5亿用科学记数法表示为____________.16.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题17.计算题:(1)()()()915128-+--+-(2)1131323142⎛⎫⎛⎫⎛⎫-⨯-⨯÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)2020311|24|(2)3----⨯+- (4)111136693⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭18.()()113132⎛⎫---+-- ⎪⎝⎭. 19.“十一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若9月30日故宫的游园人数为2.1万人,请你计算“十一”黄金周期间游客人数最多的是___________(填写日期),最少的是___________(填写日期),它们相差___________万人;(2)故宫门票是60元一张,请计算出“十·一”黄金周期间,北京故宫的门票总收入(万元).20.计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可)(2)请给出正确解答.21.阅读下列材料:计算:1111()243412÷-+ 解法一:原式111111111113412243244241224242424=÷-÷+÷=⨯-⨯+⨯= 解法二:原式14311211()6241212122412244=÷-+=÷=⨯= 解法三:原式的倒数 1111111111()()24242424434122434123412=-+÷=-+⨯=⨯-⨯+⨯=, 所以,原式= 14(1)上述得到的结果不同,你认为解法___________是错误的;(2)请你选择合适的解法计算;12112()()3031065-÷-+- 22.(1)()()20171811-+----(2)()()3.75 5.18 2.25 5.18+---+(3)1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(4)()1124 5.2522265⎛⎫⎛⎫---+-+-+ ⎪ ⎪⎝⎭⎝⎭23.计算:(1)20(14)(18)13-+---- (2)()125366312⎛⎫-+⨯- ⎪⎝⎭(3)1599416⎛⎫-⨯ ⎪⎝⎭ (4)()221833235⎡⎤⎛⎫-+-⨯--÷ ⎪⎢⎥⎝⎭⎣⎦24.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数4-,点B 表示数5,点M 是点A ,B 的“联盟点”,点M 在A 、B 之间,且表示一个负数,则点M 表示的数为____________;(2)若点A 表示数2-,点B 表示数2,下列各数23-,0,4,6所对应的点分别为1C ,2C ,3C ,4C ,其中是点A ,B 的“联盟点”的是____________;(3)点A 表示数15-,点B 表示数25,P 为数轴上一点:①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,此时点P 表示的数是____________; ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数____________.25.信息1:点A 、B 在数轴上表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =a b -;信息2:数轴是一个非常重要的数学工具,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合上面的信息回答下列问题:已知数轴上点A 、B 两点对应的有理数a ,b ,且a ,b 满足340a b -++=(1)填空:a =, b =,A ,B 之间的距离为;(2)数轴上的动点C 对应的有理数为c .①式子a c b c -+-最小值是,此时c 的取值范围是;②当9a c b c -+-=时,则c =;③式子a c b c d c -+-+-有最小值为9,则有理数d =;④式子12399c c c c 的最小值为.参考答案:1.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将55000000用科学记数法表示为5.5×107.故选:B.【点睛】此题考查科学记数法的表示方法.熟练掌握科学记数法的表示形式并正确确定a 及n的值是解题的关键.2.C【分析】根据科学记数法的定义“把一个大于10的数表示成10na⨯的形式(其中a是整数位只有一位的数,即a大于或等于1且小于10,n是正整数),这样的记数方法叫做科学记数法”进行解答即可得.【详解】解:755750000 5.57510=⨯,故选C.【点睛】本题考查了科学记数法,解题的关键是熟记科学记数法的定义.3.C【分析】由题意可知a<b<0,故a、b同号,且|a|>|b|.根据有理数加减法乘除法法则可推断出各式的符号.【详解】解:由题意可知a<b<0,故a、b同号,且|a|>|b|.∴ab>0,a-b=a+|b|<0,ab>0,a+b<0;∴选项A、B、D错误,选项C正确,故选:C.【点睛】此题主要考查了不等式的基本性质和实数和数轴的基本知识点,比较简单.4.C【分析】根据把一个大于10的数记成a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:14.12亿91412000000 1.41210==⨯.故选:C.【点睛】本题主要考查了科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,解题的关键是确定a与n的值.5.D【分析】求出数轴上6-与6两点间的线段六等分的每一等分的长度,接着求出1a 的值,再求出1a 的绝对值,得到对应的数是5a .【详解】∵()6662--÷=⎡⎤⎣⎦,∴1624a -+=-=, ∴144a =-=,∵56254a =-+⨯=, ∴15a a =.故选D .【点睛】本题主要考查了数轴和绝对值,熟练掌握数轴的定义和表示数的方法,绝对值的几何意义和计算方法,是解决此类问题的关键.6.B【分析】根据和为零的两个数互为相反数,利用乘积为1的两个数互为倒数计算.【详解】∵2022的相反数是-2022,∴-2022的倒数是12022-, 故选B .【点睛】本题考查了相反数即只有符号不同的两个数,倒数即乘积为1的两个数,熟练掌握定义,灵活计算是解题的关键.7.C【分析】结合图1和图2求出1个单位长度=0.6cm ,再求出求出AB 之间在数轴上的距离,即可求解;【详解】解:由图1可得AC =4-(-5)=9,由图2可得AC =5.4cm ,∴数轴上的一个长度单位对应刻度尺上的长度为=5.4÷9=0.6(cm ),∵AB =1.8cm ,∴AB =1.8÷0.6=3(单位长度),∴在数轴上点B 所对应的数b =-5+3=-2;故选:C【点睛】本题考查了数轴,利用数形结合思想解决问题是本题的关键.8.C【分析】通过阅读自定义运算规则:()lg lg lg M N MN +=,再得到lg101, 再通过提取公因式后逐步进行运算即可得到答案. 【详解】解:()lg lg lg M N MN +=,∴()2lg5lg5lg 2lg 2+⨯+lg5lg5lg2lg2lg5lg10lg 2lg5lg 2=+lg10= 1.=故选C【点睛】本题考查的是自定义运算,理解题意,弄懂自定义的运算法则是解本题的关键.9.D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∴m 和2m +互为相反数,∴m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键.10.B【分析】由图可知,a b c <<,由0a c +=,可得a c =-,0a b c <<<,则0b >,0ab <,0b c -<,进而可判断A ,C ,D 的对错;由0a b a c +<+=,可得a b <-,进而可判断B 的正误.【详解】解:由图可知,a b c <<,∵0a c +=,∴a c =-,∴0a b c <<<,∴0b >,0ab <,0b c -<,∴A ,C ,D 错误;故不符合题意;∵0a b a c +<+=,∴a b <-,∴B 正确,故符合题意;故选:B .【点睛】本题考查了根据点在数轴的位置判断式子的正负.解题的关键在于从数轴上得出0a b c <<<.11.B【分析】共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,所以5,1,5--这一行最后一个圆圈数字应填3,则a 所在的横着的一行最后一个圈为3,2,1,1--这一行第二个圆圈数字应填4,目前数字就剩下4,3,0,6--,1,5这一行剩下的两个圆圈数字和应为4-,则取4,3,0,6--中的4,0-,2,2-这一行剩下的两个圆圈数字和应为2,则取4,3,0,6--中的4,6-,这两行交汇处是最下面那个圆圈,应填4-,所以1,5这一行第三个圆圈数字应为0,则a 所在的横行,剩余3个圆圈里分别为2,0,3,要使和为2,则a 为3-故选:B【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.12.D【分析】根据题意写出数字并总结出变化规律,然后计算即可得到答案.【详解】解:根据题意可知:10210320(1)(2)(1)(2)(3)(1)(2)(3)k k k k k k k k =+-=++=+-++=+-=+-+++-……0(1)(2)(3)...(1)n n k k n =+-+++-++-当n =100时,1000000(1)(2)(3) (100)(12)(34)...(9910015050k k k k k =+-+++-+++=+-++-+++-+=+⨯=+=)∴050k =-故选D .【点睛】本题考查了有理数的加法,掌握相关知识,找到数字的变化规律,同时注意解题中需注意的相关事项是本题的解题关键.13.5-【分析】根据用正负数表示两种具有相反意义的量,如果向东走了5米,记作+5米,那么向西走5米,可记作5-米.【详解】解:∵向东走了5米,记作+5米,∴向西走5米,可记作5-米,故答案为:5-.【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的. 14.83.1610⨯【分析】先确定表示数的整数位数,减去1得到n ;将小数点点在左边第一个非零数字后面,确定a 值,写成10n a ⨯的形式即可.【详解】∵316000000=83.1610⨯,故答案为:83.1610⨯.【点睛】本题考查了绝对值大于1的数的科学记数法,确定表示数的整数位数,减去1得到n ;将小数点点在左边第一个非零数字后面,确定a 值,确定这两个关键要素是解题的关键. 15.91.3510⨯【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.【详解】∵13.5亿=91.3510⨯,故答案为:91.3510⨯.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.16. 2.5-或4.5【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.17.(1)10;(2)12-;(3)11-;(4)5648【分析】有理数的混合运算法则:先算乘方及乘除,再算加减;同级运算,按从左到右的顺序进行计算;如果有括号,先算括号里面的.【详解】解:(1)()()()915128-+--+-(9)1512(8)612(8)18(8)10=-+++-=++-=+-= (2)1131323142⎛⎫⎛⎫⎛⎫-⨯-⨯÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 713()()(2)231412=-⨯-⨯⨯-=-(3)2020311|24|(2)3----⨯+- 1(1)6(8)3(1)2(8)(1)(2)(8)11=--⨯+-=--+-=-+-+-=-(4)111136693⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭ 1326()361818181536185648⎛⎫=-⨯-- ⎪⎝⎭⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭= 【点睛】本题主要考查了有理数的混合运算,熟记运算法则是解题的关键.18.146- 【分析】根据有理数的加减运算法则求解即可. 【详解】解:原式11=3132-+-- 1=46-. 【点睛】本题主要考查了有理数的加减运算,熟知相关计算法则是解题的关键. 19.(1)10月4日,10月7日,3.5(2)2346万元【分析】(1)根据每一天的人数比前一天的变化情况,求出各天的游客人数;(2)求出这7天的总游客人数,即可求出门票总收入.(1)10月1日 2.1 3.2 5.3+=(万人),10月2日 5.30.6 5.9+=(万人),10月3日 5.90.3 6.2+=(万人),10月4日 6.20.7 6.9+=(万人),10月5日 6.9 1.3 5.6-=(万人),10月6日 5.60.2 5.8+=(万人),10月7日 5.82.4 3.4=﹣(万人),游园人数最多的是10月4日,最少的是10月7日;6.9 3.4=3.5-(万人)故答案为:10月4日,10月7日,3.5(2)解:()60 5.3 5.9 6.2 6.9 5.6 5.8 3.4=2346⨯++++++(万元),答:北京故宫的门票总收入2346万元.