人教版高中数学全套教案数列

合集下载

人教版高中必修5第二章数列教学设计

人教版高中必修5第二章数列教学设计

人教版高中必修5第二章数列教学设计教学目标1.理解数列的概念及基本特征,能够正确地用公式计算数列项;2.掌握等差数列和等比数列的求和公式,并能够运用于实际问题的解决;3.培养学生对数学的兴趣和思维能力,提高其数学应用能力和解决问题的能力。

教学重难点1.理解数列的概念及基本特征,掌握常见数列的性质,展现数列的美妙之处;2.掌握等差数列和等比数列的求和公式,能够将问题转化成数列的求和问题。

教学内容及教学步骤导入环节引导学生通过问题引入数列的概念。

示范问题:如果按照1,3,5,7,…的规律一直往下走,你能得出第n 项是什么吗?通过这个问题,让学生明白数列的概念,探究数列的基本性质,引导学生去思考和猜测数列的特征。

讲解环节通过数列的定义和相关例题,让学生掌握数列的概念及基本特征。

数列的定义数列是按照一定规律排列的一列数,数列中每一个数称为该数列的项。

数列的分类常规数列:$a_1, a_2, a_3, …, a_n $特殊数列:•等差数列:a1,a2,a3,...,a n,满足a n+1=a n+d;•等比数列:a1,a2,a3,...,a n,满足a n+1=a n q。

常见数列的性质•等差数列的前n项和:$S_n = \\frac{n}{2}(a_1 + a_n)$;•等比数列的前n项和:$S_n = \\frac{a_1(1-q^n)}{1-q}$。

实践环节练习1观察以下数列,判断其为等差数列还是等比数列并求出公差或公比:1.1,2,4,8,16,32,64,1282.-1,3,7,11,15,19,233.2,-4,8,-16,……答案:1.等比数列,公比为 2;2.等差数列,公差为 4;3.等比数列,公比为 -2。

练习2计算下列数列的前n项和:1.1,2,3,4, (99)2.-1,2,-3,4,-5 (201)3.1,-2,3,-4,…,-99。

答案:1.$S_n = \\frac{n(n+1)}{2}$;2.$S_n =\\frac{n}{2}(-1+(-1)^n(2n+1))$;3.$S_n = (-1)^{n+1}\\frac{n}{2}$。

数列教案(公开课)

数列教案(公开课)

数列教案(公开课)一、教学内容本节课的教学内容选自人教版高中数学必修5第三章“数列”中的3.1“数列的概念”和3.2“数列的递推公式”。

具体内容包括:1. 数列的定义:数列是一种按照一定顺序排列的数的形式,每一个数称为项,数列中的任意一项都可以用它的项数来表示。

2. 数列的通项公式:数列的通项公式是用来表示数列中第n项与序号n之间关系的公式。

3. 数列的递推公式:数列的递推公式是用来表示数列中第n项与前一项之间关系的公式。

二、教学目标1. 理解数列的概念,掌握数列的表示方法。

2. 学会求解数列的通项公式和递推公式。

3. 能够运用数列的知识解决实际问题。

三、教学难点与重点1. 教学难点:数列的通项公式的求解和数列的递推公式的应用。

2. 教学重点:数列的概念、数列的表示方法、数列的通项公式和递推公式的求解。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:教材、练习册、笔记本、文具。

五、教学过程1. 实践情景引入:通过生活中的排队问题,引导学生思考数列的概念。

2. 数列的定义:讲解数列的定义,引导学生理解数列的特点。

3. 数列的表示方法:讲解数列的表示方法,如项数、项的表示等。

4. 数列的通项公式:讲解数列的通项公式,引导学生掌握求解通项公式的方法。

5. 数列的递推公式:讲解数列的递推公式,引导学生学会求解递推公式。

6. 例题讲解:讲解数列的通项公式和递推公式的应用,引导学生学会解决问题。

7. 随堂练习:布置练习题,让学生巩固所学知识。

8. 作业布置:布置求解数列通项公式和递推公式的练习题。

六、板书设计1. 数列的概念定义:按照一定顺序排列的数的形式表示方法:项数、项的表示2. 数列的通项公式求解方法:观察、归纳、推理3. 数列的递推公式求解方法:观察、归纳、推理七、作业设计1. 求解数列的通项公式:已知数列的前三项为2, 5, 8,求数列的通项公式。

