配方法 PPT课件

合集下载

配方法_1-课件

配方法_1-课件
1.化1:把二次项系数化为1(方程两边都除以二次项系 数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
=
在下列横线上填上适当的数
3 3
x 4 5.
5.开方:根据平方根意义, 方程两边开平方;
33
x 4 5.
6.求解:解一元一次方程;
33
x1
1 3
,
x2 3.
7.定解:写出原方程的解.
概括总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
填上适当的数或式,使下列各等式成立.
(1) x2 6x3 2 =( x+ 3)2 (2) x2 8x4 2 =( x4)2
观察(1)(2)看所填的 常数与一次项系数之
间有什么关系?
(3) x2 4x2 2 =( x2 )2
(1)(2)的结论 适合于(3)吗?
x (4) x2
共同点:
px(
p 2
)2=(

15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021

16、业余生活要有意义,不要越轨。2021/3/52021/3/5Marc h 5, 2021

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/52021/3/52021/3/52021/3/5
谢谢观赏
You made my day!

配方法PPT课件

配方法PPT课件

1)2 都是非负数,上式都不成立,即原方程无实数根.
感悟新知
总结
知2-讲
一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p (Ⅱ) 的形式,那么就有:
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1 n p,x2 n p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根x1=x2=-n; (3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
课堂小结
一元二次方程
直开平方法
降次
配方法
转化
湘教版 九年级上
第2章
一元二次方程
2.2. 2
配方法解二次项系数为1的一元二次方程
认知基础练
(2)请写出此题正确的解答过程. 解:移项,得 x2-2x=1. 配方,得 x2-2x+1=2,即(x-1)2=2. 两边开平方,得 x-1=± 2, 所以 x1=1+ 2,x2=1- 2. 易错警示:用配方法解一元二次方程时,要先把 常数项移到方程的右边,移项时切记要变号.
C . 4 , 21
D.-8,69
习题链接
温馨提示:点击 进入讲评
1C 2D 3B 4A
5A 6A 7 8
答案呈现
9
方法技巧练
先阅读下面的内容,再解决问题.
8 例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2-6n+9=0, ∴m2+2mn+n2+n2-6n+9=0. ∴(m+n)2+(n-3)2=0. ∴m+n=0,n-3=0. ∴m=-3,n=3. 问题:已知a,b,c为正整数且是△ABC的三边长,c是△ABC的 最短边长,a,b满足a2+b2=12a+8b-52,求c的值.

配方法PPT学习课件

配方法PPT学习课件

C.(x-3)2=-7
3.用配方法解方程:
(1)x2-4x-3=0;
(2)4x2-7x-2=0.
解:(1)移项,得 x2-4x=3,
配方,得 x2-4x+4=3+4,
即(x-2)2=7,x-2=± 7.∴x1=2+ 7,x2=2- 7. 7 1 (2)移项,得 4x -7x=2,二次项系数化为 1,得 x -4x=2,
1.用直接开平方降次法解下列方程: (1)x2-16=0; (2)(x-2)2=5.
解:(1)x2-16=0,即 x2=16, ∴x1=4,x2=-4.
(2)(x-2)2=5,即 x-2=± 5, ∴x1=2+ 5,x2=2- 5.
2.用配方法解方程 x2-6x+2=0,正确的是( A ) A.(x-3)2=7 B.(x+3)2=7 D.(x-3)2=6
2 2
7 72 1 72 配方,得 x -4x+8 =2+8 ,
2
72 81 7 9 1 即 x-8 =64,∴x-8=± 8.∴x1=-4,x2=2.
22.2
降次——— 解一元二次方程
第 1 课时
配方法
1.直接开平方降次法
降次 ,转化为 根据平方根的定义把一个一元二次方程______ 两个 一元一次方程,这种方法可解形如(x-a)2=b(b≥0)的 ________
x=a± 方程,其解为______________ . 2.配方法 完全平方式 通过配成________________ 来解一元二次方程的方法叫做 降次 ,把一个一元二次方程转化为 配方法.配方是为了________ 两个一元一次方程 ____________________________ 来解.
则原方程的解为 x1=- 2,x2= 2. 9 (2)4(x-1) -9=0 可化成(x-1) =4,