【点睛】本题考查了正负数的意义,有理数的加减的应用,掌握正负数的意义是解题的关键.20.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误;解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.21.(1)一和三 (2)110-【分析】(1)观察三种解法解答过程可得答案;(2)先求出倒数,再求原式的值.【详解】(1)解:由已知可得,解法一和三是错误的,故答案为:一和三;(2)原式的倒数为21121()()3106530-+-÷- 2112()(30)31065=-+-⨯- 2112(30)(30)(30)(30)31065=⨯--⨯-+⨯--⨯- 203512=-+-+10=-,∴原式1(10)=÷-110=-. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数相关的运算法则和运算律. 22.(1)30-;(2)6;(3)10;(4)5960- 【分析】(1)根据有理数的加减法进行计算即可求解;(2)根据有理数的加减法进行计算即可求解;(3)根据有理数的加减法进行计算即可求解;(4)根据有理数的加减法进行计算即可求解.【详解】解:(1)()()20171811-+----20171811=--+-()20171118=-+++4818=-+30=-:(2)()()3.75 5.18 2.25 5.18+---+3.75 5.18 2.25 5.18=-++3.75 2.25 5.18 5.18=+-+=6;(3)1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1443512365757=-+-+ 1443531265577⎛⎫=--++ ⎪⎝⎭919=-+=10;(4)()1124 5.2522265⎛⎫⎛⎫---+-+-+ ⎪ ⎪⎝⎭⎝⎭ 111245222645=+--+ 111245222645=--+++-- 30101524160+--=-+ 1=160-+ 5960=-. 【点睛】本题考查了有理数的加减混合运算,正确的计算是解题的关键.23.(1)29-(2)3 (3)33994- (4)285-【分析】(1)减法转化为加法,再进一步计算即可;(2)利用乘法分配律展开,再进一步计算即可;(3)原式变形为1(100)416=-⨯,再利用乘法分配律展开,再进一步计算即可; (4)根据有理数的混合运算顺序和运算法则计算即可.【详解】(1)解:原式20141813=--+-29=-;(2)解:原式125(36)36366312=⨯-+⨯-⨯ 62415=-+-3=;(3)解:原式1(100)416=-⨯ 14100416=⨯-⨯ 14004=-33994=-; (4)解:原式819(1)54=-+-⨯ 29(1)5=-+- 395=-+ 285=-. 【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.24.(1)-1;(2)C 1或C 4;(3)①5355533--,,;②65;45;105.【分析】(1)先求出AB =9,再根据联盟点的定义求出M 表示的数是2与 -1,最后根据点M 表示一个负数,即可求解;(2)根据题意求得CA 与BC 的关系,得到答案;(3)①分点P 位于点A 左侧、点P 表示的数位于AB 之间,且靠近点A 、点P 表示的数位于AB 之间,且靠近点B 三种情况讨论,即可求解;②分当P 为A 、B 的联盟点、点B 为AP 联盟点且AB =2BP 、点B 为AP 联盟点且PB =2AB 三种情况讨论,即可求解.(1)解:由题意得()=54=9AB --,因为点M 是点A ,B 的“联盟点”,点M 在A 、B 之间, ∴AM =2BM ,或BM =2AM ,所以AM = 229633AB ⨯=⨯=或AM = 119333AB ⨯=⨯=, 所以点M 表示的数是-4+6=2或-4+3=-1,因为点M 表示一个负数,所以点M 表示的数为-1.故答案为:-1;(2)解:由题意得 C 1A =43,C 1B =83,C 1B =2C 1A ,故C 1符合题意; C 2A =C 2B =2,故C 2不符合题意;C 3A =6,C 3B =2,故C 3不符合题意;C 4A =8,C 4B =4,C 4A =2C 4B ,故C 4符合题意.故答案为:C 1或C 4;(3)解;由题意得AB =40.①当点P 位于点A 左侧时,PB =2P A ,所以P A =AB =40,所以点P 表示的数为-15-40=-55;当点P 表示的数位于AB 之间,且靠近点A 时,PB =2P A ,所以P A =14040=33⨯,所以点P 表示的数为40515=33-+-; 当点P 表示的数位于AB 之间,且靠近点B 时,P A =2PB ,所以P A =28040=33⨯,所以点P 表示的数为803515=33-+; 故答案为:5355533--,,; ②当P 为A 、B 的联盟点时,则P A =2PB ,所以AB =PB =40,所以点P 表示的数为25+40=65;当点B 为AP 联盟点且AB =2BP 时,BP =140=202⨯,所以点P 表示的数为2520=45+; 当点B 为AP 联盟点且PB =2AB 时,BP =240=80⨯,所以点P 表示的数为2580=105+; 故答案为:65;45;105.【点睛】本题为新定义问题,难度较大.考查了在数轴上表示有理数,有理数的加减运算等知识,理解“联盟点”的意义,根据题意结合数轴分类讨论是解题关键.25.(1)3;4-;7(2)①7;43c -≤<;②5-或4;③-6或5;④2450【分析】(1)根据绝对值的非负性,求出a 、b 的值,然后根据数轴上两点之间的距离公式,求出A ,B 之间的距离即可;(2)①根据动点C 在A 、B 之间时AC BC +最小,即可确定c 的取值范围;②分两种情况:当4c -<或3c >,分别求出c 的值即可;③根据43d -≤≤时,a c b c d c -+-+-的最小值为7,得出4d -<或3d >,然后分两种情况求出d 的值即可;④根据c 取中间的数50时,12399c c c c 有最小值,求出最小值即可.(1)解:340a b -++=∵,30a ∴-=,40b +=, 3a ∴=,4b =-, ()347AB =--=.故答案为:3;4-;7.(2) 解:①∵点C 在A 、B 之间时AC BC +最小,即a c b c -+-最小,∴43c -≤<时,a c b c -+-的值最小, ∵3a =,4b =-,∴34c c -+--()34c c =-+---⎡⎤⎣⎦ 34c c =-++7=即a c b c -+-的最小值为7.故答案为:7;43c -≤<.②∵当43c -≤<时,7a c b c -+-=,∴4c -<或3c >, 当4c -<时,34349a c b c c c c c -+-=-+--=---=, 解得:5c =-;当3c >时,34349a c b c c c c c -+-=-+--=-++=,解得:4c =;故答案为:5-或4. ③∵当43d -≤≤时,a c b c d c -+-+-的最小值为7,∴4d -<或3d >,当4d -<,4c =-时,a c b c d c -+-+-的值最小, 此时,()()()344449a c b c d c d -+-+-=--+---+--=,即()749d -+=,解得:6d =-;当3d >,3c =时,a c b c d c -+-+-的值最小, 此时,334339a c b c d c d -+-+-=-+--+-=,即739d +-=,解得:5d =;故答案为:-6或5.④∵c 取中间的数50时,12399c c c c 有最小值, ∴12399c c c c 的最小值为: 5015025035099 49484710123474849=+++⋅⋅⋅+++++⋅⋅⋅+++()212349=+++⋅⋅⋅+()1494922+⨯=⨯ 2450=故答案为:2450.【点睛】本题主要考查了数轴上两点间的距离,绝对值的意义,有理数的混合运算,熟练掌握绝对值的意义,是解题的关键.。
人教版七年级数学第一章测试题
a 10第一章测试卷一、选择题:(每题2分,共30分)1.下列说法正确的是( )A 。
所有的整数都是正数 B.不是正数的数一定是负数C 。
0不是最小的有理数 D.正有理数包括整数和分数 2. 12的相反数的绝对值是( ) A 。
-12 B.2 C.—2 D.123.有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A 。
a>b B.a 〈b C.ab>0 D 。
0a b4。
在数轴上,原点及原点右边的点表示的数是() A 。
正数 B 。
负数 C 。
非正数 D 。
非负数5。
如果一个有理数的绝对值是正数,那么这个数必定是( )A 。
是正数B 。
不是0C 。
是负数D 。
以上都不对6。
下列各组数中,不是互为相反意义的量的是( )A 。
收入200元与支出20元 B.上升10米和下降7米C.超过0.05mm 与不足0.03m D 。
增大2岁与减少2升7。
下列说法正确的是( )A.-a 一定是负数;B.│a │一定是正数;C.│a │一定不是负数; D 。
-│a │一定是负数8.如果一个数的平方等于它的倒数,那么这个数一定是( )A.0B.1 C 。
-1 D 。
±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( )A.互为相反数但不等于零; B 。
互为倒数; C 。
有一个等于零; D 。
都等于零10。
若0<m<1,m 、m 2、1m的大小关系是( ) A 。
m<m 2〈1m ; B.m 2〈m 〈1m ; C.1m 〈m<m 2; D.1m 〈m 2<m 11。
4604608取近似值,保留三个有效数字,结果是( )A.4。
60×106 B 。
4600000; C.4。
61×106 D 。
4。
605×10612.下列各项判断正确的是( )A 。
a+b 一定大于a-b ;B 。
若—ab 〈0,则a 、b 异号;C 。
新人教版七年级数学试题第一章《有理数》全章检测120分钟150分
第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。
A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。
A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。
①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。
(人教版)初一数学下册实数测试题及答案解析
一、选择题1.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥ D .()0f k =或12.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6663.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是( )A .pB .qC .mD .n4.如图,A 、B 、C 、D 是数轴上的四个点,其中最适合表示10的点是( )A .点AB .点BC .点CD .点D5.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120B .125C .-120D .-1258.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根.A .1B .2C .3D .49.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 2210.已知f(1)=2 (取12⨯的末位数字),f(2)=6 (取2?3的末位数字),f(3)=2 (取34⨯的末位数字),…, 则()()()()f 1f 2f 3f 2021++++的值为( )A .4036B .4038C .4042D .4044二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为222M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____. 13.观察下列各式: 225-85425⨯25225-253310-27103910⨯3103310-31021n n n -+_____.14.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____15.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.16.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号).17.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________.18.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.19.