答案:an=3n12. 求解数列的递推公式:已知数列的前两项为1, 2,且数列满足递推关系an+1=2an1,求数列的递推公式。

数学高中数列精品课教案

数学高中数列精品课教案

数学高中数列精品课教案教学内容:数列教学目标:1.了解数列的定义和概念,掌握数列的常用表示方法;2.掌握常见数列的通项公式和前n项和公式;3.能够应用数列的性质解决实际问题;4.培养学生的逻辑思维能力和分析问题的能力。

教学重点:1.数列的定义和概念;2.常见数列的通项公式和前n项和公式;3.应用数列解决实际问题。

教学难点:1.推导数列的通项公式和前n项和公式;2.运用数列的性质解决复杂问题。

教学准备:1.教学课件、教材、数学工具2.练习题、实例题教学步骤:第一步:导入通过一个简单的生活例子引入数列的概念,引导学生思考数列的定义,并讨论数列的常用表示方法。

第二步:讲解数列的定义和性质1.介绍数列的定义和概念,包括等差数列、等比数列等;2.讲解数列的通项公式和前n项和公式;3.讲解数列的性质,包括数列的有界性、单调性等。

第三步:例题演练通过一些实例题,让学生进一步理解数列的性质和应用方法,培养学生分析问题和解决问题的能力。

第四步:练习巩固让学生进行练习,巩固所学知识,加深对数列的理解,提高解题能力。

第五步:综合应用让学生通过一些综合应用题,将所学知识进行综合运用,培养学生的综合分析和解决问题的能力。

第六步:作业布置布置适量的作业,让学生巩固所学知识,加强对数列的理解和掌握。

教学反思:通过本节课的教学,学生基本掌握了数列的定义和性质,掌握了常见数列的通项公式和前n项和公式,培养了学生的分析和解决问题的能力。

下一步需要加强综合应用能力的培养,提高学生对数列的理解和实际运用能力。

高中数学数列的教案

高中数学数列的教案

高中数学数列的教案一、教学目标1. 知识与能力a. 理解数列的概念,掌握数列的性质和判断数列的规律;b. 掌握常见数列(等差数列、等比数列)的通项公式和前n项和公式;c. 能够应用数列的知识解决实际问题。

2. 过程与方法培养学生的逻辑思维能力和解决问题的能力,激发学生对数学的兴趣。

3. 情感态度价值观激发学生对数学的兴趣,培养学生的自学能力和团队合作精神。

二、教学重点与难点1. 重点a. 掌握等差数列、等比数列的概念和性质;b. 掌握等差数列、等比数列的通项公式和前n项和公式。

2. 难点掌握等差数列、等比数列的规律,并能够熟练应用解决问题。

三、教学过程1. 导入环节通过举例引入数列的概念,引起学生对数列的兴趣。

2. 提出问题现有一个数列:1, 3, 5, 7, 9,求这个数列的通项公式和前10项的和。

3. 学习过程a. 讲解等差数列和等比数列的概念、性质;b. 讲解等差数列、等比数列的通项公式和前n项和公式;c. 练习训练,让学生熟练掌握数列的求解方法;d. 教师总结,梳理知识点,强化学生对知识的理解。

