无锡市2017年春学期普通高中期末考试试卷
无锡市2017届高三上学期期末考试英语试卷
2017年无锡市普通高中期末考试试卷高三英语2017.01第二部分:英语知识运用(共两节,满分35分)第一节单项填空(共巧小题:每小题1分,满分15分)请认真阅读下面各题,从题中所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
21. - Have you heard that Jack has been promoted to be sales manager recently?- It's nothing to be surprised at. The reason why he has won the trust of customers is that he has a/an attitude.A. changeableB. flexibleC. movableD. alternate22. - Peter, this is Hanna, a famous model from Warner Bros. Entertainment Inc. in New York.- How do you do? I'm very delighted to make your .A. identificationB. acquaintanceC. familiarityD. identity23. With the prices of houses rising, they became extremely anxious they wouldn't have enough money to afford one.A. in doubtB. in caseC. for fearD. for example24. As is expected, it will still be some years before all the metro lines in our city into operation.A. will be putB. are putC. will have been putD. have been put25. Finding recipes in America is , for most good cooks have a shelf full of cookbooks ranging from locally published recipe collections to national bestsellers like the Betty Crocker Cookbook.A. as easy as pieB. as clear as mudC. as large as lifeD. as light as feather26. While the house prices in Wuxi keep rising, a lot of houses have been sold out,most were sold to buyers from Shanghai and Suzhou.A. in whichB. among themC. of whichD. of them27. This powerful music style addresses issues like love, sex, drugs, politics and death. Often itthe accepted values.A. argues againstB. rebels againstC. fights withD. deals with28. -You could hardly imagine what great trouble John had reserving a hotel room during the G20 summit.- He in my apartment. It was vacant as I was abroad then.A.must have stayedB. should have stayedC. could have stayedD. would have stayed29. China has successfully launched Tiangong-2, the way to the construction of a large space station in the early 2020s.A. to paveB. having pavedC. pavedD. paving30. Digital teaching, as you know, since introduced, has our way of learning, enabling us to focus more in class.A. tradeB. transformedC. translatedD. transported31. - Why didn't you go with us to the movie Star Trek 3?- I would love to have, but I was engaged.A. elseB. otherwiseC. somehowD. anyhow32. The woman was a lady of strong mind and not once her hope of surviving the earthquake in the darkness.A. she has lostB. she lostC. did she loseD. lost she33. According to the school rule, no child be allowed out of the school, unless accompanied by his own parents.A. shouldB. mustC. shallD. can34. I want to thank everyone who took part in the campaign on my side of the argument, including all those who put aside party differences to speak in they believe was the national interest.A. thatB. whatC. whereD. Which35. - Do you know if the new CEO is willing to meet the director this afternoon?- ,does it?A. It takes no timeB. It counts for nothingC. It doesn't hurt to ask D . It doesn't make sense第二节完形填空(共20小题:每小题1分,满分20分)When I was in middle school, a poisonous spider bit my right hand. I ran to my mom for 36 but instead of taking me to a doctor, my mom set my hand 37 .After wrapping my hand with several layers of cotton, then soaking it in wine, she put a chopstick into my mouth, and lit the cotton. Heat quickly went through the cotton and began to roast my 38 . The sharp pain made me want to scream, but the chopstick 39 it. All I could do was watch my hand burn - one minute, then two minutes - 40 mom put out the fire.At that time there was no doctor available my mother could bring me to see about my spider bite.For those who study biology, you may have grasped the science 41 my mom's cure: heat deactivates (使不活跃) proteins, and a spider's venom, (毒液) is 42 a form of protein. It's 43 how that folk remedy actually includes basic biochemistry, isn't it? But I am a PhD student inbiochemistry at Harvard. I now know that better, less 44 and less risky treatments existed. So I can't help but ask myself why I didn't 45 one at that time.Now I am happy to report that my hand is fine. But this question remains, and I continue to be troubled by the unequal 46 of scientific knowledge throughout the world. Despite the knowledge we have accumulated, we haven't been so 47 in deploying (配置) it to where it's needed most. We constantly see these problems of poverty, illness, and 48 of resourcespreventing the flow of scientific information. Lifesaving knowledge we take for granted in the modern world is often 49 in underdeveloped regions.While studying at Harvard, I saw 50 scientific knowledge can help others in simple, yet profound ways. The bird flu in the 2000s looked to my village like a spell cast by devils. When I realized that simple hygiene (卫生) practices like 51 different animal species could contain the spread of the disease, and that I could help make this knowledge available to my village, that was my first "Aha" moment as a budding scientist.Harvard dares us to dream big, to aspire (立志) to change the world. Here on this Commencement Day, we are 52 thinking of grand destinations and big adventures that await us. As for me, I am also thinking of the farmers in my village. My experience here 53 me how important it's for researchers to communicate our knowledge to those 54 . Because by using the science we already have, we can probably bring my village and thousands like it into the world you and I take 55 every day. And that's an impact every one of us can make!36. A. medicine B. help C. advice D. decision37. A. in water B. on fire C. in trouble D. on strike38. A. leg B. chest C. hand D. face39. A. preserved B. forbade C. cancelled D. prevented40. A. before B. until C. when D. while41. A. beside B. behind C. after D. within42. A. accurately B. simply C. constantly D. continuously43. A. cool B. right C. absurd D. puzzling44. A.powerful B. stressful C. painful D. regretful45. A. accept B. receive C. adopt D. adapt46. A. distribution B. donation C. allocation D. distraction47. A. involved B. absorbed C. successful D. careful48. A. separation B. plenty C. absence D. lack49. A. unavailable B. unwanted C. unexpected D. Unnecessary50. A. when B. where C. how D. why51. A. dividing B. separating C. splitting D. breaking52. A. skilfully B. probably C. preferably D. relatively53. A. informs B. recalls C. reminds D. refers54. A. in danger B. in need C. in order D. in shape55. A. for granted B. for example C. into consideration D. into practice第三部分阅读理解(共15小题:每小题2分,满分30分)AVancouverNatural ResourcesAs a major centre for the global forestry industry, Vancouver is host to many international forestry conferences and events, and the natural home of the massive BC forestry business. Companies such as Canfor and West Fraser Timber Co., the second and third largest lumber (木材) producers in the world, are headquartered in Vancouver. Vancouver is also a major centre for the mining industry.International TradeInternational trade is a key part for Vancouver's economy. The city has Canada's largest port and is one of North America's major gateways for Pan-Pacific trade. The Port of Vancouver ranks first in North America in total foreign exports and second on the West Coast in total goods volume.Banking and FinanceThe headquarters for HSBC Canada is located in the Financial District in downtown. Canada's third largest commercial entity (实体), Jim Pattison Group is also based in Vancouver.International RelationV ancouver is a major centre for diplomacy (外交) and foreign relations. Most countries of the world have consulate (领事馆) or general offices in the Central Business