人教版九年级上册数学《配方法》一元二次方程PPT教学课件

人教版九年级上册数学《配方法》一元二次方程PPT教学课件

将常数项移到右边,含未 2 2 -3=-1
知数的项移到左边
一移
移项
二化
二次项系数 左、右两边同时除以二次 2 - =
化为1
项系数
三配
配方
左、右两边同时加上一次
项系数一半的平方
利用平方根的意义直接开
平方
四开
开平方
五解
解两个一元 移项,合并
一次方程
2
3 1
即 x
4 16
★ 用配方法解方程
探究交流
怎样解方程x2+6x+4=0?
1.把方程变成(x+n)2=
x2+6x+4=0
移项
二次项系数为1的完全平方式:
x2+6x=-4
常数项等于一次项系数一半的平方.
两边都加上9
x2+6x+9=-4+9
配方
(x+3)2=5
2.用直接开平方法解方程(x+3)2=5
(x+3)2=5
开方
x x
1
2
例1 利用直接开平方法解下列方程:
(1) x2=25;
(1) x2=25,
解:
直接开平方,得 x 5,
x1 5 ,x2 5.
(2) x2-900=0.
(2)移项,得 x2=900.
直接开平方,得 x=±30,
∴x1=30, x2=-30.
★ 用直接开平方法解方程
对照例1中解方程的方法,你认为怎样解方程(x+2)2=25?
解:x2+2x-3=0,
(x+1)2=4.
x1=-3,x2=1.
5.如图,在R

《 配方法》PPT课件

《 配方法》PPT课件

课堂导练
【点拨】在 Rt△ABC 中,∠ACB=90°, BC=a2,AC=b,BD=a2,∴AB=AD+DB=AD+a2. 由勾股定理,得 AB2=AC2+BC2,即AD+a22=b2+a22. ∴AD2+2AD·a2+a42=b2+a42.∴AD是 AD 的长.
同学们下课啦
授课老师:xxx
此页为防盗标记页(下载后可删)
教师课堂用语在学科专业方面重在进行“引”与“导”,通过点拨、搭桥等方式让学生豁然开朗,得出结论,而不是和盘托 出,灌输告知。一般可分为:启发类、赏识类、表扬类、提醒类、劝诫类、鼓励类、反思类。
一、启发类
1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
此页为防盗标记页(下载后可删)
1、谢谢大家听得这么专心。 2、大家对这些内容这么感兴趣,真让我高兴。 3、你们专注听讲的表情,使我快乐,给我鼓励。 4、我从你们的姿态上感觉到,你们听明白了。 5、我不知道我这样说是否合适。 6、不知我说清了没有,说明白了没有。 7、我的解释不知是否令你们满意,课后让我们大家再去找有关的书来读读。 8、你们的眼神告诉我,你们还是没有明白,想不想让我再讲一遍? 9、会“听”也是会学习的表现。我希望大家认真听好我下面要说的一段话。 10、从听课的情况反映出,我们是一个素质良好的集体。 1、谢谢你,你说的很正确,很清楚。 2、虽然你说的不完全正确,但我还是要感谢你的勇气。 3、你很有创见,这非常可贵。请再响亮地说一遍。 4、××说得还不完全,请哪一位再补充。 5、老师知道你心里已经明白,但是嘴上说不出,我把你的意思转述出来,然后再请你学说一遍。 6、说,是用嘴来写,无论是一句话,还是一段话,首先要说清楚,想好了再说,把自己要说的话在心里整理一下就能说清楚。 7、对!说得很好,我很高兴你有这样的认识,很高兴你能说得这么好! 8、我们今天的讨论很热烈,参与的人数也多,说得很有质量,我为你们感到骄傲。 9、说话,是把自己心里的想法表达出来,与别人交流。说时要想想,别人听得明白吗? 10、说话,是与别人交流,所以要注意仪态,身要正,不扭动,眼要正视对方。对!就是这样!人在小时候容易纠正不良习惯,经常 注意哦。