4. 拓展应用通过实际问题让学生应用数列的知识解决问题。

5. 总结归纳总结本节课的重点知识,梳理解题思路和方法。

6. 布置作业布置相应的练习题,巩固所学知识。

四、教学手段黑板、投影仪、教材、课件等。

五、教学反馈1. 提问互动,让学生回答问题;2. 班内讨论,让学生相互交流学习经验;3. 教师评价,及时给予学生学习反馈。

【教学实施】根据上述教学目标和教学过程,进行教学实施,引导学生学习并巩固所学知识,培养学生的数学思维和解决问题的能力。

高中教学数列设计数学教案

高中教学数列设计数学教案

高中教学数列设计数学教案
教学内容:数列
一、教学目标
1.了解数列的定义和性质。

2.掌握常见数列的求和公式。

3.能够应用数列知识解决问题。

二、教学重点和难点
重点:数列的定义和性质,常见数列的求和公式。

难点:能够灵活运用数列知识解决问题。

三、教学准备
1.教师准备教案和教学PPT。

2.学生准备数学笔记本和作业本。

四、教学过程
1.引入:通过引入一个简单的问题引出数列的概念,让学生思考数列的定义。

2.概念讲解:讲解数列的定义和性质,包括等差数列、等比数列等常见数列的特点。

3.例题讲解:通过几个例题,帮助学生掌握常见数列的求和公式。

4.练习:让学生做一些练习题,巩固所学知识。

5.拓展:提出一些拓展问题,让学生运用所学知识解决问题。

6.总结:总结本节课的重点内容,梳理学生的思路。

五、教学反馈
1.教师让学生口头回答一些问题,检查他们的理解情况。

2.教师布置相关作业,巩固所学知识。

六、教学手段
1.课堂互动:让学生积极参与,通过讨论和解答问题来加深理解。

2.多媒体辅助:通过PPT呈现数列的概念和例题,提高学生的学习效果。

七、教学总结
本节课通过引入、讲解、练习等环节,使学生初步掌握数列的相关知识,为以后的学习打下坚实基础。

人教版高中数学必修5《数列》教案设计

人教版高中数学必修5《数列》教案设计

必修5 数列二、等差数列 知识要点1.数列的通项n a 与前n 项和n S 的关系∑==++++=ni i n n a a a a a S 1321 ⎩⎨⎧≥-==-2111n S S n S a n n n 2.递推关系与通项公式()1(),(),,n n a dn a d a f n kn b k b =+-==+特征:即:为常数(),,n a kn b k b =+为常数⇔数列{}n a 成等差数列.3.等差中项:若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2ca b +=;c b a ,,是等差数列⇔c a b +=2. 4.前n 项和公式:2)(1n a a S n n +=; 2)1(1dn n na S n -+= 221(),()22n n d dS n a n S f n An Bn =+-==+特征:即2,(,)n S An Bn A B =+为常数⇔数列{}n a 成等差数列.5.等差数列{}n a 的基本性质),,,(*∈N q p n m 其中⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2;⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:()()1n n a a d n N*+-=∈常数 ⇒{}na 是等差数列②中项法:()122n n n a a a n N *++=+∈⇒{}na 是等差数列③通项公式法:(),n a kn bk b =+为常数⇒{}na 是等差数列④前n 项和公式法:()2,n S An BnA B =+为常数⇒{}na 是等差数列【应用一】1.若a ≠ b ,数列a ,x 1,x 2,b 和数列a ,y 1,y 2,y 3,b 都是等差数列,则 =--1212y y x x ( )A .32B .43C .1D .342. 等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450 ,则前9项和S 9= ( ) A.1620 B.810 C.900 D.6753. 在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则 ( )A. a =2,b =5B. a =-2,b =5C. a =2,b =-5D. a =-2,b =-54. 首项为24-的等差数列,从第10项开始为正数,则公差d 的取值围是 ( ) A.d >83 B.d >3 C.83≤d <3 D.83<d ≤3 5.等差数列}{n a 共有n 2项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为 ( )A .3B .-3C .-2D .-16. 等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是 ( ) A.a 11B.a 10C.a 9D.a 87. 设函数f (x )满足f (n +1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (20)为 ( ) A. 95B. 97C. 105D. 1928.已知无穷等差数列{a n },前n 项和S n 中,S 6 <S 7 ,且S 7 >S 8 ,则 ( ) A .在数列{a n }中a 7 最大B .在数列{a n }中,a 3 或a 4 最大C .前三项之和S 3 必与前11项之和S 11 相等D .当n ≥8时,a n <0 9. 集合{}*6,,且60M m m n n N m ==∈<中所有元素的和等于_________.10、在等差数列{}n a 中,37104118,14.a a a a a +-=-=- 记123n n S a a a a =++++,则13S =_____.11、已知等差数列{}n a 中,79416,1a a a +==,则16a 的值是 . 12. (1)在等差数列{}n a 中,71,83d a =-=,求n a 和n S ; (2)等差数列{}n a 中,4a =14,前10项和18510=S .求n a ;13. 一个首项为正数的等差数列{a n },如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大?14. 数列{a n }中,18a =,42a =,且满足2120n n n a a a ++-+=, (1)求数列的通项公式;(2)设12||||||n n S a a a =+++,求n S .15. 已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列;(2)求a n 的表达式; (3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.【应用二】1.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .172.等差数列{}n a 中,12910S S a =>,,则前 项的和最大.3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 . 4.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的围;②指出1221S S S ,,, 中哪一个值最大,并说明理由.5、已知等差数列{}n a 中,79412161a a a a +==,,则等于( )A .15B .30C .31D .646、设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .7、已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 .8.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲、乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?9.已知数列{}n a 中,,31=a 前n 项和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式;③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立?若存在,求M 的最小值,若不存在,试说明理由.三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c的等比中项,且b =2b ac =注:是c b a ,,成等比数列的必要不充分条件.4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n5. 等比数列的基本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列. ④若项数为()*2n n N ∈,则S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等差数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列.7. 等比数列的判定法 ①定义法:()1n na q a +=⇒常数{}n a 为等比数列; ②中项法:()2120n n n n a a a a ++=⋅≠⇒{}n a 为等比数列;③通项公式法:(),nn a k q k q =⋅⇒为常数{}na 为等比数列;④前n 项和法:()()1,nn S k q k q =-⇒为常数{}na 为等比数列.【性质运用】1.4710310()22222n f n +=+++++设 ()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, . 3.在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .4.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4B .3C .2D .15.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( )A .216B .-216C .217D .-217 6.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .27.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=08.某工厂去年总产a ,计划今后5年每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4 aB .1.1 5 aC .1.1 6 aD .(1+1.1 5)a9.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为( )A .32B .313C .12D .1510.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( )A .11nB .11nC .112-nD .111-n11.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( )A .全体实数B .-1C .1D .312.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____. 13.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q = ___. 14.已知数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式.15.在等比数列{a n }中,已知对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.16.在等比数列{a n}中,已知S n=48,S2n=60,求S3n.17.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).18.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.。