District. In fact, many major diplomatic conferences are hosted by the city - including the world famous G7 summit with President Clinton, APEC, and the World Trade Organization. Greenpeace has its world headquarters in the city. Therefore, Vancouver was among the first NorthAmerican cities to declare itself a Nuclear Weapons Free Zone.TourismTourism is a leading industry to Vancouver. The Whistler-Blackcomb Resort is among the most popular skiing resorts in North America, and was the site of the downhill events of the 2010 Winter Olympics. Vancouver's beaches, parks, waterfronts, and mountain backdrops and its multi-cultural character attract more and more tourists.FilmsVancouver was also called "Hollywood North", for hosting the production of about ten percent of Hollywood's movies. Many U.S. television and film series are shot exclusively in Vancouver. This has partly been because of the favourable Canadian dollar exchange rate.56. Which of the following description about Vancouver is NOT true according to the passage?A. The Port of Vancouver ranks first in North America in total foreign exports.B. Vancouver is a film production centre and called "Hollywood North".C. International forestry conferences and events were held in Vancouver.D. Vancouver is a leading centre for the global agriculture and industry.57. Which of the following organizations or events is not related to Vancouver?A. Jim Pattison GroupB. WHOC. GreenpeaceD. The 2010 Winter Olympics58. The passage is probably taken from .A. a business magazineB. a geography bookC. a financial newspaperD. an entertainment bookBIf you intend using humor in your talk to make people smile, you must know how to identify shared experiences and problems. Your humor must be relevant to the audience and should help to show them that you are one of them or that you understand their situation and are in sympathy with their point of view. Depending on whom you are addressing, the problems will be different. If you are talking to a group of managers, you may refer to the disorganized methods of their secretaries; alternatively if you are addressing secretaries, you may want to comment on their disorganized bosses.Here is an example, which I heard at a nurses' convention, of a story which works well because the audience all shared the same view of doctors. A man arrives in heaven and. is being shown around by St. Peter. He sees wonderful accommodations, beautiful gardens, sunny weather, and so on. Everyone is very peaceful, polite and friendly until, waiting in a line for lunch, the new arrival is suddenly pushed aside by a man in a white coat, who rushes to the head of the line, grabs his food and stomps (重踏) over to a table by himself. "Who is that?" the new arrival asked St. Peter. "Oh, that's God." came the reply, "but sometimes he thinks he's a doctor."If you are part of the group which you are addressing, you will be in a position to know the experiences and problems which are common to all of you and it'll be appropriate for you to make a passing remark about the uneatable canteen food or the chairman's notorious (臭名昭著的) bad taste in ties. With other audiences you mustn't attempt to cut in with humor as they will resent an outsider making remarks about their canteen or their chairman. You will be on safer ground if you stick to scapegoats (替身) like the Post Office or the telephone' system.If you feel awkward being humorous, you must practice so that it becomes more natural. Include a few casual and apparently off-the-cuff (即兴) remarks which you can deliver in a relaxed and unforced manner. Often it's the delivery which causes the audience to smile, so speak slowly and remember that a raised eyebrow or an unbelieving look may help to show that you are making a light-hearted remark.Look for the humor. It often comes from the unexpected. A twist on a familiar quote "If at first you don't succeed, give up" or a play on words or a situation. Search for exaggeration and understatements (轻描淡写). Look at your talk and pick out a few words or sentences which you can turn about and inject with humor.59. To make your humor work, you should .A. take advantage of different kinds of audienceB. make fun of the disorganized peopleC. address different problems to different peopleD. show sympathy for your listeners60. In the eyes of nurses, the joke about doctors implies that they are .A. impolite to new arrivalsB. entitled (有资格) to some privilegesC. very conscious of their godlike roleD. very busy even during lunch hours61. It can be inferred from the text that public services .A. have benefited many peopleB. are the focus of public attentionC. are an inappropriate subject for humorD. have often been the laughing stock62. The best title for the text may be .A. Effective ways to use humorB. An appropriate topic matters in humorC. How to add humor to speechD. Casualness makes for natural humorCWhy do some people flush when they drink alcohol? This effect is a common reaction to alcohol among EastAsians. It affects about 36 percent of Japanese, Chinese and Koreans.For many, even a small amount of alcohol can cause unpleasant effects. Most commonly, their face, neck and sometimes their whole body turn red. People might also feel uncomfortable and sick to their stomach. They might experience a burning sensation (感觉), increased heart rate, shortness of breath and headaches.The cause is a genetic difference that they are born with called an ALDH2 deficiency (缺乏). It prevents their bodies from treating alcohol the way other people do. But the effects might be more serious than just a red face. Researchers warn of a link between this condition and an increased risk of cancer of the esophagus (食道) from drinking alcohol.The more alcohol people with this deficiency drink, the greater their risk is. In Japan and South Korea, for example, many people have the deficiency but still drink heavily. Researchers have found that these drinkers develop a form of esophageal cancer six to ten times more often than those without the deficiency.Esophageal cancer is one of the deadliest cancers. It can be treated when found early, but once it grows the chances of survival drop sharply. The researchers estimate that at least five hundred forty million people have the deficiency, about eight percent of the world's population.Philip Brooks is a researcher at the National Institute in the United States. He says it is important to educate people about the link between the alcohol flushing effect and esophageal cancer. He says doctors should ask East Asian patients about their experiences with facial flushing after drinking alcohol. Those with a history of it should be advised to limit their alcohol use. They should also be warned that cigarette smoking works with the alcohol in a way that further increases the risk of esophageal cancer.63. The underlined word "flush" in Paragraph 1 probably means" ".A. walk unsteadilyB. turn red in the faceC. appear unpleasantD. talk more than usual64. The second paragraph is mainly about .A. the cause of the effects of alcoholB. Asians and alcoholC. the advantages of drinking alcoholD. unpleasant effects caused by alcohol65. Esophageal cancer is considered one of the deadliest cancers in that .A. it can't be treated at allB. it is not easy to be discovered earlyC. it is hard to cure once it has developedD. people are addicted to alcohol66.We can infer from the passage that .A. only some East Asians have the ALDH2 deficiencyB. about 36 percent of Japanese, Chinese and Koreans are heavy drinkersC. unpleasant effects occur only when people with this deficiency drink a lotD. the ALDH2 deficiency may be passed on from generation to generationD"I moved him," the old man said. "I moved him then." He felt faint again now but he held on the great fish all the strength that he could. 