已知M 是满足不等式27a -<<的所有整数的和,N 是52的整数部分,则M N +的平方根为__________.20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.22.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)23.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭24.对于实数a ,我们规定:用符号⎡⎤⎣⎦a a ⎡⎣a 为a 的根整数,例如:93⎡=⎣,10⎡⎣=3.(1)仿照以上方法计算:4⎡⎣=______;26⎡⎤⎣⎦=_____.(2)若1x ⎡=⎣,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次103⎡=⎣→3⎡⎣=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 25.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号).①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 27.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果. 28.阅读下面的文字,解答问题的小数部分我们不可能全部11,将这个数减去其整数部分,差就是小数部分.23, ∴22)请解答:(1整数部分是 ,小数部分是 .(2a b ,求|a ﹣b(3)已知:x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数. 29.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)30.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=nf x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0,当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.B解析:B 【详解】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; }2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选B.点睛本题考查了估算无理数的大小.3.C解析:C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解. 【详解】解:∵0p q m n +++= 结合数轴可得:()-=p q m n ++, 即原点在q 和m 之间,且离m 点最近, ∴绝对值最小的数是m , 故选:C . 【点睛】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.4.D解析:D 【分析】根据<4即可得到答案.【详解】∵9<10<16,∴<4,∴的点是点D,故选:D.【点睛】此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.5.C解析:C【分析】设木块的长为x,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x的值,由AD=2x可得答案.【详解】解:设木块的长为x,根据题意,知:(x-2)2=19,则2x-=∴2x=(舍去)x=22则24==,BC x故选:C.【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.6.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.D解析:D【详解】根据题目中的运算方法a *b =ab +a -b ,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D .点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.8.C解析:C 【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错; 根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.9.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,1=-,则2x =-∴点C 表示的数是2-.故选:D. 【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.10.C解析:C 【分析】先计算部分数的乘积,观察运算结果,发相规律,每运算5次后结果重复出现,求出f(1)+f(2)+f(3)+f(4)+f(5)和,再求2021次运算重复的次数,用除数5,商和余数表示2021=5×404+1,说明重复404次和f(2021)=2的结果,(f(1)+f(2)+f(3)+f(4)+f(5))×10+2计算结果即可. 【详解】解:f(1)=2, f(2)=6,f(3)=2,f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,f(10)=0,f(11)=2,每5次运算一循环,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10, 2021=5×404+1,()()()()f 1f 2f 3f 2021++++=10×404+2=4040+2=4042.故选:C . 【点睛】本题考查新定义运算,读懂题目的含义与要求,掌握运算的方法,观察部分运算结果,从中找出规律,用规律解决问题是解题关键.二、填空题 11.2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为(222==; ∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且ab ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1, ∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下:1>若点A位于点B左边:①若点D在点A左边,如图所示:此时,37222 BD AD AB=+=+=;②若点D在点A右边,如图所示:此时,31222 BD AB AD=-=-=;2>若点A位于点B右边:①若点D在点A左边,如图所示:此时,31222 BD AB AD=-=-=;②若点D在点A右边,如图所示:此时,37222 BD AD AB=+=+=;综上,线段BD的长度为12或72,故答案为:2;21;12或72.【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000= 401401.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 13.n .【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】解:=n .故答案为:n .【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析: 【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】故答案为: 【点睛】 此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键. 14.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】根据若[]x 表示不超过x 的最大整数,①取 2.5x 验证;②根据定义分析;③直接将 2.75-代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x ]与﹣[x ]两者不相等,故①不符合题意;②若[x ]=n ,∵[x ]表示不超过x 的最大整数,∴x 的取值范围是n ≤x <n +1,故②符合题意;③将x =﹣2.75代入4x ﹣[x ]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x <1时,若﹣1<x <0,[1+x ]+[1﹣x ]=0+1=1,若x =0,[1+x ]+[1﹣x ]=1+1=2,若0<x <1,[1+x ]+[1﹣x ]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解. 17.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立 解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5.【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.18.﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答. 22.(1)2-,2;(2)①图见解析,5;②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A 和点B 表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a ,再用圆规以这个长度画弧,交数轴于点M ,再把这个长方形向左平移3个单位,用同样的方法得到点N .【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A 表示的数是2-,点B 表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.23.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】(1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.24.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴56,∴,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,,∴对255只需进行3次操作后变为1,∵,,,,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.25.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.26.(1) 4;(2)1;(2) ±12.【分析】(1(2a、b的值,再代入求出即可;(3的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵45,∴4,故答案为4;(2)∵2<3,∴-2,∵34,∴b=3,∴;(3)∵100<110<121,∴1011,∴110<111,∵,其中x是整数,且0<y<1,∴x=110,,∴+10=144,的平方根是±12.【点睛】键.27.(1)x7-1;(2)x n+1-1;(3)51312-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)=12×(x50+1-1)=51312-故答案为:(1)x7-1;(2)x n+1-1;(3)51312-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.28.(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴3a,∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.29.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.30.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯,∵6132->-,∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-,∴()161f =, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=,∴6b a -=,∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,,∴t 为39,28,17;∵39=1×39=3×13,∴()33913f =; 28=1×28=2×14=4×7,∴()28f =47; 17=1×17,∴()11717f =; ∴()f t 的最大值47. (3)①∵223572021⨯⨯⨯=⨯∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯∴()4402023574221f ⨯⨯⨯==; 故答案为:2021;2021 【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.。
人教版七年级下册数学第一次月考试题附答案
【分析】根据线段、垂线段的公理、平行线的性质以及补角的性质判断即可.