人教版高中数学必修5《数列》教案

人教版高中数学必修5《数列》教案

m n a a d n a a d d n a a d m n a a d n a a d a a mnn n m n n n n --=--=--=-+=-+==-+1;)1()()1(1111变式:推广:通项公式:递推关系:必修5 数列二、等差数列 知识要点1.数列的通项n a 与前n 项和n S 的关系∑==++++=ni i n n a a a a a S 1321 ⎩⎨⎧≥-==-2111n S S n S a n n n 2.递推关系与通项公式()1(),(),,n n a dn a d a f n kn b k b =+-==+特征:即:为常数(),,n a kn b k b =+为常数⇔数列{}n a 成等差数列.3.等差中项:若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2ca b +=;c b a ,,是等差数列⇔c a b +=2. 4.前n 项和公式:2)(1n a a S n n +=; 2)1(1dn n na S n -+= 221(),()22n n d dS n a n S f n An Bn =+-==+特征:即2,(,)n S An Bn A B =+为常数⇔数列{}n a 成等差数列.5.等差数列{}n a 的基本性质),,,(*∈N q p n m 其中⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2;⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:()()1n n a a d n N*+-=∈常数 ⇒{}na 是等差数列②中项法:()122n n n a a a n N *++=+∈⇒{}na 是等差数列③通项公式法:(),n a kn bk b =+为常数⇒{}na 是等差数列④前n 项和公式法:()2,n S An BnA B =+为常数⇒{}na 是等差数列【应用一】1.若a ≠ b ,数列a ,x 1,x 2,b 和数列a ,y 1,y 2,y 3,b 都是等差数列,则 =--1212y y x x ( )A .32B .43C .1D .342. 等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450 ,则前9项和S 9= ( ) A.1620 B.810 C.900 D.6753. 在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则 ( )A. a =2,b =5B. a =-2,b =5C. a =2,b =-5D. a =-2,b =-54. 首项为24-的等差数列,从第10项开始为正数,则公差d 的取值范围是 ( ) A.d >83 B.d >3 C.83≤d <3 D.83<d ≤3 5.等差数列}{n a 共有n 2项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为 ( )A .3B .-3C .-2D .-16. 等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是 ( ) A.a 11B.a 10C.a 9D.a 87. 设函数f (x )满足f (n +1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (20)为 ( ) A. 95B. 97C. 105D. 1928.已知无穷等差数列{a n },前n 项和S n 中,S 6 <S 7 ,且S 7 >S 8 ,则 ( ) A .在数列{a n }中a 7 最大B .在数列{a n }中,a 3 或a 4 最大C .前三项之和S 3 必与前11项之和S 11 相等D .当n ≥8时,a n <0 9. 集合{}*6,,且60M m m n n N m ==∈<中所有元素的和等于_________.10、在等差数列{}n a 中,37104118,14.a a a a a +-=-=- 记123n n S a a a a =++++,则13S =_____.11、已知等差数列{}n a 中,79416,1a a a +==,则16a 的值是 . 12. (1)在等差数列{}n a 中,71,83d a =-=,求n a 和n S ; (2)等差数列{}n a 中,4a =14,前10项和18510=S .求n a ;13. 一个首项为正数的等差数列{a n },如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大?14. 数列{a n }中,18a =,42a =,且满足2120n n n a a a ++-+=, (1)求数列的通项公式;(2)设12||||||n n S a a a =+++,求n S .15. 已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列;(2)求a n 的表达式; (3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.【应用二】1.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .172.等差数列{}n a 中,12910S S a =>,,则前 项的和最大.3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 . 4.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由.5、已知等差数列{}n a 中,79412161a a a a +==,,则等于( )A .15B .30C .31D .646、设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .7、已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 .8.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲、乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?9.已知数列{}n a 中,,31=a 前n 项和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式;③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立?若存在,求M 的最小值,若不存在,试说明理由.三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c的等比中项,且b =2b ac =注:是c b a ,,成等比数列的必要不充分条件.4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n5. 等比数列的基本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列. ④若项数为()*2n n N ∈,则S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等差数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列.7. 等比数列的判定法 ①定义法:()1n na q a +=⇒常数{}n a 为等比数列; ②中项法:()2120n n n n a a a a ++=⋅≠⇒{}n a 为等比数列;③通项公式法:(),nn a k q k q =⋅⇒为常数{}na 为等比数列;④前n 项和法:()()1,nn S k q k q =-⇒为常数{}na 为等比数列.【性质运用】1.4710310()22222n f n +=+++++设 ()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, . 3.在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .4.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4B .3C .2D .15.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( )A .216B .-216C .217D .-217 6.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .27.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=08.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4 aB .1.1 5 aC .1.1 6 aD .(1+1.1 5)a9.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为( )A .32B .313C .12D .1510.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( )A .11nB .11nC .112-nD .111-n11.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( )A .全体实数B .-1C .1D .312.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____. 13.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q = ___. 14.已知数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式.15.在等比数列{a n }中,已知对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.16.在等比数列{a n}中,已知S n=48,S2n=60,求S3n.17.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).18.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.P山有木兮木有枝,心悦君兮君不知。