1 moved him, he thought. Maybe this time I can get him over. Pull, hands, he thought. Hold up, legs. Last for me, head. Last for me. You never went. This time I'll pull him over.But when he put all of his effort on, starting it well out before the fish came alongside and pulling with all his strength, the fish pulled part way over and then righted himself and swam away."Fish," the old man said. "Fish, you are going to have to die anyway. Do you have to kill me too?"That way nothing is accomplished, he thought. His mouth was too dry to speak but he could not reach for the water now. I must get him alongside this time, he thought. I am not good for many more turns. Yes, you are, he told himself. You're good for ever.On the next turn, he nearly had him. But again the fish righted himself and swam slowly away.You are killing me, fish, the old man thought. But you have a right to. Never have I seen a greater, or more beautiful, or a calmer or more noble thing than you, brother. Come on and kill me. I do not care who kills who.Now you are getting confused in the head, he thought. You must keep your head clear. Keep your head clear and know how to suffer like a man. Or a fish, he thought."Clear up, head," he said in a voice he could hardly hear. "Clear up."Twice more it was the same on the turns.I do not know, the old man thought. He had been on the point of feeling himself go each time. I do not know. But I will try it once more.He tried it once more and he felt himself going when he turned the fish. The fish righted himself and swam off again slowly with the great tail heaving in the air.I'll try it again, the old man promised, although his hands were mushy now and he could only see well in flashes.He tried it again and it was the same. So he thought, and he felt himself going before he started; I will try it once again.The old man dropped the line and put his foot on it and lifted the harpoon (鱼叉) as high as he could and drove it down with all his strength, and more strength he had just summoned (召集), into the fish's side just behind the great chest fin that rose high in the air to the altitude of the man's chest. He felt the iron go in and he leaned on itand drove it further and then pushed all his weight after it.Then the fish came alive, with his death in him, and rose high out of the water showing all his great length and width and all his power and his beauty. He seemed to hang in the air above the old man in the skiff. Then he fell into the water with a crash that sent spray (喷) over the old man and over all of the skiff.67. Why did the old man keep talking to himself while fighting against the fish?A. To rescue himself from great pressure.B. To remind himself of the hidden danger.C. To prevent himself from feeling tired.D. To give himself constant encouragement.68. Which of the following statements is true about the fisherman?A. The fisherman seemed to be playing a cat-and-mouse game with the fish.B. The fisherman showed respect for his rival in this fierce battle.C. The fisherman has been fighting with the fish for long, which made him anxious.D. The fisherman, experienced as he was in fishing, nearly got killed on several occasions.69. What can be inferred from the sentence "Fish, you are going to have to die anyway"(Para. 3) ?A. Quite a few fishermen were chasing and hunting the fish.B. The fish had been seriously injured and couldn't live long.C. The old man had much confidence in catching the fish.D. As a matter of fact, the fish was too old to live any longer.70. Which of the following words best describes the old man?A. Ambitious.B. Aggressive.C. Strong-willed.D. Sympathetic.。
江苏省无锡市2017-2018学年高一(上)期末数学试卷(含答案)
2017-2018学年江苏省无锡市高一(上)期末数学试卷一、填空题(本大题共14小题,共70.0分)1. 已知集合{}{0}112A B ==,,,,则A B ⋃=______.2.176cos π=______.3. 若幂函数y f x =()的图象过点42(,),则16f =()______.4. 若向量12a =(,),3b m =(,),且a b ,则|||a b +=______.5. 函数||3f x ln x =+()()的单调增区间是______.6.计算:2ln33(0.125)e-++=______.7. 已知圆心角是3π的扇形的面积是223cmπ,则该圆心角所对的弧长为______cm .8. 已知函数x ()是周期为2的奇函数,且1[]0x ∈-,时,f x x =(),则212f =()______.9. 将函数2y sin x =向右平移0ϕϕπ(<<)个单位所得函数记为y f x =(),当23x π=时f x ()取得最大值,则ϕ=______. 10.若cos 23sin(a )4a π=+,sin cos a a =______.11. 若2(x 1)1,1(x)1,1x f x x⎧-+≤⎪=⎨>⎪⎩,且23f a f a -()<(),则实数a 的取值范围是______. 12. 在ABC 中,已知|AB |2=,|||1AC =,点M 在边BC 上,4||BC BM =,2AM CB ⋅=,则A B A C ⋅=______. 13. 函数221,04(x)1log ,4x x f x x +≤≤⎧=⎨+<⎩,若0m n ≤<,且(m)f(n)f =,则mf(n)的取值范围是______.14. 函数2f(x)m |31|4|31|1(m 0)x x =---+>在R 上有4个零点,则实数m 的取值范围是______. 二、解答题(本大题共6小题,共80.0分)15. 设集合2{|3}2A x y log x =-(),2{}2|x B y y a x a a R ==≤≤+∈,,全集U R =.16. (1)若2a =,求U A C ⋂(B );17. (2)若A B A ⋃=,求实数a 的取值范围.在ABC 中,已知12AB =(,),40AC m m =(,)(>). 18.19. 在△ABC 中,已知=(1,2), =(4,m )(m >0) (1)若90ABC ∠=︒,求m 的值; (2)若32||BC =2BD DC =,求cos ADC ∠的值.17.如图,在平面直角坐标系中,角αβ,的始边均为x 轴正半轴,终边分别与圆O 交于A ,B 两点,若712παπ∈(,),12πβ=,且点A 的坐标为1Am -(,).(1)若423tan α=-,求实数m 的值; (2)若34tan AOB ∠=-,若2sin α的值.20. 某公司对营销人员有如下规定:21. i ()年销售额x (万元)不大于8时,没有年终奖金;22. (ⅱ)年销售额x (万元)大于8时,年销售额越大,年终奖金越多.此时,当年销售额x (万元)不大于64时,年终奖金y (万元)按关系式ay log x b =+,0a (>,且1a ≠)发放;当年销售额x (万元)不小于64时,年终奖金y (万元)为年销售额x (万元)的一次函数经测算,当年销售额分别为16万元,64万元,80万元时,年终奖金依次为1万元,3万元,5万元. 23. (1)求y 关于x 的函数解析式;24. (2)某营销人员年终奖金高于2万元但低于4万元,求该营销人员年销售额x (万元)的取值范围.25. 已知奇函数23(x)22x b f x +=+,函数221g t sin t cost =+-(),]3[t m π∈,,m ,b R ∈. 26. (1)求b 的值;(2)判断函数f x ()在[0]1,上的单调性,并证明;(3)当]1[0x ∈,时,函数g t ()的最小值恰为f x ()的最大值,求m 的取值范围.已知向量24a sin x πω=+((),,4b sin x πω=+((),20cos x ωω())(>),函数•1x a b =-(),f x ()的最小正周期为π.(1)求f x ()的单调增区间; (2)方程210f x n -+=();在[0]712π,上有且只有一个解,求实数n 的取值范围;(3)是否存在实数m 满足对任意x 1∈[-1,1],都存在x 2∈R ,使得 + +m ( - )+1>f (x 2)成立.若存在,求m 的取值范围;若不存在,说明理由.答案和解析1.【答案】{012},,【解析】 解:集合{}{0}112A B ==,,,, 则012{}A B ⋃=,,. 故答案为:{012},,.根据交集的定义写出A B ⋃即可.本题考查了并集的定义与应用问题,是基础题. 2.【答案】2-【解析】解:1773)62cos 66cos cos ππππ-=-=-=(. 故答案为:直接利用诱导公式化简求解即可.本题考查诱导公式的应用特殊角的三角函数值的求法,是基础题. 3.【答案】4【解析】解:设幂函数a y f x x ==(), 幂函数y f x =()的图象过点42(,), 42a ∴=, 解得:12a =,12y f x x ∴==()164f ∴=(),故答案为:4根据已知求出函数的解析式,将16x =代入可得答案.本题考查的知识点是幂函数的解析式,函数求值,难度不大,属于基础题. 4.【答案】45解:||a b ,60m ∴-=,解得6m =. |48a b ∴+=(,). 则2|4|a b +=+=故答案为:利用向量共线定理即可得出.本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.5.【答案】[2-+∞,) 【解析】解:根据题意,ln(x 3)x 23ln(x 33x ||),2f x ln x +≥-⎧=+=⎨-+-<<-⎩()(), 即当2x ≥-时,3f x ln x =+()(), 令3t x y lnt =+=,,在[2-+∞,)上,1t ≥,此时3t x =+为增函数,y lnt =也为增函数,则函数f x ()为增函数; 当32x --<<时,3f x ln x =-+()(), 令3t x y lnt =+=-,,在32--(,)上,01t <<,此时3t x =+为增函数,y lnt =-为减函数,则函数f x ()为减函数; 故函数||3f x ln x =+()()的单调增区间是[2-+∞,); 故答案为:[2-+∞,). 根据题意,将函数的解析式写成分段函数的形式,结合函数的定义域分段讨论函数的单调性,综合即可得答案.本题考查分段函数的单调性的判断,注意分段函数要分段分析,属于基础题. 6.【答案】11【解析】解:原式233134[()]2-=++ 7411=+=.故答案为:11.利用对数的运算性质即可得出.本题考查了对数的运算性质,属于基础题. 7.【答案】23π【解析】解:设扇形的弧长为l ,圆心角大小为rad α(),半径为r ,扇形的面积为S , 则:2322234Sr ππα⨯===.解得2r =,可得:扇形的弧长为2233l r ππα==⨯=cm .故答案为:23π.利用扇形的面积求出扇形的半径,然后由弧长公式求出弧长的值. 本题考查扇形面积、扇形的弧长公式的应用,考查计算能力,属于基础题. 8.【答案】【解析】解:根据题意,函数x ()是周期为2的函数,则211110222f f f =+=()()(),又由f x ()为奇函数,则11112222f f =-=-()()(-)=,则21122f =();故答案为:12根据题意,由函数的周期性可得211110222f f f =+=()()(),结合函数的奇偶性与解析式可得分析可得11112222f f =-()(-)=-(-)=,综合即可得答案.本题考查函数的奇偶性与周期性的综合应用,涉及函数的表示方法,属于基础题. 9.【答案】512π【解析】解:将函数2y sin x =向右平移0ϕϕπ(<<)个单位,所得函数记为22y f x sin x ϕ==-()(), 当23x π=时f x ()取得最大值,则42232k ππϕπ-=+,5226k Z k πϕπ∈∴=-+.,令0k =,可得512πϕ=, 故答案为:512π.利用函数y Asin x ωϕ=+()的图象变换规律求得f x ()的解析式,再根据正弦函数的最大值,求得ϕ的值.本题主要考查函数y Asin x ωϕ=+()的图象变换规律,正弦函数的最大值,属于中档题. 10.