【解答】解:A、两点之间,线段最短,是真命题;
B、两直线平行,同旁内角互补,原命题是假命题;
C、等角的补角相等,是真命题;
D、垂线段最短,是真命题;
故选:B.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.
6.(3分)下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
【分析】根据对顶角的定义作出判断即可.
【解答】解:根据对顶角的定义可知:只有选项C中的是对顶角,其它都不是.
故选:C.
【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
12(3分).如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度为2 026,则n的值为().
2022年七年级下册第一次月考
数 学试 题
满 分:120分时间:120分钟
亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)49的算术平方根是( )
A.±7B.7C.± D.
人教版七年级下册数学试卷及答案
七年级下册数学试卷一(时间:120分钟 满分:100分)一、细心填一填(每题2分,共24分)1. 在同一平面内,两条直线有 种位置关系,它们是 ;2.若直线a//b ,b//c ,则 ,其理由是 ;3.如图1直线AB ,CD ,EF 相交与点O ,图中AOE ∠的对顶角是 ,COF ∠的邻补角是 。
图34.如图2,要把池中的水引到D 处,可过C 点引CD ⊥AB 于D ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;5.点P (-2,3)关于X 轴对称点的坐标是 。
关于原点对称点的坐标是 。
6.把“对顶角相等”写成“如果……那么……”的形式为 。
7.一个等腰三角形的两边长分别是3cm 和6cm,则它的周长是 cm. 8.若点M (a+5,a-3)在y 轴上,则点M 的坐标为 。
9.若P (X ,Y )的坐标满足XY >0,且X+Y<0,则点P 在第 象限 。
10.一个多边形的每一个外角等于30,则这个多边形是 边形,其内角和是 。
11.直角三角形两个锐角的平分线所构成的钝角等于 度。
12.如图3,四边形ABCD 中,12∠∠与满足 关系时AB//CD ,当 时AD//BC(只要写出一个你认为成立的条件)。
二、精心选一选(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填2.以下列各组线段为边,能组成三角形的是( )A 、2cm, 3cm, 5cmB 、5cm, 6cm, 10cmC 、1cm, 1cm, 3cmD 、3cm, 4m, 9cm3.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形 B .长方形 C .正八边形 D .正六边形4.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( )A .(3,6) B.(1,3) C.(1,6) D.(3,3) 5. 如图4,下列条件中,不能判断直线a//b 的是( )A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180° 6.下列图形中有稳定性的是( )A .正方形 B.长方形 C.直角三角形 D.平行四边形三.作图题。
人教版七年级数学下册第一单元练习题
第一单元自主学习达标检测(§5.1~§5.2)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每小题3分,共30分)1.如图1所示,已知三条直线AB 、CD 、EF 两两相交于点P 、Q 、R ,则图中邻补角共有对,对顶角共有 对(平角除外).2.一个角的对顶角比它的邻补角的3倍还大20°,则这个角的度数为 .3.如图2所示,已知直线AB 、CD 交于点O ,OE ⊥AB 于点O ,且∠1比∠2大20°,则∠AOC= .4.已知直线AB ⊥CD 于点O ,且AO=5㎝,BO=3㎝,则线段AB 的长为 . 5.直线a 、b 、c 中,若,a b b ⊥∥c ,则a 、c 的位置关系是 . 6.如图3所示,点D 、E 、F 分别在AB 、BC 、CA 上,若∠1=∠2,则 ∥ ,若∠1=∠3,则 ∥ .7.如图4所示,若∠1=∠2,则 ∥ ;若∠2= ,则BC ∥B ′C ′;理由是 .8.如图5所示,若∠1=2∠3,∠2=60°,则AB 与CD 的位置关系为 . 9.如图6,在正方体1111ABCD A B C D -中,与面11CC D D 垂直的棱有_____.F E D C B A R Q P(图1) EDCB A O(图2)21(图3) F E D C BA3 2 1 C B A C 'B 'A '(图4)3 21DCB A(图5) 3 21 (图6) (图10.如图7,已知直线AB CD ,相交于点O ,OE 平分BOD ∠,OF OE ⊥,120 o ∠,二、选择题(每小题3分,共24分)11.如图8所示,∠1与∠2是对顶角的图形的个数有( )(A )1个 (B )2个 (C )3个 (D )4个12.已知:如图9所示,直线AB 、CD 被直线EF 所截,则∠EMB 的同位角是( )(A )∠AMF (B )∠BMF (C )∠ENC (D )∠END13.如图10所示,AC ⊥BC 与C ,CD ⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段有( )(A )1条 (B )2条 (C )3条 (D )5条 14.判断下列语句中,正确的个数有( )①两条直线相交,若有一组邻补角相等,则这两条直线互相垂直;②从直线外一点到已知直线的垂线段,叫做这个点到已知直线的距离;③从线外一点画已知直线的垂线,垂线的长度就是这个点到已知直线的距离;④画出已知直线外一点到已知直线的距离.(A )1个 (B )2个 (C )3个 (D )4个15.已知:如图11所示,直线AB 、CD 相交于O ,OD 平分∠BOE ,∠AOC=42°,则∠AOE 的度数为( ) (图9)NMFE DC B A(图12)2l1l 5432 1 (图11)O EDCBA B(图10) DCA21 121221 (图8)(A )126° (B )96° (C )102° (D )138° 16.在同一平面内两条直线的位置关系可能是( )(A ) 相交或垂直 (B )垂直或平行 (C )平行或相交 (D )不确定 17.如图12所示,下列条件中,能判断直线1l ∥2l 的是( )(A )∠2=∠3 (B )∠1=∠3 (C )∠4+∠5=180° (D )∠2=∠418.如图13所示,下列推理中正确的数目有( )①因为∠1=∠4,所以BC ∥AD . ②因为∠2=∠3,所以AB ∥CD .③因为∠BCD +∠ADC=180°,所以AD ∥BC . ④因为∠1+∠2+∠C=180°,所以BC ∥AD .(A )1个 (B )2个 (C )3个 (D )4个 三、解答题(共46分)19.(本题6分)如图,AB DC ∥,E 为BC 的中点. (1)过E 作EF AB ∥,EF 与AD 交于点F ; (2)EF 与DC 平行吗?为什么? 20.(本题6分)如图7,在表盘上请你画出时针与分针,使时针与分针恰好互相垂直,且此时恰好为整点. (1)此时表示的时间是_____点.(2)一天24小时,时针与分针互相垂直_____次. 21.(本题8分)如图所示,当∠BED 与∠B ,∠D 满足 条件时,可以判断AB ∥CD .(1)在“ ”上填上一个条件; (2)试说明你填写的条件的正确性.DCBA43 2 1(图13)EDC BA22.(本题8分)利用如图所示的方法可以折出互相垂直的线,试试看!并与同伴讨论这种折法的合理性.(图中,BM AM=),,三点是否共线?23.(本题8分)如图,如果CD AB∥,那么C D E∥,CE AB你能说明理由吗?24.(本题10分)(1)1条直线,最多可将平面分成112+=个部分;(2)2条直线,最多可将平面分成1124++=个部分;(3)3条直线,最多可将平面分成_____个部分;(4)4条直线,最多可将平面分成_____个部分;(5)n条直线,最多可将平面分成_____个部分.。
人教版七年级数学第一章第一单元测试题
七年级数学第一单元阶段测试卷一、精心选一选(本大题共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.-12的倒数和相反数分别是( )A.12,2 B. 12,-2 C.2,12D. -2,122在有理数-(-2),-2 ,-5, 0, 3,-1.5,中负数的个数为()A.1个B.2个C.3个D.4个3.大于-3.5且小于2.5的整数共有( )A.6个B.5 个C.4 个D.3个4、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()A.-12B.-9C.-0.01D.-55、绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 56.在数轴上表示-14的点与表示-6的点的距离是()A.9B.8C.-8D.207、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数8、3.如图,在数轴上点A 表示的数可能是( )A .1.5B .-1.5C .-2.6D .2.69、下列说法,不正确的是( )A .绝对值最小的有理数是0B .在数轴上,右边的数的绝对值比左边的数的绝对值大C .数轴上的数,右边的数总比左边的数大D .离原点越远的点,表示的数的绝对值越大10、化简-(+4)的结果是( )A .-4B .-14C .14D .411、若a 为有理数,则-|a|表示( )A .正数B .负数C .正数或0D .负数或012、如图,图中数轴的单位长度为1,如果点B 、C 所表示的数的绝对值相等,那么点A 表示的数是()A -5B .5C .3D .-7二、细心填一填(本大题共8小题,每小题3分,共42分).13、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
人教版初中数学七年级数学下册第一单元《相交线与平行线》测试卷