人教版高中数学《数列》(两课时)教学设计新部编版

人教版高中数学《数列》(两课时)教学设计新部编版

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校3.1《数列》(两课时)教学设计一、教材分析1.在教材中的地位与作用“数列”是中学数学的重要内容之一。

不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。

例如:储蓄、分期付款中的有关计算就要用到数列知识。

本节的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。

所以本节在教材中起到了“承上启下”的作用。

本节的学习中,要经常观察、分析、归纳、猜想,还要综合前面的知识解决数列中的一些问题,有助于学生数学能力的提高。

2.内容与要求本节主要介绍数列的概念、分类,以及给出数列的两种方法。

关于数列的概念,先给出了一个描述性定义,尔后又在此基础上,给出了一个在函数观点下的定义,指出:“从函数的观点看,数列可以看作是一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值”。

这样就可以将数列与函数联系起来,不仅可以加深对数列概念的理解,而且有助于运用函数的观点去研究数列。

关于给出数列的两种方法,其中数列的通项公式,教材已明确指出它就是相应函数的解析式。

点破了这一点,数列与函数的内在联系揭示得就更加清楚。

此外,正如并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数),因而研究递推公式给出数列的方法可使我们研究数列的范围大大扩展。

递推是数学里的一个非常重要的概念和方法,数学归纳法证明问题的基本思想实际上也是“递推”。

在数列的研究中,不仅很多重要的数列是用递推公式给出的,而且它也是获得一个数列的通项公式的途径:先得出较为容易写出的数列的递推公式,然后再根据它推得通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 数列第一教时教材:数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。