【答案】49【解析】解:cos 2sin )4a a π=+(,2232=,即3=,13cos sin αα∴-=,两边平方得:112sin cos 9a a -=,49sin cos αα∴=.故答案为:49.由已知展开倍角公式及两角和的正弦可得1cos sin 3αα-=,两边平方得答案.本题考查三角函数的化简求值,考查倍角公式及两角和的正弦的应用,是基础题. 11.【答案】12-∞(,)【解析】解:2(x 1)1,11,1x f x x x⎧-+≤⎪=⎨>⎪⎩(),可得1x >时,f x ()递减; 1x ≤时,f x ()递减, 且11f =(),可得f x ()在R 上递减, 23f a f a -()<(),可得23a a ->, 解得12a <,故答案为:12-∞(,).讨论f x ()在1x >和1x ≤的单调性,可得f x ()在R 上递减,进而可得a 的不等式,解不等式即可得到所求范围.本题考查分段函数的单调性的判断和运用:解不等式,考查运算求解能力,属于中档题. 12.【答案】32【解析】解:4BM BC ==, 11()44BM BC AC AB ∴==-, 1344AB BM AC AB+=+, 21||||AB AC ==,,()()AM BC AB BM AC AB ⋅=+⋅-,13•44AC AB AC AB =+-()(), 22113424AC AB AC AB =+⋅-, 13142442AB AC =-⨯+=-, 32AB AC ∴=⋅=, 故答案为:32.由向量加法及减法的三角形法则可得,()()AM BC AB BM AC AB ⋅=+⋅-,结合已知即可求解AB AC ⋅.本题主要考查了向量的基本运算及向量的数量积的基本运算,属于基础试题. 13.【答案】36]3(,【解析】 解:作出函数221,041log ,4X x f x x x +≤<⎧=⎨+<⎩()的图象,可得12f n f m m ==+()(),14m ≤<,则2122mf n m m m m =+=+()()在14](,递增,可得 mf n ()的范围是36]3(,. 故答案为:36]3(,.作出f x ()的图象,求得f n (),m 的范围及mf n ()的解析式,运用二次函数的单调性,可得所求范围.本题考查分段函数的图象和运用,考查二次函数的单调性的运用,以及运算能力,属于中档题.14.【答案】34(,)【解析】 解:根据题意,对于函数2||31|431|1x x f x m =---+(),设|1|3x t =-,则241y mt t =-+,|1|3x t =-的图象如图:若函数23143||11||0x x f x m m =---+()(>)在R 上有4个零点, 则方程2410mt t -+=在区间01(,)有2个根, 则有164020130m m m ->⎧⎪⎪<<⎨⎪->⎪⎩,解可得:34m <<,即m 的取值范围为34(,); 故答案为:34(,)根据题意,设|1|3x t =-,则241y mt t =-+,作出|1|3x t =-的草图,据此分析可得方程2410mt t -+=在区间01(,)有2个根,结合一元二次函数的性质可得164020130m m m ->⎧⎪⎪<<⎨⎪->⎪⎩,解可得m 的取值范围,即可得答案.本题考查函数的零点,注意利用换元法分析,属于综合题. 15.【答案】解:(1)集合220{|}{|}322{|32032}x A x y log x x x x x -≥⎧⎨-==-==≤>⎩()<,2a =时,{|2x B y y ==,{}|2416}4x y y ≤≤=≤≤,又全集U R =,{4|UC B x x ∴=<或6}1x >, 2{|4U C A x x ∴⋂=≤(B )<,或1632}x <<;(2)A B A B A ⋃=∴⊆,,又{}222|a a B y y +=≤≤,232{|}A x x =≤<,222232aa +⎧≥⎪∴⎨<⎪⎩,解得实数a 的取值范围是13a ≤<. 【解析】(1)求定义域得集合A ,求出2a =时集合B ,再根据集合的定义计算即可; (2)由A B A ⋃=得出B A ⊆,由此列不等式求出实数a 的取值范围.本题考查了集合的定义与运算问题,也考查了求函数的定义域和值域问题,是中档题. 16.【答案】解:(1)若90ABC ∠=︒,则0AB BC ⋅=,32BC AC AB m =-=-(,), 3240m ∴+-=,12m ∴=. (2)||32BC =,9(m +-=, 0m >,5m ∴=,2BD DC =,1113DC BC ∴==(,),2223BD BC ==(,), 而34ADAD AB BD =+=(,), 34DA ∴=--(,), 31417210||||52DA DC cos ADC DA DC ⋅-⨯-⨯∴∠===-.【解析】(1)由题意可知0AB BC ⋅=,结合向量的数量积的性质即可求解m (2)由32||BC =,结合向量数量积的性质可求m ,然后结合2BD DC =,及向量夹角公式||||DA DC cos ADC DA DC ⋅∠=可求本题主要考查了向量数量积的性质的综合应用,解题的关键是熟练掌握基本公式并能灵活应用. 17.【答案】解:(1)由题意可得224213tan tan tan ααα==--,12tan α∴=-,或2tan α=. 712παπ∈(,),12tan α∴=-,即112m =--,12m ∴=. (2)sin()312124cos()12tan AOB tan tan παπαβαπα-∠=-=-==--()(),2211()()1,[,]121212212sin cos ππππαπαα--∈-+=,34125125sin cos ππαα∴-=-=-(),(), 24226121225sin sin cos πππααα∴-=--=-()()(),2722161225cos cos ππαα-=--=()(),22226666[6]6sin sin sin cos cos sin ππππππαααα∴=-+=-+-=()()().【解析】(1)由题意利用二倍角的正切公式求得tan α的值,再利用任意角的三角函数的定义求得m 的值. (2)利用同角三角函数的基本关系,求得12sin πα-()和12cos πα-()的值,再利用两角和的正弦公式求得[6]226sin sin ππαα=-+()的值.本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,二倍角的正弦公式,用两角和的正弦公式的应用,属于中档题.18.【答案】解:(1)864x ≤<,年销售额越大,奖金越多,a y log xb ∴=+在84]6(,上是增函数. log 161log 643a a b b +=⎧∴⎨+=⎩,解得23a b =⎧⎨=-⎩.864x ∴≤<时,23y log x =-+;又64x ≥时,y 是x 的一次函数,设0y kx m k =+≠(), 由题意可得:643805k m k m +=⎧⎨+=⎩,解得185k m ⎧=⎪⎨⎪=-⎩. 64x ∴≥时,158y x =-.∴y 关于x 的函数解析式为20,08log 3,86415,648x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪->⎩;(2)当08x ≤≤时,不合题意;当864x ≤<时,2234log x -+<<,解得32128x <<.3264x ∴≤<.当64x >时,1548x -<,解得72x <,6472x ∴<<.综上,3272x <<.答:该营销人员年终奖金高于2万元但低于4万元,其年销售额的取值范围是大于32万元且小于72万元.【解析】(1)由已知可得ay log x b =+在84]6(,上是增函数,再结合已知列关于a ,b 的方程组,求解可得函数解析式;又64x ≥时,y 是x 的一次函数,设0y kx m k =+≠(),再由已知可得关于m ,k 的方程组求解可得64x ≥时,158y x =-,则函数解析式可求; (2)当08x ≤≤时,不合题意;然后分类求解不等式得答案.本题考查函数解析式的求解及常用方法,考查简单的数学建模思想方法,训练了不等式的解法,是中档题.19.【答案】解:(1)奇函数23()22x b f x x +=+,可得00f =(), 即0b =;(2)23(x)22x f x =+在[0]1,单调递增, 证明:设12x x ,是[0]1,上任意两个值,且12x x <,2121122122222121()(1)33(x )f(x )()2112(1)(1)x x x x x x f x x x x ---=-=⋅++++,由121]0[x x ∈,,,且12x x <, 可得210x x ->,1210x x ->,2110x +>,2210x +>,即有210f x f x -()()>,即21f x f x ()>(), 可得f x ()在[0]1,递增;(3)由(2)可得f x ()在[0]1,递增,可得314max f x f ==()(), 可得g t ()的最小值为34, 令s cost =,所以22s s s =-+的最小值为34, 所以1322s ≤≤,即112cost ≤≤,]3[t m π∈,, 由y cost =的图象可得33m ππ-≤<.【解析】(1)由奇函数的性质可得00f =(),解方程即可得到b ;(2)2322x f x x =+()在[0]1,单调递增,运用单调性的定义证明,注意取值、作差和变形、定符号和下结论等步骤;(3)由(2)可得f x ()的最大值,即可得到g t ()的最小值,运用换元法和余弦函数的图象和性质,可得所求范围.本题考查函数的奇偶性和单调性的判断和运用,考查换元法和定义法的运用,考查化简整理的运算能力,属于中档题.20.【答案】解:(1)函数2•b 12214f x a sin x x πωω=-=+--()()()22sin x x ωω=()() 223sin x πω=-()f x ()的最小正周期为π.0ω> 22ππω∴=, 1ω∴=.那么f x ()的解析式223f x sin x π=-()() 令222232k x k πππππ-≤-≤+,k Z ∈ 得:51212k x k ππππ-≤≤+ f x ∴()的单调增区间为[k k 5]1212ππππ-+,,k Z ∈. (2)方程210f x n -+=();在[0]712π,上有且只有一个解, 转化为函数1y f x =+()与函数2y n =只有一个交点. x 在[0]712π,上, 52336x πππ∴-≤-≤() 那么函数12213y f x sin x π=+=--()()的值域为],结合图象可知函数1y f x =-()与函数2y n =只有一个交点. 那么1122n ≤<或21n =, 可得1122n -≤<或12n =.(3)由(1)可知223f x sin x π=-()()22min f x ∴=-(). 实数m 满足对任意11[]1x ∈-,,都存在2x R ∈,使得11114()()?4?2?2?12x x x x m f x --++-+>成立.即1111?44?2?2?(>12x x x x m --++-+-)成立令1111?44221x x x x y m --=++-+(?)??设1122x x t --=??,那么111122442222x x x x t --+=-+=+??)??(11]1[x ∈-,,332[2]t ∴∈-,, 可得250t mt ++>在3322[]t ∈-,上成立. 令250g t t mt =++()>, 其对称轴m 2t =- 332[]2t ∈-,上, ∴①当322m -≤-时,即3m ≥时,32930242min m g t g ==>--()(),解得2936m ≤<; ②当33222m -<-<,即33m -<<时,2(>(t))5024m m g min g =-=-,解得33m -<<; ③当322m ≤-,即3m ≤-时,329300242min m g t g ==>()()+>,解得2936m -≤-<; 综上可得,存在m ,可知m 的取值范围是292966(-,). 【解析】(1)函数•1f x a b =-(),f x ()的最小正周期为π.可得ω,即可求解f x ()的单调增区间.(2)根据x 在[0]712π,上求解f x ()的值域,即可求解实数n 的取值范围; (3)由题意,求解2f x ()的最小值,利用换元法求解111144221x x x x y m --=++-+()的最小值,即可求解m 的范围.本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.同时考查了二次函数的最值的讨论和转化思想的应用.属于难题.。
2017届江苏省无锡市高三上学期期末考试 语文试题及答案
无锡市2017年秋学期普通高中高三期末考试试卷语文注意事项及说明:1.本试卷分试题卷和答卷两部分,共160分,考试时间为150分钟。
2.选考历史的考生,还要做附加题,答案写在附加答卷上,共200分,时间为180分钟。
3.答题前,请将自己的姓名和准考证号写在答卷上。
一、语言文字运用(15分)阅读下面的文字,完成1—3题。
以前,春联是用毛笔书写的,稍为讲究的用上好墨汁,书写出来的春联字体光洁明亮,还散发出□□墨香。
那时,在一个村的大门或者祠堂所张贴的春联,无论是内容还是书写都颇为讲究,多数由该村具有文化且毛笔字写得好的族人来□□,因为张贴在村门口或祠堂的春联是代表该村或家族是否有文化的象征。
村与村之间书写的春联内容□□□□地形成一种竞争,串门走亲访友看到那些春联,书写内容和字体都是不拘一格,如同看当今的书法展一样,是一种美的享受。
如今,__________________________________________________。
1.在上文方格处依次填入词语,恰当的一项是( 3分)A. 清淡操刀心照不宣B. 清新主笔不约而同C. 清淡主笔心照不宣D. 清新操刀不约而同2. 以下语句是从上文中划横线处抽出来的,衔接最恰当的一组是(3分)①春联只剩下‚华丽的空壳‛②而没有了‚魂‛③张贴春联在不少人心目中只不过是一种形式④缺乏生气和美感⑤印刷体的春联给人千联一面之感A. ④⑤①②③B. ⑤④①②③C. ③①②⑤④D. ⑤④③①②3. 下列说话得体的一项是(3分)A. 令媛今年能考取大学,多亏老师们悉心指导,我们全家非常感谢。
B. 家慈辛苦了一辈子,把你养育大好不容易,你真应该好好孝敬她。
C. 上星期拜读了林教授的大作,获益匪浅,略有瑕疵,我一定斧正。
D. 国庆节本市同学聚会,欢迎光临,你的到来定会使寒舍蓬荜生辉。
4. 下面是苏轼写的一首词,请判别它的词牌名(3分)波声拍枕长淮晓,隙月窥人小。
无情汴水自东流,只载一船离恨向西州。
2017届江苏省无锡市高三上学期期末考试语文试卷及答案
无锡市2017年秋学期普通高中期末考试试卷高三语文注意事项及说明:1.本试卷分试题卷和答卷两部分,共160分,考试时间为150分钟。
2.选考历史的考生,还要做附加题,答案写在附加答卷上,共200分,考试时间为180分钟。
3.答题前,请将自己的姓名和准考证号写在答卷上。
一、语言文字运用(15分)1.下列各组词语中,没有错别字.....的一组是(3分)A. 攫取集腋成裘振聋发聩饥肠漉漉B. 窜红穷兵黩武未雨绸缪忧心忡忡C. 熨帖如丧考妣山青水秀荦荦大端D. 鳜鱼出类拔萃按部就班暴殄天物2. 在下列句子的空缺处依次填入成语,最恰当的一组是(3分)莫言获得诺贝尔文学奖是2012年末最大的新闻,看好莫言的人,觉得莫言获奖实力具备,____________;有人则不以为然,认为莫言作品并非___________,客观地说,莫言的小说有其独特性,其奇异的想象力和丰富的比喻真是令人难以___________的。
A. 实至名归瑕不掩瑜望其项背B. 名副其实瑕不掩瑜望尘莫及C. 实至名归白璧无瑕望其项背D. 名副其实白璧无瑕望尘莫及3. 请用平实的语言表述下面材料中画线句子的含意,不超过12个字。
(4分)有一个佛学造诣很深的人,听说某一个寺庙里有位德高望重的老禅师,便前去求教。
老禅师的徒弟接待了他,他很不高兴。
老禅师出来后,他还是态度很傲慢。
老禅师非常恭敬地亲自为他沏茶,茶杯已经满了,还不停地倒。
他不解地问:“大师,为什么杯子已经满了,还要往里倒?”大师说:“是啊,既然已满了,干嘛还倒呢?”4. 中央电视台的“汉字听写大赛”影响巨大,既展示了汉字的无穷魅力,也敲响了汉字危机的警钟。
请仿照例句再写两个句子表达你对此的看法或感受。
(句式、字数大致相同即可)(5分)例句:汉字书写,书写的是美丽中文不老的历史,传承的是汉字背后的文化积淀。
提笔忘字,既是国人对民族语言的冷漠,更是民族文化传承的危机。
二、文言文阅读(19分)阅读下面的文言文,完成5~8题。
【江苏省无锡市】2017届高三上学期期末数学试卷-答案
∵ ABCD 为矩形,∴ O 点为中点,
∵ E 为 PC 中点,
∴ OE∥PA ,
∵ OE 平面 PAD , PA 平面 PAD ,
∴ OE∥平面 PAD ,…8 分
同理可得: OF∥平面 PAD ,…10 分
∵ OE OF O ,
∴平面 OEF / / 平面 PAD ,…12 分
∵ EF 平面 OEF ,
∴ EF∥ PAD …14 分
17.解:(1)∵ EM BM , B MEN ,
∴ △BMN≌△EMN ,
∴ BNM MNE ,
∵ AME 2 ,
∴ BNM MNE ,
设 MN x ,
在 △BMN 中, BM xsin ,∴ EM BM xsin ,
∵ r 1 4e 8 0 ,
∴ ex 5 x 4 x 1 ,
从而有
-
1 4
1
m
5 4
2m e1m
,
即当 x 1,1 m , G x1 H x2 恒成立.