一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 3.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直4.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 5.下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角 6.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定7.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 8.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 9.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线11.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于012.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.15.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.16.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______. 17.如图,,OA OC OB OD ⊥⊥,4位同学观察图形后分别说了自己的观点.甲:AOB ∠COD =∠;乙:180BOC AOD ∠+∠=︒;丙:90AOB COD ∠+∠=︒;丁:图中小于平角的角有6个;其中正确的结论有__________个.18.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.19.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.20.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)三、解答题21.如图,点P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点E ;(2)过点P 画OA 的垂线,垂足为H ;(3)过点P 画OA 的平行线PC ;(4)若每个小正方形的边长是1,则点P 到OA 的距离是___________;(5)线段,,PE PH OE 的大小关系是_____________________(用“<”连接).22.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.24.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)∠AOC 的对顶角为______,∠AOC 的邻补角为______;(2)若∠EOC =70°,求∠BOD 的度数;(3)若∠EOC :∠EOD =2:3,求∠BOD 的度数.25.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.26.试用举反例的方法说明下列命题是假命题.例如:如果ab <0,那么a +b <0.反例:设a =4,b =-3,ab =4⨯(-3)=-12<0,而a +b =4+(-3)=1>0,所以这个命题是假命题.(1)如果a +b >0,那么ab >0.(2)如果a 是无理数,b 也是无理数,那么a +b 也是无理数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A .在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误; B .两直线相交,对顶角相等,故本选项错误;C .垂线段最短,故本选项正确;D .直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误; 故选:C .【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 3.B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.4.B解析:B【分析】根据平行线的性质求出∠ABE ,求出∠CBA ,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.5.C解析:C【分析】利用反例对A进行判断;根据平行线的性质对B进行判断;根据三角形内角和定理对C进行判断;根据对顶角定义对D进行判断.【详解】解:A、当a=-2,b=-1时,则a+b<0,ab>0,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误,是假命题;C、三角形的内角和等于180°,所以C选项为真命题;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.B解析:B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.8.A解析:A【分析】根据同位角的定义求解.【详解】解:直线a,b被直线c所截,∠1与∠2是同位角.故选:A.【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.9.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断. 11.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.二、填空题13.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.14.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.15.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A=∠B 或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A与∠B的两边分别平行,可得∠A与∠B相等或互补.16.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB⊥CD;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补解析:①③④【分析】①根据对顶角相等可以判定四个角相等,由周角360°可知,四个角都为90°,则AB⊥CD;②因为对顶角相等,但不能说明有角为90°,不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补角的和为180°,又相等,所以每个角为90°,则AB⊥CD.【详解】①如图,若∠AOC=∠COB=∠BOD,∵∠AOD=∠COB,∴∠AOC=∠COB=∠BOD=∠AOD,∵∠AOC+∠COB+∠BOD+∠AOD=360°,∴∠AOC=∠COB=∠BOD=∠AOD=90°,∴AB⊥CD;所以此选项能判定这两条直线垂直;②∠AOC=∠BOD,∠AOD=∠COB,但不能说明有角为90°,所以此选项不能判定这两条直线垂直;③若∠AOC=90°,∴AB⊥CD,所以此选项能判定这两条直线垂直;④若∠AOC=∠AOD,∵∠AOC+∠AOD=180°,∴∠AOC=∠BOD=90°,所以此选项能判定这两条直线垂直;故能判定这两条直线垂直的有:①③④;故答案为:①③④.【点睛】本题考查了对顶角、邻补角以及垂直的定义,熟练掌握两条直线垂直的定义是关键. 17.3【分析】先根据垂直的定义可得再逐个判断即可得【详解】则甲的结论正确;则乙的结论正确;假设又由题中已知条件不能得到则丙的结论错误;图中小于平角的角为共有6个则丁的结论正确;综上正确的结论有3个故答案 解析:3【分析】先根据垂直的定义可得90AOC BOD ∠=∠=︒,再逐个判断即可得.【详解】,OA OC OB OD ⊥⊥,9090AOB BOC AOC COD BOC BOD ∠+∠=∠=︒⎧∴⎨∠+∠=∠=︒⎩, AOB COD ∴∠=∠,则甲的结论正确;180AOB BOC COD BOC AOC BOD ∠+∠+∠+∠=∠+∠=︒,180AOD BOC ∴∠+∠=︒,则乙的结论正确;假设90AOB COD ∠+∠=︒,90AOB BOC ∠+∠=︒,BOC COD ∴∠=∠,又90COD BOC ∠+∠=︒,45BOC COD ∴∠=∠=︒,由题中已知条件不能得到,则丙的结论错误;图中小于平角的角为,,,,,AOB AOC AOD BOC BOD COD ∠∠∠∠∠∠,共有6个, 则丁的结论正确;综上,正确的结论有3个,故答案为:3.【点睛】本题考查了垂直的定义、角的和差等知识点,熟练掌握角的运算是解题关键.18.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD ∥BC ∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD ∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD ∥BC ,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.20.①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B∴AB∥CD故本小题正确;②∵∠2=∠5∴AB∥CD故本小题正确;③∵∠3=∠4∴AD∥BC故本小题错误;④∵∠1解析:①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠1=∠D,∴AD∥BC,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题<< 21.(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【分析】(1)(2)根据题意画垂线;(3)根据题意画平行线;(4)根据点到直线距离的定义计算;(5)根据直角三角形的直角边小于斜边可以证得.【详解】∠的边OB上的一点.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,∴答案为1;(5)∵在RT△PHE中,PH是直角边,PE是斜边,∴PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,∴PE<OE,∴线段PE,PH,OE的大小关系是PH PE OE<<.故答案为PH<PE<OE.【点睛】本题考查垂线和平行线的画法、垂线的应用及直角三角形的性质,熟练掌握“垂线段最短”的定理是解题关键.22.(1)DE∥BC;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC,故AD∥EF,由平行线的性质得∠DEF=∠ADE,再由∠DEF=∠B,可知∠B=∠ADE,故可得出结论.(2)依据DE平分∠ADC,∠BDC=3∠B,即可得到∠ADC的度数,再根据平行线的性质,即可得出∠EFC的度数.【详解】解:(1)DE∥BC.理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,又∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC.(2)∵DE平分∠ADC,∴∠ADE=∠CDE,又∵DE∥BC,∴∠ADE=∠B,∵∠BDC=3∠B,∴∠BDC=3∠ADE=3∠CDE,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD∥EF,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键.23.∠AED+∠D=180°,理由见解析【分析】根据平行线的判定定理得出CE∥FG,根据平行线的性质得出∠C=∠FGD,求出∠FGD=∠EFG,根据平行线的判定得出AB∥CD,再根据平行线的性质得出即可.【详解】解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD,∴CE∥FG,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°.【点睛】本题考查了平行线的性质和判定定理,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.24.