人教版初中数学《配方法》(完整版)课件

人教版初中数学《配方法》(完整版)课件
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
3.应用配方法求最值. (1) 2x2 - 4x+5的最小值; (2) -3x2 + 5x +1的最大值.
解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3 当x =1时有最小值3
2
一移常数项; 二配方[配上 (二次项系数)2 ];
2
三写成(x+n)2=p (p ≥0); 四直接开平方法解方程.
应用
求代数式的最值或证明
特别提醒:
在使用配方法解方程之前先把方程化为x2+px+q=0的形式.
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
探究交流
问题2.填上适当的数或式,使下列各等式成立. (1)x2+4x+ 22 = ( x + 2 )2
(2)x2-6x+ 32 = ( x- 3 )2
(3)x2+8x+ 42 = ( x+ 4 )2
(4)x2- 4
3
x+
(
2 3
) 2 = ( x-
2 3
)2
你发现了什么规律?
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
人教版初中数学《配方法》教学实用 课件(P PT优秀 课件)
典例精析
例1 解下列方程:1 x28x10;
解:(1)移项,得 x2-8x=-1,
配方,得 x2-8x+42=-1+42 , 即 ( x-4)2=15

配方法——配方法解方程PPT课件

配方法——配方法解方程PPT课件

直开平方法 降次
转化
配方法
6.每人1瓶水,还差多少瓶水? 42-30=12(瓶)
56 + 30 86 50+30=80 80+6=86
答:一共吃了___8_6_只虫子。
56 - 30 26
50-30=20 20+6=26
答:小青蛙比大青蛙少吃了__2_6__只虫子。
算一算,说一说。
54
61
36
A.非负数
B.正数
C.负数
D.无法确定
知1-练
)
)
感悟新知
知识点 2 用配方法解一元二次方程
知2-讲
做一做:
先把下列方程化为(x+m)2=n(m,n为常数,且
n≥0)的形式,再求出方程的根.
(1)x2+2x=48; (3)x2-6x+5=0;
(2)x2-4x=12;
(4)x2+x-
3 4
=0.
感悟新知
70
2.用小棒摆一摆,算一算。
98
35
摆一摆略。
归纳总结:
计算两位数加、减整十数,先把两位数拆分成整十数和 一位数,再把整十数相加、减,最后和一位数相加。
(讲解源于《典中点》)
一共吃了多少只虫子?
易错辨析(选题源于《典中点》)
4.填表。
加数 加数

23 36 40 5063 86来自59 30 20 27
式的结构特征,当二次项系数为1时,常数
项是一次项系数一半的平方.
感悟新知
归纳
知1-讲
(1)当二次项系数为1时,已知一次项的系数,则常 数项为一次项系数一半的平方;已知常数项, 则一次项系数为常数项的平方根的两倍,注意 平方根(0除外)有两个.

《配方法》PPT课件21人教版

《配方法》PPT课件21人教版

第2课时 用配方法解一元二次方程
2.2017·舟山 用配方法解方程 x2+2x-1=0 时,配方结果正
确的是( B )
A.(x+2)2=2
B.(x+1)2=2
C.(x+2)2=3
D.(x+1)2=3
第2课时 用配方法解一元二次方程
3.已知方程 x2+2x-4=0 可配方成(x+m)2=n 的形式,则
解:移项,得__x_2_+_1_0_x_=_-__1_6 __. 两边同时加 52,得__x_2+__1_0x__+52=__-_1_6____+52. 左边写成完全平方的形式,得___(x_+__5_)2_=_9_____. 直接开平方,得___x_+__5=__±__3 ____. 解得___x_1=__-_8_,__x_2=__-_2____.
【解析】(2)∵(x-3)2=x2-6x+9=1,∴a=8.
第2课时 用配方法解一元二次方程
5.用配方法解下列方程:
(1)x2-6x-4=0;(2)x2+2x-99=0;(3)x2-4x=1.
解:(1)移项,得 x2-6x=4.配方,得(x-3)2=13.直接开平方,得 x-3=± 13. ∴x1=3+ 13,x2=3- 13. (2)移项,得 x2+2x=99.配方,得 x2+2x+1=99+1,即(x+1)2=100. 直接开平方,得 x+1=±10,∴x1=9,x2=-11. (3)配方,得(x-2)2=5.直接开平方,得 x-2=± 5. ∴x1=2+ 5,x2=2- 5.
图 21-2Байду номын сангаас1
第2课时 用配方法解一元二次方程
9.用配方法解下列方程:
(1)2x2+x-1=0;(2)2x2-8x+9=0;(3)4t2-8t=1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思 考
而立之年督东吴,早逝英年两位数。