21.解:(1)曲线 C 的极坐标方程为 8sin ,即 2 8 sin .
1,
n1
∴ n 2 时, Ti 1 3T2 2T1 4T3 3T2 n 1Tn nTn1 i 1
n 1Tn 2T1 n 1Tn 1.
n1
∴存在关于 n 的整式 g n n 1,使得 Tn 1 Tn g n 1 对一切 n 2 , nN* 都成立. i 1
n
1
2
2n
3n 4
22n 3n
2
0
江苏无锡市2017-2018学年第一学期期末考试高二数学试卷
江苏⽆锡市2017-2018学年第⼀学期期末考试⾼⼆数学试卷江苏⽆锡市2017-2018学年第⼀学期期末考试⾼⼆数学试卷2017.12注意事项及说明: 本卷考试时间为120分钟,全卷满分为160分.命题单位:滨湖区教研发展中⼼审核:⽆锡市教育科学研究院⼀、填空题(本⼤题共14⼩题,每⼩题5分,共70分.请把答案填写在答题卡相应位置上.........) 1.直线0x c +=的倾斜⾓的⼤⼩为▲.2.(⽂)命题“对任意的3210R x x x ∈-+,…”的否定是▲.(理)设(1,3,2)a =-,(2,+1,1)b m n =-,且a //b ,则实数 m n -=▲.3.如图,已知正⽅体1111ABCD A B C D -的棱长为a ,则异⾯直线1BC 与AC 所成的⾓为▲.4.以1x =为准线的抛物线的标准⽅程是▲.5. 已知命题p : 多⾯体ABCD 为正三棱锥,命题q :多⾯体ABCD 为正四⾯体,则命题p 是命题q 的▲条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分⼜不必要”之⼀)6.若⼀个正六棱柱的底⾯边长为a ,侧⾯对⾓线的长为2a ,则它的体积为▲. 7. 函数()2cos (02)f x x x xπ=+剟的单调递减区间为▲.8.若双曲线2222:1x y C a b-=的焦距为8,点(1,M 在其渐近线上,则C 的⽅程为▲.9.如果⼀个圆锥的侧⾯积与其底⾯积之⽐是5:3,那么该圆锥的母线与底⾯所成⾓的正弦值为▲.10.已知点P 在抛物线28=y x 上运动,F 为抛物线的焦点,点A 的坐标为(5,2),则P A P F +的最⼩值是▲. 11. 椭圆具有如下的光学性质:从⼀个焦点发出的光线经过椭圆内壁反射后恰好穿过另⼀个焦点.现从椭圆22+195x y =的左焦点F 发出的⼀条光线,经过椭圆内壁两次反射后,回到点F ,则光线所经过的总路程为▲.12. 已知,,αβγ是三个互不重合的平⾯,l 是⼀条直线,给出下列四个命题:①若,l αββ⊥⊥,则l α∥;②若,l l αβ⊥⊥,则αβ∥;③若αγβγ⊥,∥,则αβ⊥;④若m α?,n α?,m β∥,n β∥,则βα//. 其中所.有.正确命题的序号是▲. 13.设k ∈R ,过定点A 的动直线0kx y +=和过定点B 的动直线20x ky k -+=交于点C 1B 1A 1DCBA(,)(0)M x y x >,若2MB MA =,则点M 的坐标为▲.14.在平⾯直⾓坐标系xOy 中,已知P 是函数()ln (0)f x x x =>图象上的动点,该图象在点P 处的切线l 交x 轴于点E ,过点P 作l 的垂线交x 轴于点F ,设线段EF 的中点T 的横坐标为t ,则t 的最⼤值是▲.⼆、解答题(本⼤题共6⼩题,共90分.解答时应写出⽂字说明、证明过程或演算步骤.) 15.(本题满分14分)设直线1:210l x y +-=,2:20l x y -+=,3:360l x my +-=.(1)若直线1l ,2l ,3l 交于同⼀点,求m 的值;(2)设直线l 过点(2,0)M ,若l 被直线1l ,2l 截得的线段恰好被点M 平分,求直线l 的⽅程.16. (本题满分14分)如图,在四⾯体PABC 中,已知PA ⊥平⾯ABC ,PA AC =,90ACB ∠=,D 为PC 的中点.(1)求证:AD BD ⊥;(2)若M 为PB 的中点,点N 在直线AB 上,且:1:2AN NB =,求证:直线AD //平⾯CMN . 17.(本题满分14分)MPNABDC(⽂科班选做此题)已知R m ∈,命题:p {m |⽅程221821y x mm =--+表⽰焦点在y 轴上的椭圆},命题:q {m |⽅程22112y x m m =+-+表⽰双曲线},若命题“q p ∨”为真,“q p ∧”为假,求实数m 的取值范围.(理科班选做此题)如图,已知正⽅形ABCD 和矩形所在平⾯互相垂直,AB =1AF =.(1)求⼆⾯⾓B DE C --的⼤⼩;(2)求点F 到平⾯BDE 的距离.18. (本题满分16分)已知圆C 的圆⼼为2(,)2t C t a(,0)R t t ∈≠,过定点(0,)A a (0)a >,且与x 轴交于点B ,D .(1)求证:弦长BD 为定值;(2)设12a =,t 为整数,若点C 到直线260x y +-=,求圆C 的⽅程.19.(本题满分16分)BEFDCA已知函数32()(2)f x ax a x =-+(a 为实数).(1)若函数()f x 在1x =处的切线与直线60x y ++=平⾏,求实数a 的值;(2)若1a =,求函数()f x 在区间[1,3]上的值域;(3)若函数()f x 在区间[1,3]上是增函数,求a 的取值范围.20.(本题满分16分)设动点M 是圆229x y +=上任意⼀点,过M 作x 轴的垂线,垂⾜为N ,若点P 在线段MN 上,且满⾜2NPPM=.(1)求点P 的轨迹C 的⽅程;(2)设直线l 与C 交于A ,B 两点,点Q 坐标为(0,2),若直线QA ,QB 的斜率之和为定值3,求证:直线l 必经过定点,并求出该定点的坐标.⽆锡市2017年秋学期期末考试参考答案及评分标准 2017.12⾼⼆数学⼀、填空题 (每空5分,共70分)1. 30°2. (⽂)32,10x x x ?∈-+>R (理)83. 60°4. 24x y =-5. 必要不充分6. 392a 7. 5[,]66ππ 8. 221412x y -= 9.3510. 7 11.12 12. ②③ 13. 42(,)55 14. 11()2e e+ ⼆、解答题(共90分)15. 解:(1)解21020x y x y +-=??-+=?,,得交点15(,)33C -. …………………………………3分直线123l l l ,,交于同⼀点,则点C 在直线3l 上,则153()6=033m -+-,解得21=5m .…………………………………………………6分(2)设1l 上⼀点A (a ,1-2 a ),则点A 关于M (2,0)的对称点B (4-a ,2 a -1) .………………………………………………………………………………………8分由点B 在2l 上,代⼊得4(21)20a a ---+=,∴a =73,∴711()33A ,-.………11分直线l 过两点A 、M ,斜率为-11,∴直线l 的⽅程为11220x y +-=. ………14分16. 证明:(1) ∵PA=AC ,D 为PC 的中点,∴AD ⊥PC . …… ………………………1分∵ PA ⊥平⾯ABC ,BC ?平⾯ABC ,∴ PA ⊥BC .∵∠ACB=90°,BC ⊥AC ,且PAAC =A , ,PA AC ?平⾯PAC∴ BC ⊥平⾯PAC . ……………………………………………………………………3分∵ AD ?平⾯PAC ,∴ BC ⊥AD .……………………………………………………4分且,,,AD PC ADPC D PC BC ⊥=?平⾯PBC ,∴AD ⊥平⾯PBC . ………………………………… …………………………………6分∵ BD ?平⾯PBC ,∴AD ⊥BD .……………………………………………………7分(2)连接DM ,设BD 与CM 交于点G ,连接N G ,∵ D 、M 为中点,∴DM //BC 且12DM BC =,………………………………………9分∴ DG :GB=DM :BC =1:2.∵ AN :NB=1:2,∴AN :NB= DG:GB .………………………………………………11分∴△BNG ∽△BAD ,∴AD//NG ,∵AD ?平⾯CMN ,NG ?平⾯CMN ,∴直线AD //平⾯CMN . …………………………………………………………14分17. (⽂科)解:命题p :8210m m ->->,132m <<; …………………………2分命题q :(1m +)(2m -)<0, 12m -<<,………………………………………4分命题p 且q: 122m <<. ………………………………………………………………6分由命题“q p ∨”为真,“q p ∧”为假,则p 、q ⼀个为真命题,⼀个为假命题,……8分则13212m m m ?<1 2.m m m-<剠………………………………………………12分解得23m <…或112m -<….所以实数m 的取值范围是1(1,][2,32-). ………………………………………14分 17. (理科)解:正⽅形ABCD 和矩形ACEF 所在平⾯互相垂直,分别以AB ,AD ,AF 为x ,y ,z 轴建⽴空间直⾓坐标系,则A (0,0,0),B,0,0), C,0), D (0,0), E,,1),F (0,0,1).…………………………………………………1分(1)设平⾯CDE 的法向量为1=(0,1,0)h ,平⾯BDE 的法向量2=(,,)h x y z , ………2分由220,0.h BD h BE ??=??=解得2(1,1,h =. ………………………………………………4分∴1212121cos ,2||||h h h h h h ?<>== ,………………………………………………………6分∴⼆⾯⾓ B —DE —C 等于60°. ……………………………………………………7分(2)2(2,2,0),(1,1,FE h ==,…………………………………………………8分 2222cos ,||||EF h EF h EF h ?<>===…………………………………………10分||2EF =.设点到平⾯BDF 的距离为h ,则2cos,.