(1)∠BOD ,∠BOC 或∠AOD ;(2)∠BOD =35°;(3)∠BOD =36°.【分析】(1)根据对顶角、邻补角的意义,结合图形即可得出答案;(2)根据角平分线的意义和对顶角的性质,即可得出答案;(3)根据平角、按比例分配,角平分线的意义、对顶角性质可得答案.【详解】(1)根据对顶角、邻补角的意义得:∠AOC 的对顶角为∠BOD ,∠AOC 的邻补角为∠BOC 或∠AOD ,故答案为:∠BOD ,∠BOC 或∠AOD(2)∵OA 平分∠EOC.∠EOC =70°,∴∠AOE =∠AOC 12=∠EOC =35°, ∵∠AOC =∠BOD ,∴∠BOD =35°,(3)∵∠EOC :∠EOD =2:3,∠EOC+∠EOD =180°,∴∠EOC =180°×25=72°,∠EOD =180°×35=108°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC 12=∠EOC =36°, 又∵∠AOC =∠BOD ,∴∠BOD =36°.【点睛】本题考查对顶角、邻补角、角平分线、平角的意义和性质,通过图形具体理解这些角的意义是正确计算的前提.25.(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出∠AOD=12∠AOC=25︒,利用邻补角的性质求出BOD ∠的度数; (2)根据角度的和差计算求出∠BOE 和∠COE 的度数,即可得到结论.【详解】 (1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒, ∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的性质,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键.26.(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b >0,那么ab >0;所举的反例就是,a 、b 一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a 、b 均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.。
人教版七年级数学下册各单元测试卷及答案
人教版七年级数学下册单元测试卷第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
新课标人教版七年级下册数学测试题及答案
4、如图,一把矩形直尺沿 直线断开并错位,点 E、D、B、F 在同一条直线上, ∠ADE=125°,则∠DBC 的度数为 ( A.55° B.65° C.75°
2
) D.125° )
5、在平面直角坐标系中,点 P(a +1,-3)所在的象限是 ( A.第一象限 B.第二象限 C.第三象限
D.第四象限
14、31
三、(本题满分 16 分,每小题 8 分) 15、解略 x= y=1 (8 分) (6 分) (8 分)
16、解略.-2≤x<4 在数轴上表示如下:
四、(本题满分 16 分,每小题 8 分) 17、(1)AD∥BC,理由略. (2)AB CD,理由略. (4 分) (8 分)
18、(1)(0,2)、(1,1)、(2,0); (0,3)、(1,2)、(2,1)、(3,0)(4 分) (2)15 (8 分)
用心
爱心
专心
7
x y 5000
( x 400) y 400 2
x y 5000
( x 400) ( y 400) 400 2
x y 5000 C. 1 ( y 400) ( x 400) 400 2
x y 5000 D. 1 y ( x 400) 400 2
7、某多边形的内角和与外角和的总和为 900°,此多边形的边数是 ( A.4 B.5 C.6 D.7
8、 一条线段将一个四边形分割成两个多边形, 得到的每个多边形的内角和与原四边形内角和比较将 ( A.增加 180° B.减少 180° C.不变 D.以上三 种情况都有可能
)
9、甲、乙两个书店共有图书 5000 册,若将甲书店的图书调出 400 册给乙书店,这样乙书店图书的数量仍 比甲书店图书的数量的一半还少 400 册,问这两个书店原来各有图书多少册?设甲书店原有图书 x 册,乙 书店原有图书 y 册,则可列出方程组为( A. 1 ) B. 1
人教版七年级下册第一次月考数学试卷(含答案)
人教版数学七年级下册第一次月考试卷考试时间:100分钟;总分:120分一.选择题(共10小题,每小题3分,满分30分)1.所有和数轴上的点组成一一对应的数组成()A .整数B .有理数C .无理数D .实数2.下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .3.如图,从直线EF 外一点P 向EF 引四条线段P A ,PB ,PC ,PD ,其中最短的一条是()A .P AB .PBC .PCD .PD4.下列各式中,正确的是()A .√25=±5B .√(-6)2=-6C .√-273=-3D .-√9=35.如图中,∠1的同位角是()A .∠2B .∠3C .∠4D .∠56.在实数0,-√3,√2,﹣2中,最小的是()A .﹣2B .-√3C .√2D .07.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,∠BOD =35°.则∠COE 的度数为()A .35°B .55°C .65°D .70°(7题)(8题)(9题)8.将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A .50°B .110°C .130°D .150°9.如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A 到达点A ′的位置,则点A ′表示的数是()A .π﹣1B .﹣π﹣1C .﹣π﹣1或π﹣1D .﹣π﹣1或π﹢110.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.10二.填空题(共5小题,每小题3分,满分15分)11.(3分)√9的算术平方根等于.12.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.13.(3分)把无理数√17,√11,√5,-√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是.(12题)(13题)(15题)14.(3分)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为.15.(3分)如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是.三.解答题(共8小题,满分75分)16.(8分).计算(1)2√3-|√3-√5|;(2)-√36+√214+√273.17.(8分)求下列各式中的x的值:(1)(3x+2)2=16;(2)12(2x﹣1)3=﹣4.18.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°().∴∠A+∠C=180°,∴AF∥CD().又∵BE∥CD.∴AF∥BE().∴∠F=∠BED().19.(10分)如图所示,数轴的正半轴上有A、B、C三点,表示1和√2的对应点分别为A、B,点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-√2)2的立方根.20.(9分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.21.(10分)如图,AB ∥DG ,∠1+∠2=180°,(1)求证:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.22.(10分)已知√1-2??3与√3??-23(y ≠0)互为相反数,求2??+1的值.23.(12分)如图,AB ∥CD ,P 为定点,E ,F 分别是AB ,CD 上的动点.(1)如图1,求证:∠P =∠BEP+∠PFD ;(2)如图2,若M 为CD 上一点,∠FMN =∠BEP ,且MN 交PF 于点N ,请判断∠EPF 与∠PNM 的关系,并证明你的结论;(3)如图3,移动E 、F 使得∠EPF =90°,作∠PEG =∠BEP ,则∠AEG 与∠PFD 有什么数量关系,并说明理由.西平县第一初级中学七年级下册第一次月考参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)所有和数轴上的点组成一一对应的数组成()A .整数B .有理数C .无理数D .实数【解答】解:所有和数轴上的点组成一一对应的数组成实数,故选:D .2.下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .【解答】解:∵只有B 的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:B .3.(3分)如图,从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是()A .P AB .PBC .PCD .PD【解答】解:从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是PB ,故选:B .4.(3分)下列各式中,正确的是()A .√25=±5B .√(-6)2=-6C .√-273=-3D .-√9=3【解答】解:A 、√25=5,故此选项错误;B 、√(-6)2=6,故此选项错误;C 、√-273=-3,正确;D 、-√9=-3,故此选项错误;故选:C .5.(3分)如图中,∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选:C.6.(3分)在实数0,-√3,√2,﹣2中,最小的是()A.﹣2B.-√3C.√2D.0【解答】解:因为0,√2分别是0和正数,它们大于﹣2和-√3,又因为2>√3,所以﹣2<-√3所以最小的数是﹣2故选:A.7.(3分)已知,如图,直线AB,CD相交于点O,OE⊥AB于点O,∠BOD=35°.则∠COE的度数为()A.35°B.55°C.65°D.70°【解答】解:∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE﹣∠AOC=90°﹣35°=55°.故选:B.8.(3分)将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A.50°B.110°C.130°D.150°【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选:C.9.(3分)如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()A.π﹣1B.﹣π﹣1C.﹣π﹣1或π﹣1D.﹣π﹣1或π﹢1【解答】解:∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是﹣π﹣1;当圆向右滚动时点A′表示的数是π﹣1.故选:C.10.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.10【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)√9的算术平方根等于√3.