十位恰小个位三,个位平方与寿符。

哪位学子算得快,多少年华属周瑜?
解:设个位数字为x,十位数字为x-3 x2=10(x-3)+x x2-11x+30=0
因式分解的完全平方公式
a22ab b2ab2
a22ab b2a b2
完全平方式
合作交流探究新知
大胆试一试:
33
x 4 5.
6.求解:解一元一次方程;
33
1 x1 3 , x2 3.
7.定解:写出原方程的解.
概括总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
1.化1:把二次项系数化为1(方程两边都除以二次项系 数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
x3 5
x3 5,x35 得 :x1 35,x2 35
以上解法x2中6x,4 为什么在方 程 两边加9?加 其他数行吗?
把一元二次方程的左边配成一个完全平方式,
然后用开平方法求解,这种解一元二次方程的
方法叫做配方法.
解一元二次方程的基本思路
降次
二次方程
一次方程
把原方程变为(x+h)2=k的形式 (其中h、k是常数)。
17.2一元二次方程的解法(2)
第二课时 配方法
教学目标
1、会用配方法解一元二次方程。 2、知道如何配方。 3、了解解一元二次方程的思想是什么。
预学检测
• 1本节学习什么内容? • 2、你认为本节课的重难点是什么? • 3、你在预学是有何疑问?
情境导入:
读诗词解题:
(通过列方程,算出周瑜去世时的年龄。) 大江东去浪淘尽,千古风流数人物。
=
在下列横线上填上适当的数
(1) x2 2x __1_2__ ( x __1_) 2
(2) (3)
x y
2 2
8x 5y
42
_

_5_)_2
_
__2___
(x __4_) 2 5
( y _2__) 2
(4)
y2
1 2
y
(_
_1
2
_)_
4
(
y
1
__4 _)
2
它们之间有什么关系?
当堂训练
p
2 )2
适用于(4)吗?
左边:所填常数等于一次项系数一半的平方. 右边:所填常数等于一次项系数的一半.
x26x40
想一想x如 26何 x移项解 x42 方 6x程 40?
两边加上32,使左边配成
完全平方式
x26x32 432
左边写成完全平方的形式
(x3)2 5
开平方
变成了(x+h)2=k 的形式
当k≥0时,两边ห้องสมุดไป่ตู้时开平方,这 样原方程就转化为两个一元一次方程。
当k<0时,原方程的解又如何?
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
例题讲解
例题1. 用配方法解下列方程 x2+6x-7=0
解 : x26x7
x26x979
x32 16
x34 x11 x2 7
配方法
用配方法解一元二次方程的步骤:
2、你还有何收获和体会?
拓展:
把方程x2-3x+p=0配方得到
1
(x+m)2=
2
(1)求常数p,m的值; (2)求方程的解。
2.用配方法说明:不论k取何实 数,多项式k2-3k+5的值必定 大于零.
布置作业
1、家庭作业:练习册17.2(3) 2、课堂作业:课本习题17.2第2题; 3、预学下一课时内容。
填上适当的数或式,使下列各等式成立.
(1) x2 6x3 2 =( x+ 3)2 (2) x2 8x4 2 =( x4)2
观察(1)(2)看所填的 常数与一次项系数之
间有什么关系?
(3) x2 4x2 2 =( x2 )2
(1)(2)的结论 适合于(3)吗?
x (4) x2
共同点:
px(
p 2
)2=(
1.化1:把二次项系数化为1;
x2 38 x 1.
2.移项:把常数项移到方程的 右边;
x28x342 142.
3 3 3
x
4 2
52.
3.配方:方程两边都加上一 次项系数一半的平方;
4.变形:方程左边分解因式, 右边合并同类项;
3 3
x 4 5.
5.开方:根据平方根意义, 方程两边开平方;
用配方法解下列方程:
(1)x212x9 (2)x2 x1
(3).6x2 -7x+ 1 = 0; (4).5x2 -9x –18=0;
配方时, 等式两边同时加上的是一 次项系数一半的平方
总结提升
1.把一元二次方程的左边配成一个完 全平方式,然后用开平方法求解,这种解 一元二次方程的方法叫做配方法.
注意:配方时, 等式两边同时加上的是 一次项系数一半的平方.
1.移项:把常数项移到方程的右边; 2.配方:方程两边都加上一次项系数一半的 平方; 3.变形:方程左边分解因式,右边合并同类项 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
例2 解方程 3x2+8x-3=0.
配方法
解 :3x28x30.
x2 8x10.
相关文档
最新文档