||hEF h EF <>=……………12分∴ 2h =?F 到平⾯BDE . ……………………14分18. 解:(1)圆C 的⽅程:222222()())22t t x t y t a a a-+-=+-(, ………………………3分令y =0,得22()=x t a -,故=x t a -±,1=+x t a ,2=x t a -.…………………6分弦长M N=21 ||x x -=2 a 为定值.……………………………………………………7分(2)∵点C 到直线260xy +-=的距离为2d ==,………………9分∴ 2+26t t -=2±,解得=1t - t =2或t =-4.……………………………13分由t 为整数,∴ t =2或t =-4.…………………………………………………14分∴圆C 的⽅程为2265(2)(4)4x y -+-=和221025(+4)(16)4x y +-=. ………16分19. 解:(1)2()32(2)f x ax a x '=-+,(1)32(2)1f a a '=-+=-,解得3a =. ……………………………………4分(2)1a =时,32()3f x x x =-,2()36f x x x '=-,令()0f x '=,解得0x =或2,………………………………6分………………………8分⼜(1)2f =-,(2)4f =-,(3)0f =,所以()f x 在[1,3]上的值域为[4,0]-.……10分(3)2()32(2)f x ax a x '=-+,由()f x 在区间[1,3]上是增函数,则2()32(2)f x ax a x '=-+…0对于1≤x ≤3恒成⽴,所以(32)4a x -….…………12分因320x ->,故432a x -…,记4()32g x x =-,则max ()a g x …,……………………14分⽽函数()g x 在[1,3]上为减函数,则max ()(1)4g x g ==,所以a …4.所以a 的取值范围是[4,)+∞.………………………………………………………16分20. 解:(1)设点P 、M 的坐标分别为 (x ,y )、 (x 0,y 0),由2NP PM =,得00,,23x x y y =??=∴00,3.2x x y y =??=……………………………………………………………………3分由点M 在圆229x y +=上,故22009x y +=,代⼊得22994x y +=.…………5分∴点P 的轨迹C 的⽅程为 22194x y +=. ………………………………………6分(2)当直线l 的斜率不存在时,设直线l 的⽅程为:0x x =,设A ,B 两点的坐标分别为 (x 0,y 0)、(x 0,-y 0),由题意3QA QB k k +=,得0000223y y x x ---+=,解得043x =-,所以直线l 的⽅程为:43x =-.……………………………………………………8分当直线l 的斜率存在时,设直线l 的⽅程为y=kx+b ,与C 联⽴,消元得222(49)189(4)0k x bkx b +++-=.设A ,B 两点的坐标分别为 (x 1,y 1)、 (x 2,y 2),则1221849bkx x k -+=+,212294)=49b x x k -+((*). ……………………………………10分由题意3QA QB k k +=,得1212223y y x x --+=.将y 1=kx 1+b 和y 2=kx 2+b 代⼊上式,可得121122)3k b x x +-+=((), 所以121222)3x x k b x x ++-=(.(**) ……………………………………………12分将(*)代⼊(**),化简得2232bk k b -=+,解得3+24b k =(),代⼊直线l ⽅程,得3+233(1)442b y x b b x x =+=++(). ……………………14分不论b 怎么变化,当314x +=0即x =43-时,2y =-. …… ………………… 15分综上所述,直线l 恒过定点4(,2)3--. ………………………………………… 16分。
江苏省无锡市2017届高三上学期期末考试英语试题
2016年无锡市秋学期普通高中期末考试试卷高三英语2017.01命题单位:.无锡市教育科学研究院制卷单位:无锡市教育科学研究院注意:本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
答案全部做在答题卡上。
总分为120分,考试时间120分钟。
第一卷(选择题,共85分)第一部分听力测试(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题:每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What time will the two speakers leave?A. At 7: 30.B. At 8: 00.C. At 8: 30.2. What are the two speakers talking about?A. Past experiences.B. Family members.C. Travel plans.3. Where does this conversation most probably take place?A. At a theater.B. At a restaurant.C. At a gas station.4. What can we learn about the woman?A. She does not understand the man.B. She can not hear the man clearly.C. She is angry with the man.5. Why is the man angry with Anne?A. She is late.B. She drives too slowly.C. She is rude to him.第二节(共15小题:每小题1分,满分15分)听下面5段对话或独白。
江苏省无锡市2017-2018学年高二上学期期末数学试卷 Word版含解析
2017-2018学年江苏省无锡市高二(上)期末数学试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.直线x﹣y+a=0(a∈R,a为常数)的倾斜角是.2.“∃x∈R,e x=x﹣1”的否定是.3.过点A(﹣1,1)且与直线x+3y+4=0平行的直线l的方程为.4.已知一个物体的运动方程是s=1﹣t+t2,其中s的单位是米,t的单位是秒,那么该物体在4秒末的瞬时速度是.5.“x>0”是“x≠0”的条件;(填“充分不必要”、“必要不充分”、“充要”、“非充分非必要”)6.过点(2,)、(,﹣)的椭圆的标准方程为.7.在正方体ABCD﹣A1B1C1D1中,B1C与BD所成的角为.8.直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相交,则b的取值范围为.9.若正四棱锥的底面边长为,体积为4cm3,则它的侧面积为cm2.10.下列,其中正确的是(填写序号).①若m⊥α,m∥n,则n⊥α;②若m∥n,m⊂α,n⊂β,则α∥β;③若直线m∥n,则直线m就平行于平面α内的无数条直线;④若∠ABC和∠A1B1C1的边AB∥A1B1,AC∥A1C1,则∠ABC=∠A1B1C1.11.椭圆+=1的左焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴正半轴上,那么以线段F1P为直径的圆的标准方程为.12.已知双曲线的中心是原点,焦点到渐近线的距离为2,一条准线方程为y=﹣3,则其渐近线方程为.13.定义在R上的函数f(x)满足f′(x)>1,且f(1)=2,在不等式f(x)>x+1的解集为.14.已知动点A、B分别在图中抛物线y2=4x及椭圆的实线上运动,若AB∥x,点N的坐标为(1,0),则三角形ABN的周长l的取值范围是.二、解答题:本大题共7小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.16.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BAD=45°,AB=2,AD=,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面PDF;(2)求证:平面PDF⊥平面PAB.17.抛物线y=x2上有一点A的横坐标为a,其中a∈(0,1),过点A的抛物线的切线l交x轴及直线x=1于B,C两点,直线x=1交x轴于D点.(1)求直线l的方程;(2)求△BCD的面积S(a),并求出a为何值时S(a)有最大值.18.(文科班选做此题)已知a>0,p:∀x≥1,x﹣+2≥0恒成立,q:点P(1,1)在圆(x ﹣a)2+(y﹣a)2=4的外部,是否存在正数a,使得p∨q为真;p∧q假,若存在,请求出a 的范围;若不存在,请说明理由.19.求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.20.已知函数f(x)=(m,n∈R)在x=1处取到极值2(Ⅰ)求f(x)的解析式;(Ⅱ)设函数g(x)=ax﹣lnx.若对任意的,总存在唯一的,使得g(x2)=f(x1),求实数a的取值范围.21.已知椭圆E:+=1(a>b>0)的短轴为2,离心率为,直线x=my﹣1(m∈R)交椭圆E于A,B两点,O为坐标原点.(1)求椭圆E的方程;(2)求△OAB面积的最大值;(3)当m∈R时,判断点G(﹣2,0)与AB为直径的圆的位置关系,并说明理由.2015-2016学年江苏省无锡市高二(上)期末数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分)1.直线x﹣y+a=0(a∈R,a为常数)的倾斜角是60°.