【解答】解:√9的算术平方根=√3,故答案为:√312.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=90°.【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∠ABD,∴∠1=12∵DE是∠BDC的平分线,∠CDB,∴∠2=12∴∠1+∠2=90°,故答案为:90°.13.(3分)把无理数√17,√11,√5,-√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是√11.【解答】解:∵墨迹覆盖的数在3~4,即√9~√16,∴符合条件的数是√11.故答案为:√11.14.(3分)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为22.【解答】解:根据题中的新定义得:(﹣3)⊕4=﹣3×(﹣3﹣4)+1=﹣3×(﹣7)+1=21+1=22.故答案为:22.15.(3分)如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是140°.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,由折叠可得:∠EFC=180°﹣20°=160°,∴∠CFG=160°﹣20°=140°,故答案为:140°.三.解答题(共8小题,满分73分)16.(8分).计算(1)2√3-|√3-√5|;(2)-√36+√214+√273.【解答】解:(1)原式=2√3-√5+√3=3√3-√5;(2)原式=﹣6+32+3=-32.17.(8分)求下列各式中的x的值:(1)(3x+2)2=16;(2)12(2x﹣1)3=﹣4.【解答】解:(1)3x+2=4或3x+2=﹣4,解得x=23或x=﹣2;(2)(2x﹣1)3=﹣8,2x﹣1=﹣2,x=-12.18.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).【解答】证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).故答案为:垂线的定义;同旁内角互补,两直线平行;平行于同一条直线的两直线平行;两直线平行,同位角相等.19.(10分)如图所示,数轴的正半轴上有A、B、C三点,表示1和√2的对应点分别为A、B,点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-√2)2的立方根.【解答】解:(1)∵点A、B分别表示1,√2,∴AB=√2-1,即x=√2-1;(2)∵x=√2-1,∴原式=(??-√2)2=(√2-1-√2)2=1,∴1的立方根为1.20.(9分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.【解答】证明:设∠1、∠2、∠3分别为x°、2x°、3x°,∵AB∥CD,∴由同旁内角互补,得2x°+3x°=180°,解得x=36°;∴∠1=36°,∠2=72°,∵∠EBG=180°,∴∠EBA=180°﹣(∠1+∠2)=72°;∴∠2=∠EBA,∴BA平分∠EBF.21.(10分)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.【解答】证明:(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠2+∠BAD =180°,∴AD ∥EF ;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG 是∠ADC 的平分线,∴∠GDC =∠1=30°,∵AB ∥DG ,∴∠B =∠GDC =30°.22.(10分)已知√1-2??3与√3??-23(y ≠0)互为相反数,求2??+1的值.【解答】解:∵√1-2??3与√3??-23(y ≠0)互为相反数,∴1﹣2x+3y ﹣2=0,解得2x =3y ﹣1,则2??+1=3??-1+1??=3,即2??+1??的值是3.23.(12分)如图,AB ∥CD ,P 为定点,E ,F 分别是AB ,CD 上的动点.(1)如图1,求证:∠P =∠BEP+∠PFD ;(2)如图2,若M 为CD 上一点,∠FMN =∠BEP ,且MN 交PF 于点N ,请判断∠EPF 与∠PNM 的关系,并证明你的结论;(3)如图3,移动E 、F 使得∠EPF =90°,作∠PEG =∠BEP ,则∠AEG 与∠PFD 有什么数量关系,并说明理由.【解答】解:(1)如图1,过点P作PG∥AB,则∠1=∠BEP.又∵AB∥CD,∴PG∥CD,∴∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD,即∠EPF=∠BEP+∠PFD;(2)∠EPF=∠PNM.理由如下:由(1)知,∠EPF=∠BEP+∠PFD.如图2,∵∠FMN=∠BEP,∴∠EPF=∠FMN+∠PFD.又∵∠PNM=∠FMN+∠PFD.∴∠EPF=∠PNM;(3)∠AEG=2∠PFD.理由如下:如图3,∵由(1)知∠1+∠2=90°.∴∠1=90°﹣∠2.又∵∠1=∠3,∴∠4=180°﹣2∠1=180°﹣2(90°﹣∠2)=2∠2,即∠AEG=2∠PFD.。
人教版七年级数学下册第一章《整式的乘除》单元测试卷含答案
七年级数学下册第一章《整式的乘除》单元测试卷满分:150分题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列计算正确的是()A. b3⋅b3=2b3B. (ab2)3=ab6C. (a3) 2⋅a4=a9D. (a5)2=a102.数学家赵爽公元3~4世纪在其所著的《勾股圆方图注》中记载如下构图,图中大正方形的面积等于四个全等长方形的面积加上中间小正方形的面积.若大正方形的面积为100,小正方形的面积为25,分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是A. x+y=10B. x−y=5C. xy=15D. x2−y2=503.若x2+(m−3)x+16是完全平方式,则m=()A. 11或−7B. 13或−7C. 11或−5D. 13或−54.计算(2a2b)2÷(ab)2的结果是()A. 4a3B. 4abC. a3D. 4a25.若x+y=7,xy=10,则x2−xy+y2的值为()A. 30B. 39C. 29D. 196.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. x2−y2=(x−y)(x+y)B. (x−y)2=x2−2xy+y2C. (x+y)2=x2+2xy+y2D. (x−y)2+4xy=(x+y)27.下列计算正确的是A. a2·a3=a6B. (a2)3=a6C. (2a)3=2a3D. a10÷a2=a58.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. (a−b)(a+2b)=a2−2b2+abB. (a+b)2=a2+2ab+b2C. (a−b)2=a2−2ab+b2D. (a−b)(a+b)=a2−b29.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)210.下列语句中正确的是()A. (−1)−2是负数B. 任何数的零次幂都等于1C. 一个不为0的数的倒数的−p次幂(p是正整数)等于它的p次幂D. (23−8)0=111.下列四个算式: ①2a3−a3=1; ②(−xy2)⋅(−3x3y)=3x4y3; ③(x3)3⋅x=x10; ④2a2b3⋅2a2b3=4a2b3.其中正确的有()A. 1个B. 2个C. 3个D. 4个12.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 52013.下列运算正确的是()A. (−2ab)⋅(−3ab)3=−54a4b4B. 5x2⋅(3x3)2=15x12×10n)=102nC. (−0.1b)⋅(−10b2)3=−b7D. (3×10n)(1314.已知多项式x2+kx+36是一个完全平方式,则k=()A. 12B. 6C. 12或−12D. 6或−615.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为.18.计算:(1)8m÷4m=;(2)27m÷9m÷3=.19.计算:2019×1981=.20.已知31=3,32=9,33=27,34=81,35=243,36=729⋯⋯,设A=(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)×2+1,则A的个位数字是.三、计算题(本大题共2小题,共18.0分)计算:(1)(−2)8⋅(−2)5;(2)(a−b)2⋅(a−b)⋅(a−b)5;(3)x m⋅x n−2⋅(−x2n−1)21. 先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.四、解答题(本大题共5小题,共62.0分)22. 某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a −3b)m ,请你计算一下这个游泳池的容积是多少⋅23. 形如|acb d |的式子叫做二阶行列式,它的运算法则用公式表示为|acb d |=ad −bc ,比如:|2513|=2×3−1×5=1.请你按照上述法则,计算|−2ab a 2b−3ab 2(−ab)|的结果.24.如图,甲长方形的两边长分别为m+1,m+7;乙长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图中的甲长方形的面积S1,乙长方形的面积S2,比较:S1S2;(填“<”“=”或“>”)(2)现有一正方形,其周长与图中的甲长方形的周长相等,试探究:该正方形的面积S与图中的甲长方形的面积S1的差(即S−S1)是一个常数,求出这个常数.25.小明想把一张长为60cm、宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.答案1.D2.C3.C4.D5.D6.C7.B8.D9.A10.C11.B12.D13.D14.C15.C16.−217.x2−118.2m3m−119.399963920.121.解:(1)原式=−28×25=−213;(2)原式=(a−b)2+1+5=(a−b)8;(3)原式=−x m+n−2+2n−1=−x m+3n−3.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x2+12xy+9y2−4x2+y2=12xy+10y2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:这个游泳池的容积是(16a 4−81b 4)m 3.24.解:|−2ab a 2b −3ab 2(−ab )|=−2ab ⋅(−ab )−a 2b ·(−3ab 2)=2a 2b 2+3a 3b 3.25.解:(1)>(2)图中的甲长方形的周长为2(m +7+m +1)=4m +16.所以该正方形的边长为m +4.所以S −S 1=(m +4)2−(m 2+8m +7)=9.所以这个常数为9.26.解:(1)阴影部分的面积为(4x 2−200x +2400)cm 2.(2)这个盒子的体积为7500cm 3.27.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.。