过程:一、从实例引入(P110)1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数 51,41,31,21,1 3. ,,,,的不足近似值,,精确到414.141.14.11001.01.0124. -1的正整数次幂:-1,1,-1,1,…5. 无穷多个数排成一列数:1,1,1,1,…二、提出课题:数列1. 数列的定义:按一定次序排列的一列数(数列的有序性)2. 名称:项,序号,一般公式n a a a ,,,21 ,表示法{}n a3. 通项公式:n a 与n 之间的函数关系式如 数列1: 3+=n a n 数列2:na n 1=数列4:*,)1(N n a n n ∈-= 4. 分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。

5. 实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…,n })的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。

6. 用图象表示:— 是一群孤立的点例一 (P111 例一 略)三、关于数列的通项公式1. 不是每一个数列都能写出其通项公式 (如数列3)2. 数列的通项公式不唯一 如 数列4可写成 n n a )1(-=和⎩⎨⎧-=11n a *,2*,12N k k n N k k n ∈=∈-= 3. 已知通项公式可写出数列的任一项,因此通项公式十分重要例二 (P111 例二)略四、补充例题:写出下面数列的一个通项公式,使它的前n 项分别是下列各数:1.1,0,1, 0 *,2)1(11N n a n n ∈-+=+ 2.32-,83,154-,245,356- 1)1(1)1(2-++⋅-=n n a n n 3.7,77,777,7777 )110(97-⨯=n n a 4.-1,7,-13,19,-25,31 )56()1(--=n a n n5.23,45,169,25617 12212-+=n n n a 五、小结:1. 数列的有关概念2. 观察法求数列的通项公式六、作业: 练习 P112 习题 3.1(P114)1、2《课课练》中例题推荐2 练习 7、8第二教时教材:数列的递推关系目的:要求学生进一步熟悉数列及其通项公式的概念;了解数列递推公式的意义,会根据给出的递推公式写出数列的前n 项。

过程:一、复习:数列的定义,数列的通项公式的意义(从函数观点出发去刻划)二、例一:若记数列{}n a 的前n 项之和为S n 试证明:⎩⎨⎧-=-11S S S a n n n )1()2(=≥n n 证:显然1=n 时 ,11S a =当1≠n 即2≥n 时 n n a a a S +++= 211211--+++=n n a a a S∴ n n n a S S =--1 ∴⎩⎨⎧-=-11S S S a n n n )1()2(=≥n n 注意:1︒ 此法可作为常用公式2︒ 当)(11S a =时 满足1--n n S S 时,则1--=n n n S S a例二:已知数列{}n a 的前n 项和为① n n S n -=22 ② 12++=n n S n 求数列{}n a 的通项公式。

解:1.当1=n 时,111==S a当2≥n 时,34)1()1(2222-=-+---=n n n n n a n经检验 1=n 时 11=a 也适合 34-=n a n2.当1=n 时,311==S a当2≥n 时,n n n n n a n 21)1()1(122=-----++=∴ ⎩⎨⎧=n a n 23 )2()1(≥=n n 三、递推公式 (见课本P112-113 略)以上一教时钢管的例子 3+=n a n从另一个角度,可以: 1411+==-n n a a a )2()1(≥=n n“递推公式”定义:已知数列{}n a 的第一项,且任一项n a 与它的前 一项1-n a (或前n 项)间的关系可以用一个公式来表示,这个公式就叫 做这个数列的递推公式。

例三 (P113 例三)略例四 已知21=a ,41-=+n n a a 求n a .解一:可以写出:21=a ,22-=a ,63-=a ,104-=a ,…… 观察可得:)1(42)4)(1(2--=--+=n n n a n解二:由题设: 41-=-+n n a a∴44432211-=--=--=------n n n n n n a a a a a a )+412-=-a a)1(41--=-n a a n∴ )1(42--=n a n例五 已知21=a ,n n a a 21=+ 求n a .解一:21=a 22222=⨯=a 323222=⨯=a观察可得: n n a 2=解二:由n n a a 21=+ ∴12-=n n a a 即21=-n n a a ∴ 112322112------=⨯⨯⨯⨯n n n n n n n a a a a a a a a ∴ n n n a a 2211=⋅=-四、小结: 由数列和求通项递推公式 (简单阶差、阶商法)五、作业:P114 习题3.1 3、4《课课练》 P116-118 课时2中 例题推荐 1、2课时练习 6、7、8第三教时教材:等差数列(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。