【分析】根据题意,设直线x﹣y+a=0的倾斜角为α,由直线的方程可得直线的斜率k=,进而可得tanα=,结合α的范围,即可得答案.【解答】解:根据题意,设直线x﹣y+a=0的倾斜角为α,直线x﹣y+a=0可以变形为y=x+a,其斜率k=,tanα=且0°≤α<180°,则有α=60°,故答案为:60°【点评】本题考查直线倾斜角的计算,掌握直线的倾斜角与斜率的关系是解题的关键.2.“∃x∈R,e x=x﹣1”的否定是∀x∈R,e x≠x﹣1.【分析】由题意,“∃x∈R,e x=x﹣1”,其否定是一个全称,按书写规则写出答案即可【解答】解:“∃x∈R,e x=x﹣1”是一个特称,其否定是一个全称所以“∃x∈R,e x=x﹣1”的否定为“∀x∈R,e x≠x﹣1”故答案为:∀x∈R,e x≠x﹣1.【点评】本题考查特称的否定,解题的关键是熟练掌握特称的否定的书写规则,依据规律得到答案,要注意理解含有量词的的书写规则,特称的否定是全称,全称的否定是特称.3.过点A(﹣1,1)且与直线x+3y+4=0平行的直线l的方程为x+3y﹣2=0.【分析】设与直线x+3y+4=0平行的直线l的方程为:x+3y+m=0,把点A(﹣1,1)代入即可得出.【解答】解:设与直线x+3y+4=0平行的直线l的方程为:x+3y+m=0,把点A(﹣1,1)代入可得:﹣1+3+m=0,解得m=﹣2.∴要求的直线方程为:x+3y﹣2=0.故答案为:x+3y﹣2=0.【点评】本题考查了相互平行的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.4.已知一个物体的运动方程是s=1﹣t+t2,其中s的单位是米,t的单位是秒,那么该物体在4秒末的瞬时速度是7米/秒.【分析】据对位移求导即得到物体的瞬时速度,求出导函数在t=4时的值,即为物体在4秒末的瞬时速度.【解答】解:∵s=1﹣t+t2,求导函数可得s′=2t﹣1当t=4时,s′=2t﹣1=2×4﹣1=7,故物体在4秒末的瞬时速度是7米/秒,故答案为:7米/秒.【点评】本题考查导数知识的运用,考查导数的物理意义,属于基础题.5.“x>0”是“x≠0”的充分不必要条件;(填“充分不必要”、“必要不充分”、“充要”、“非充分非必要”)【分析】将题设中的改写成的形式,分别判断它的真假及其逆的真假,再依据充分条件,必要条件的定义作出判断得出正确答案【解答】解:原:若“x>0”则“x≠0”,此是个真其逆:若“x≠0”,则“x>0”,是个假,因为当“x≠0”时“x<0”,也可能成立,故不一定得出“x >0”,综上知“x>0”是“x≠0”的充分不必要条件故答案为:充分不必要.【点评】本题考查充分条件必要条件的判断,解题的关键是熟练掌握充分条件与必要条件的定义,本题是基本概念考查题,难度较低,在高考中出现的机率较小6.过点(2,)、(,﹣)的椭圆的标准方程为+=1.【分析】设椭圆的方程为mx2+ny2=1,(m,n>0且m≠n),再由点(2,)、(,﹣)代入椭圆方程,解方程即可得到m,n,进而得到所求标准方程.【解答】解:设椭圆的方程为mx2+ny2=1,(m,n>0且m≠n),由题意可得,解得,即有椭圆方程为+=1.故答案为:+=1.【点评】本题考查椭圆的标准方程的求法,注意运用待定系数法,考查运算求解能力,属于基础题.7.在正方体ABCD﹣A1B1C1D1中,B1C与BD所成的角为60°.【分析】连接B1D1和D1C,由BD∥B1D1,知∠D1B1C就是异面直线DB与B1C所成角.由△D1B1C是等边三角形,知异面直线DB与B1C所成角为60°.【解答】解:连接B1D1和D1C,∵BD∥B1D1,∴∠D1B1C就是异面直线DB与B1C所成角.在△D1B1C中,∵B1D1=D1C=B1C,∴∠D1B1C=60°.故答案为:60°【点评】本题考查异面直线所成角的大小的求法,解题时要认真审题,仔细求解,注意合理地进行等价转化.8.直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相交,则b的取值范围为(2,12).【分析】求出圆的标准方程,利用直线和圆相交的条件建立不等式关系进行求解即可.【解答】解:圆的标准方程为(x﹣1)2+(y﹣1)2=1,则圆心坐标为(1,1),半径r=1,则若直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相交,则圆心到直线的距离d==<1,即|b﹣7|<5,则﹣5<b﹣7<5,即2<b<12,故答案为:(2,12)【点评】本题主要考查直线与圆的位置关系的应用,利用点到直线的距离与半径之间的关系是解决本题的关键.9.若正四棱锥的底面边长为,体积为4cm3,则它的侧面积为8cm2.【分析】设出正四棱锥的底面边长为a=2,h为高,运用体积公式求解得出h=1,求解斜高h′=2,运用面积公式求解即可.【解答】解:∵正四棱锥的底面边长为,体积为4cm3,∴a=2,h为高,即(2)2×h=4,h=1,∴斜高为:=2,∴侧面积为:4×2=8故答案为:【点评】本题考查了三棱锥的几何性质,运用求解斜高,侧面积公式,属于中档题,关键是把立体问题,转化为平面问题.10.下列,其中正确的是①(填写序号).①若m⊥α,m∥n,则n⊥α;②若m∥n,m⊂α,n⊂β,则α∥β;③若直线m∥n,则直线m就平行于平面α内的无数条直线;④若∠ABC和∠A1B1C1的边AB∥A1B1,AC∥A1C1,则∠ABC=∠A1B1C1.【分析】在①中,由线面垂直的性质得n⊥α在②中,α与β相交或平行;在③中,直线m与平面α有可能相交;在④中,∠ABC=∠A1B1C1或∠ABC和∠A1B1C1互补.【解答】解:①若m⊥α,m∥n,则由线面垂直的性质得n⊥α,故①正确;②若m∥n,m⊂α,n⊂β,则α与β相交或平行,故②错误;③若直线m∥n,则直线m与平面α有可能相交,故③错误;④若∠ABC和∠A1B1C1的边AB∥A1B1,AC∥A1C1,则∠ABC=∠A1B1C1或∠ABC和∠A1B1C1互补,故④错误.故答案为:①.【点评】本题考查真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.11.椭圆+=1的左焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴正半轴上,那么以线段F1P为直径的圆的标准方程为x2+(y﹣)2=.【分析】先根据中位线定理可推断出PF2垂直于x轴,根据椭圆的标准方程求出焦距,进而设|PF1|=t,根据勾股定理求得t和|PF2|,可得M的坐标,可得所求圆的标准方程.【解答】解:∵O是F1F2的中点,M为PF1的中点,∴PF2平行于y轴,即PF2垂直于x轴,∵c===2,∴|F1F2|=4设|PF1|=t,根据椭圆定义可知|PF2|=8﹣t,∴(8﹣t)2+16=t2,解得t=5,∴|PF2|=3,可得M(0,),|PM|=,即有所求圆的方程为x2+(y﹣)2=.故答案为:x2+(y﹣)2=.【点评】本题考查椭圆的定义和方程的运用,考查圆的方程的求法,注意运用中位线定理和椭圆的定义,属于中档题.12.已知双曲线的中心是原点,焦点到渐近线的距离为2,一条准线方程为y=﹣3,则其渐近线方程为y=±x.【分析】双曲线的焦点在y轴上,且=3,焦点到渐近线距离为2,求出a,b,c,即可求出双曲线的渐近线方程.【解答】解:∵一条准线方程为y=﹣3,∴双曲线的焦点在y轴上,且=3,∵焦点到渐近线的距离为2,∴=2,∴b=2,∴a=2,c=4∴渐近线方程为y=±x=±x.故答案为:y=±x.【点评】本题考查了双曲线的标准方程及其渐近线方程、点到直线的距离公式,属于基础题.13.定义在R上的函数f(x)满足f′(x)>1,且f(1)=2,在不等式f(x)>x+1的解集为(1,+∞).【分析】由f′(x)>1,f(x)>x+1可抽象出一个新函数g(x),利用新函数的性质(单调性)解决问题,即可得到答案.【解答】解:设g(x)=f(x)﹣(x+1),因为f(1)=2,f′(x)>1,所以g(1)=f(1)﹣(1+1)=0,g′(x)=f′(x)﹣1>0,所以g(x)在R上是增函数,且g(1)=0.所以f(x)>x+1的解集即是g(x)>0=g(1)的解集.∴x>1.故答案为:(1,+∞).【点评】本题考查利用导数研究函数的单调性,解决此类问题的关键是构造函数g(x)=f (x)﹣(x+1),然后利用导数研究g(x)的单调性,从而解决问题,属于中档题.14.已知动点A、B分别在图中抛物线y2=4x及椭圆的实线上运动,若AB∥x,点N的坐标为(1,0),则三角形ABN的周长l的取值范围是().【分析】可考虑用抛物线的焦半径公式和椭圆的焦半径公式来做,先通过联立抛物线与椭圆方程,求出A,B点的横坐标范围,再利用焦半径公式转换为以B点的横坐标为参数的式子,再根据前面求出的B点横坐标方位计算即可.【解答】解:由得,抛物线y2=4x与椭圆在第一象限的交点横坐标为,设A(x1,y1),B(x2,y2),则0<x1<,<x2<2,由可得,三角形ABN的周长l=|AN|+|AB|+|BN|=x1++x2﹣x1+a﹣ex2=+a+x2=3+x2,∵,<x2<2,∴<3+x2<4故答案为()【点评】本题考查了抛物线与椭圆焦半径公式的应用,做题时要善于把未知转化为已知.二、解答题:本大题共7小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;(3)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长.【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y﹣2=(x﹣2),即x+2y﹣6=0.(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y﹣2=x﹣2,即x﹣y=0.圆心到直线l的距离为,圆的半径为3,弦AB的长为.【点评】本题是基础题,考查直线与圆的位置关系,计算直线的斜率,点到直线的距离;直线与圆的特殊位置关系的应用是本题的关键.16.