人教版七年级下册数学第一与二章试题与答案
人教版七年级下册数学第一与二章试题一、选择题(共10小题,每题3分,共30分)1.下列图形中,∠1与∠2是对顶角的是()【答案】C.2.如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°【答案】A.3.如图,能确定l1∥l2的α为()A.140°B.150°C.130°D.120°【答案】A4.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数是()A.70°B.65°C.60°D.50°【答案】B.5.如图,AD平分∠BAC,DE∥AC交AB于点E,∠1=25°,则∠BED等于A .40°B .50°C .60°D .25° 【答案】B6.在6×6方格中,将图1中的图形N 平移后位置如图2所示,则图形N 的平移方法中,正确的是( )A .向下移动1格B .向上移动1格C .向上移动2格D .向下移动2格 【答案】D.7.4的平方根是( )A .4B .2C .2D .±2 【答案】D.8.在|﹣5|,0,﹣3,2四个数中,最小的数是( )A.|﹣5|B.0C.﹣3D.【答案】C9.下列说法不正确的是( )A 、51251±的平方根是 B 、3273-=-C 、4是16的平方根D 、-7是-49的平方根 【答案】D 【解析】 试题分析:A 、251的平方根是±51,正确;B 、﹣3是﹣27的立方根,正确;C 、16的算术平方根是4,正确;D 、﹣49没有平方根,错误; 故选D .10.下列计算正确的是A 、525±=B 、3)3(2-=-C 、51253±=D 、3273-=- 【答案】D. 【解析】试题分析:A 、2555=≠±,故错误; B 、2(3)|3|33-=-=≠- ,故错误; C 、312555=≠±,故错误;D 、3273-=-,故正确.[来源:学&科&网] 故选D.二、填空题(共10小题,每题3分,共30分)11.如图,直线a 、b 相交于点O ,∠1=50°,则∠2= 度.【答案】50.12.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题: ①如果a//b ,a ⊥c ,那么b ⊥c ; ②如果b//a ,c//a ,那么b//c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b//c .其中真命题的是 .(填写所有真命题的序号) 【答案】①②④. 【解析】试题分析:①如果a ∥b ,a ⊥c ,那么b ⊥c 是真命题,故①正确;②如果b ∥a ,c ∥a ,那么b ∥c 是真命题,故②正确;③如果b ⊥a ,c ⊥a ,那么b ⊥c 是假命题,故③错误;④如果b ⊥a ,c ⊥a ,那么b ∥c 是真命题,故④正确.故答案为:①②④.13.已知:如图,∠1=∠2=∠3=50°则∠4的度数是 .【答案】130°14.如图:AB∥CD,∠B=115°,∠C=45°,则∠BEC=_______.【答案】110°【解析】试题分析:延长AB和CE交于M,∵AB∥CD,∠C=45°,∴∠M=∠C=45°,∵∠B=115°,∴∠MBE=180°-115°=65°,∴∠BEC=∠M+∠MBE=45°+65°=110°15.如图,已知直线a∥b,∠1=120°,则∠2的度数是°.【答案】60°【解析】试题分析:如图,根据平行线的性质:两直线平行,同位角相等,由a∥b可得∠1=∠3=120°,再根据∠2+∠3=180°,可求得∠2=60°.16.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积(阴影部分间距均匀)是cm2.【答案】12.17.-8的立方根是,81的算术平方根是.【答案】-2,3.【解析】试题分析:-8的立方根是-2,81的算术平方根,即9的算术平方根,所以81的算术平方根是 3. 故答案为:-2;3. 18.的平方根是916__________, 64的立方根是__________【答案】±34,2 【解析】 试题分析:的平方根是91616493±=±,64的立方根即8的立方根是2. 19.请你写出一个无理数 【答案】π. 【解析】试题分析:由题意可得,π是无理数.20.如图,数轴上M 、N 两点表示的数分别为3和5.2,则M 、N 两点之间表示整数的点共有 个.【答案】4.三、解答题(共60分)21.(6分)计算:(-1)2438-5︱ 【答案】0 【解析】试题分析:先求平方,算术平方根,立方根,绝对值,最后再求和 试题解析:原式=1+2+2-5=0 22.(10分)计算:(1)已知:(x +2)2=25,求x ; (23416825-+【答案】(1)3,-7 (2)512 23.(6分)画出数轴,在数轴上表示下列各数,并用“<”连接: -2,25,0 ,38【答案】数轴见解析,-2<0<25 <38 01-1【解析】试题分析:先将38化简成2,然后比较大小,最后在数轴上表示. 试题解析:因为38=2,所以-2<0<25 <38,数轴上表示如图:24.(8分)已知:如图, AB ⊥CD 于点O ,∠1=∠2,OE 平分∠BOF ,∠EOB=55°,求∠DOG 的度数.【答案】70°. 【解析】试题分析:由OE 为角平分线,利用角平分线定义得到∠BOF=2∠EOB ,根据∠EOB 的度数求出∠BOF 的度数,再由AB 与CD 垂直,利用垂直的定义得到一对角为直角,根据∠1的度数求出∠2的度数,根据∠DOG 与∠2互余即可求出∠DOG 的度数.试题解析:∵OE 平分∠BOF ,∴∠BOF=2∠EOB ,∵∠EOB=55°,∴∠BOF=110°,∵AB ⊥CD ,∴∠AOD=∠BOC=90°,∴∠1=20°,又∵∠1=∠2,∴∠2=20°,∴∠DOG=70°25.(8分)如图,AB ∥CD,直线EF 交AB 、CD 于点G 、H.如果GM 平分∠BGF,HN 平分∠CHE ,那么,GM 与HN 平行吗?为什么?【答案】GM ∥HN ,理由略26.(6分)完成下面的解题过程,并在括号内填上依据. 如图,EF ∥AD,∠1=∠2,∠BAC=85°.求∠AGD 的度数ABCD EFGH MN解:∵EF∥AD,∴∠2=____( )又∵∠1=∠2∴∠1=∠3∴∥____( )∴∠BAC+____=180°∵∠BAC=85°∴∠AGD=950【答案】∠3;两直线平行,同位角相等;DG AB;内错角相等,两直线平行;∠AGD27.(8分)看图填空:已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.【答案】证明略28.(6分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移7格后的图形.(不要求写作图步骤和过程)【答案】(1)16;(2)画图略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在代数式1
七年级数学下册第一章测试题
数学
(整式的运算)
班级____________学号_____________姓名_____________(时间90分钟,满分100分,不得使用计算器)
一、选择题(2'×10=20',每题只有一个选项是正确的,将正确选项的字母填入
下表中)
题号12345678910
答案
b1a+b x-y
x+yz,3.5,4x2-x+1,2a,,-2mn,xy,,中,下
2a4bc12列说法正确的是()。
(A)有4个单项式和2个多项式,(B)有4个单项式和3个多项式;(C)有5个单项式和2个多项式,(D)有5个单项式和4个多项式。
2.减去-3x得x2-3x+6的式子是()。
(A)x2+6(B)x2+3x+6(C)x2-6x(D)x2-6x+6
3.如果一个多项式的次数是6,则这个多项式的任何一项的次数都()
(A)等于6(B)不大于6(C)小于6(D)不小于6 4.下列式子可用平方差公式计算的是:
(A)(a-b)(b-a);(B)(-x+1)(x-1);
(C)(-a-b)(-a+b);(D)(-x-1)(x+1);
5.下列多项式中是完全平方式的是()
(A)x2+4x+1(B)x2-2y2+1(C)x2y2+2xy+y2(D)9a2-12a+4
6.计算(-5)2005⨯(-22)2005=()
125
(A)-1(B)1(C)0(D)1997
7.(5×3-30÷2)0=()
(A)0(B)1
(C)无意义(D)15
8.若要使9y2+my+1是完全平方式,则m的值应为()
4
(A)±3(B)-3(C)±1
3(D)-1
3
9.若x2-x-m=(x-m)(x+1)且x≠0,则m=()
(A)0(B)-1(C)1(D)2 10.已知|x|=1,y=1,则(x20)3-x3y的值等于()
4
(A)-3或-5
44(B)3或5
44
(C)3
4
(D)-5
4
..............
11. - 的系数是_____,次数是____.
21. - 2a 2
( ab + b 2 ) + 5a (a 2 b - ab 2 )
22. a 2 b c 3
⋅ (-2a 2 b 2 c ) 2
二、填空题(2'×10=20',请将正确答案填在相应的表格内 )
题号 11 12 13 14 15
答案
题号
16 17 18 19 20
答案
32 x 2 y
2
12. 计算: 4 ⨯ 10 5 ⨯ 5 ⨯ 10 6 =
_;
13. 已知 -8x m y 2m +1 + 1
2
x 4 y 2 + 4 是一个七次多项式,则 m=
14. 化简: (6 x 2 y + 3 xy 2 ) - (- x 2 y - 4 xy 2 ) = ________________。
15. 若 3x =12,3y =4,则 9x -y =_____.
16. [4(x +y )2-x -y ]÷(x +y )=_____. 17. (m-2n )2- = (m+2n)2
18. (x 2-mx+8)(x 2+2x)的展开式中不含 x 2 项,则 m=
19. 123452 - 12344 ⨯12346 = ________________ 。
20. (22 + 1)(24 + 1)(28 + 1)(216 + 1)=
三、计算题(4 分×6=24 分)
1
2
.
1 2
23. (54 x 2 y - 108 xy 2 - 36 xy ) ÷ (18 xy )
24. (3a - b )2 (3a + b )2
28. 90 ⨯ 89 8
2 求: 代数式 a + b -ab 的值.
25. (x + 2)2 - (x - 1)(x + 1)
26. ( x - y)( x 2 - y 2 )( x + y)
四. 解方程:
27. (-3x) 2 - (2x + 1)(3x - 2) - 3( x + 2)( x - 2) = 0
(6 分)
五.用简便方法计算(4 分×2=8 分)
1
9 9
29. 1.2345 + 0.7655
+ 2.469⨯0.7655
六. 先化简并求值(6 分×2=12 分)
30. 4(x 2+y )(x 2-y )-(2x 2-y )2 , 其中 x=2,
y=-5
31. 已知:a (a -1)-(a 2-b )= -5 2 2 2
33. 计算 乘积 1 - ⎪ 的值 1 ⎫⎛ 1 ⎫⎛ 1 ⎫ 2 ⎭⎝ 2 ⎭⎝ 2 ⎭ ⎝ 2 ⎭⎝
七、求值题(5 分×2=10 分)
32. 已知 x 2+ y 2+2x-8y+17=0 ,求 x 2005+xy 的值
⎛ ⎛ 1 ⎫⎛ 1 ⎫
⎪ 1 - ⎪ 1 - ⎪ ⋯⋯ 1 - ⎪ 1 - ⎝ 2
3 4 1999 2000 2 ⎭。