过程:一、引导观察数列:4,5,6,7,8,9,10,……3,0,-3,-6,……21,102,103,104,…… )1(312--=n a n 12,9,6,3,……特点:从第二项起,每一项与它的前一项的差是常数 — “等差”二、得出等差数列的定义: (见P115)注意:从第二项起.....,后一项减去前一项的差等于同一个常数.....。

1.名称:AP 首项 )(1a 公差 )(d2.若0=d 则该数列为常数列3.寻求等差数列的通项公式:da d d a d a a d a d d a d a a da a 3)2(2)(1134112312+=++=+=+=++=+=+= 由此归纳为 d n a a n )1(1-+= 当1=n 时 11a a = (成立)注意: 1︒ 等差数列的通项公式是关于n 的一次函数2︒ 如果通项公式是关于n 的一次函数,则该数列成AP证明:若A n B A B A n A B An a n )1()()1(-++=++-=+=它是以B A +为首项,A 为公差的AP 。

3︒ 公式中若 0>d 则数列递增,0<d 则数列递减4︒ 图象: 一条直线上的一群孤立点三、例题: 注意在d n a a n )1(1-+=中n ,n a ,1a ,d 四数中已知三个可以求 出另一个。

例一 (P115例一)例二 (P116例二) 注意:该题用方程组求参数例三 (P116例三) 此题可以看成应用题四、关于等差中项: 如果b A a ,,成AP 则2b a A += 证明:设公差为d ,则d a A += d a b 2+=∴A d a d a a b a =+=++=+222 例四 《教学与测试》P77 例一:在-1与7之间顺次插入三个数c b a ,,使这五个数成AP ,求此数列。

解一:∵AP c b a 成7,,,,1- ∴b 是-1与7 的等差中项∴ 3271=+-=b a 又是-1与3的等差中项 ∴1231=+-=a c 又是1与7的等差中项 ∴5273=+=c 解二:设11-=a 75=a ∴d )15(17-+-= 2=⇒d∴所求的数列为-1,1,3,5,7五、小结:等差数列的定义、通项公式、等差中项六、作业: P118 习题3.2 1-9第四教时教材:等差数列(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。

过程:一、复习:等差数列的定义,通项公式二、例一 在等差数列{}n a 中,d 为公差,若+∈N q p n m ,,,且q p n m +=+求证:1︒ q p n m a a a a +=+ 2︒ d q p a a q p )(-+=证明:1︒ 设首项为1a ,则dq p a d q a d p a a a dn m a d n a d m a a a q p n m )2(2)1()1()2(2)1()1(111111-++=-++-+=+-++=-++-+=+ ∵q p n m +=+ ∴q p n m a a a a +=+ 2︒ ∵d p a a p )1(1-+=d p a d q p d q a d q p a q )1()()1()(11-+=-+-+=-+∴ d q p a a q p )(-+=注意:由此可以证明一个定理:设成AP ,则与首末两项距离相等的两项和等于首末两项的和 ,即:=+=+=+--23121n n n a a a a a a同样:若p n m 2=+ 则 p n m a a a 2=+ 例二 在等差数列{}n a 中,1︒ 若a a =5 b a =10 求15a解:155102a a a += 即152a a b += ∴ a b a -=2152︒ 若m a a =+83 求 65a a +解:65a a +=m a a =+833︒ 若 65=a 158=a 求14a解:d a a )58(58-+= 即 d 3615+= ∴ 3=d从而 33396)514(514=⨯+=-+=d a a4︒ 若 30521=+++a a a 801076=+++a a a 求151211a a a +++解:∵ 6+6=11+1 7+7=12+2 ……∴ 11162a a a += 12272a a a += ……从而)(151211a a a +++ +=+++)(521a a a 2)(1076a a a +++ ∴151211a a a +++ =2)(1076a a a +++ -)(521a a a +++ =2×80-30=130三、判断一个数列是否成等差数列的常用方法1.定义法:即证明 )(1常数d a a n n =--例三 《课课练》第3课 例三已知数列{}n a 的前n 项和n n S n 232-=,求证数列{}n a 成等差数列,并求其首项、公差、通项公式。

解:12311=-==S a当2≥n 时56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n1=n 时 亦满足 ∴ 56-=n a n首项11=a )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成AP 且公差为62.中项法: 即利用中项公式,若c a b +=2 则c b a ,,成AP 。

相关文档
最新文档