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BAD=45°,AB=2,AD=,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面PDF;(2)求证:平面PDF⊥平面PAB.【分析】(1)取PD的中点M,由三角形的中位线定理,结合已知条件,易证明四边形MEBF是平行四边形,且BE∥MF,结合线面平行的判定定理,即可得到BE∥平面PDF;(2)连接BD,由∵∠BAD=45°,AB=2,AD=,F为AB的中点,可得DF⊥AB,由PA⊥平面ABCD,可得PA⊥DF,结合线面垂直的判定定理可得DF⊥平面PAB,再由面面垂直的判定定理,即可得到平面PDF⊥平面PAB.【解答】证明:(1)取PD的中点M,∵E是PC的中点,∴ME是△PCD的中位线,∴ME∥FB,∴四边形MEBF是平行四边形,∴BE∥MF,∵BE⊄平面PDF,MF⊂平面PDF,∴BE∥平面PDF.(2)连接BD,∵∠BAD=45°,AB=2,AD=,F为AB的中点,∴DF⊥AB,又∵PA⊥平面ABCD,∴PA⊥DF,又由PA∩AB=A,∴DF⊥平面PAB,又∵DF⊂平面PDF,∴平面PDF⊥平面PAB.【点评】本题考查的知识点是直线与平面平行的判定,平面与平面垂直的判定,其中(1)的关键是证得BE∥MF,(2)的关键是证明DF⊥平面PAB.17.抛物线y=x2上有一点A的横坐标为a,其中a∈(0,1),过点A的抛物线的切线l交x轴及直线x=1于B,C两点,直线x=1交x轴于D点.(1)求直线l的方程;(2)求△BCD的面积S(a),并求出a为何值时S(a)有最大值.【分析】(1)利用导数的运算法则可得y′,利用导数的几何意义即可得到切线的斜率,进而得到切线的方程;(2)利用切线的方程即可得出点B,C的坐标,再利用三角形的面积公式,求得S(a),再由导数求得单调区间和最值,即可得出结论.【解答】解:(1)∵y=x2,∴y'=2x,可得切线l的斜率为2a,∴切线l的方程是y﹣a2=2a(x﹣a),即2ax﹣y﹣a2=0;(2)由2ax﹣y﹣a2=0,令y=0,解得x=,∴B(,0);令x=1,解得y=2a﹣a2,即C(1,2a﹣a2),∴|BD|=1﹣,|CD|=2a﹣a2,∴△BCD的面积S(a)=(1﹣)(2a﹣a2)=(a3﹣4a2+4a),S′(a)=(3a2﹣8a+4)=(3a﹣2)(a﹣2),令S'(a)=0,∵a∈(0,1),∴a=.当0<a<时,S'(a)>0;当<a<1时,S'(a)<0.∴a=时,S(a)有最大值.【点评】熟练掌握利用导数研究函数的单调性、极值与最值,导数的几何意义等是解题的关键.18.(文科班选做此题)已知a>0,p:∀x≥1,x﹣+2≥0恒成立,q:点P(1,1)在圆(x ﹣a)2+(y﹣a)2=4的外部,是否存在正数a,使得p∨q为真;p∧q假,若存在,请求出a 的范围;若不存在,请说明理由.【分析】根据条件求出的成立的等价条件,根据复合真假关系进行判断即可.【解答】解:若:∀x≥1,x﹣+2≥0,即x+2≥,即x2+2x≥a在x≥1时成立,设f(x)=x2+2x,则f(x)=(x+1)2﹣1,当x≥1时,函数f(x)为增函数,则函数f(x)的最小值为f(1)=1+2=3,则a≤3,即p:a≤3若点P(1,1)在圆(x﹣a)2+(y﹣a)2=4的外部,则(1﹣a)2+(1﹣a)2>4,即(a﹣1)2>2,即a>1+或a<1﹣,若存在正数a,使得p∨q为真;p∧q假,则p,q为一真一假,则此时p:0<a≤3,q:a>1+,若p真q假,则,得0<a≤1+,若p假q真,则,得a>3,综上0<a≤1+或a>3.【点评】本题主要考查复合真假的应用,根据条件求出的等价条件是解决本题的关键.19.求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.【分析】(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,利用向量法能求出异面直线A1B与C1D所成角的余弦值.(2)分别求出平面ABA1的法向量和平面ADC1的法向量,利用向量法能求出平面ADC1与ABA1所成二面角的余弦值,再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值.【解答】解:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4),∴,=(1,﹣1,﹣4),∴cos<>===,∴异面直线A1B与C1D所成角的余弦值为.(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴,取z=1,得y=﹣2,x=2,∴平面ADC1的法向量为,设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<>|=||=,∴sin θ==.∴平面ADC 1与ABA 1所成二面角的正弦值为.【点评】本题考查两条异面直线所成角的余弦值的求法,考查平面与平面所成角的正弦值的求法,解题时要注意向量法的合理运用.20.已知函数f (x )=(m ,n ∈R )在x=1处取到极值2(Ⅰ)求f (x )的解析式;(Ⅱ)设函数g (x )=ax ﹣lnx .若对任意的,总存在唯一的,使得g (x 2)=f (x 1),求实数a 的取值范围.【分析】(I )由已知中,函数,易求出导函数的解析式,再由函数在x=1处取到极值2,其导函数在x=1处等0,易构造一个关于m 的方程,解方程求出m 值,即可得到f (x )的解析式;(Ⅱ)由(I )我们可以求出函数导函数的解析式,进而可分别出函数f (X )的单调性,由此易判断f (x )在区间[,2]上的值域,由对任意的,总存在唯一的,使得g (x 2)=f (x 1),及函数g (x )=ax ﹣lnx .我们分别对a 值与e 及e 2的关系进行分类讨论,即可得到满足条件的实数a 的取值范围.【解答】解:(Ⅰ)f ′(x )==f(x)在x=1处取到极值2,故f′(1)=0,f(1)=2即,解得m=4,n=1,经检验,此时f(x)在x=1处取得极值.故(Ⅱ)由(Ⅰ)知,故f(x)在上单调递增,在(1,2)上单调递减,由,故f(x)的值域为依题意,记,∵x∈M∴(ⅰ)当a≤e时,g'(x)≤0,g(x),依题意由得,故此时(ⅱ)当e<a≤e2时,>>当时,g′(x)<0,当时,g′(x)>0.依题意由,得,即.与a>e矛盾(ⅲ)当a>e2时,<,此时g′(x)>0,g(x).依题意得即此不等式组无解综上,所求a取值范围为0<a≤ e【点评】本题考查的知识点是利用导数求闭区间上函数的最值,函数解析式的求解及常用方法,函数在某点取得极值的条件,其中根据已知条件构造关于m的方程,进而求出函数f (x)的解析式是解答的关键.21.已知椭圆E:+=1(a>b>0)的短轴为2,离心率为,直线x=my﹣1(m∈R)交椭圆E于A,B两点,O为坐标原点.(1)求椭圆E的方程;(2)求△OAB面积的最大值;(3)当m∈R时,判断点G(﹣2,0)与AB为直径的圆的位置关系,并说明理由.【分析】(1)运用椭圆的离心率公式和a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)设点A(x1,y1),B(x2,y2),直线方程与椭圆方程联立,利用根与系数的关系,求出|y1﹣y2|以及|0N|,表示出三角形OAB面积,利用换元法以及函数的单调性求出面积的最大值;(3)设AB中点为H(x0,y0),运用中点坐标公式可得y0,再由两点的距离公式可得|GH|,再由弦长公式,可得|AB|,作差|GH|2﹣|AB|2,化简整理,即可判断G与AB为直径的圆的位置关系.【解答】解:(1)由题意可得2b=2,e==,由a2﹣b2=c2,解得b=1,a=,c=,即有椭圆的方程为+y2=1;(2)设点A(x1,y1),B(x2,y2),由直线x=my﹣1代入椭圆的方程可得,(3+m2)y2﹣2my﹣2=0,判别式为4m2+8(3+m2)>0恒成立,y1+y2=,y1y2=﹣,设直线与x轴的交点为N(﹣1,0),|y1﹣y2|===,S△AOB=|ON||y1﹣y2|=×1×=,令=t(t≥),则m2=t2﹣2,∴S△AOB==,∵t≥,t+是增函数,∴当t=,即m=0时,S△AOB取得最大值,最大值为=.(3)AB中点为H(x0,y0).由(2)可得,y1+y2=,y1y2=﹣,∴y0==.G(﹣2,0),∴|GH|2=(x0+2)2+y02=(my0+1)2+y02=(1+m2)y02+2my0+1=(1+m2)++1,|AB|2=(1+m2)(y1﹣y2)2=(1+m2)[+],故|GH|2﹣|AB|2=(1+m2)++1﹣(1+m2)[+]=>0。
2017年江苏省无锡市高二(上)期末数学试卷((有答案))AlPKwA
2016-2017学年江苏省无锡市高二(上)期末数学试卷一、填空题:本大题共15小题,每小题5分,共70分).1.(5分)若直线(a﹣2)x﹣y+3=0的倾斜角为45°,则实数a的值为.2.(5分)设一辆汽车在公路上做加速直线运动,假设t秒时的速度为v(t)=3t2﹣1米/秒,则在2秒是加速度为米/秒2.3.(5分)圆x2+y2+4x﹣4y﹣8=0与圆x2+y2﹣2x+4y+1=0的位置关系是.4.(5分)在正四棱柱ABCD﹣A1B1C1D1中,若AA1=2AB,则异面直线BD1与CC1所成角的正切值为.5.(5分)设两条直线x+y﹣2=0,3x﹣y﹣2=0的交点为M,若点M在圆(x﹣m)2+y2=5内,则实数m的取值范围为.6.(5分)若点A(﹣6,y)在抛物线y2=﹣8x上,F为抛物线的焦点,则AF的长度为.7.(5分)已知一个圆锥的侧面积是50πcm2,若母线与底面所成角为60°,则此圆锥的底面半径为.8.(5分)如果正方体、球与等边圆柱(圆柱底面圆的直径与高相等)的体积相等,设它们的表面积依次为S1,S2,S3,则S1,S2,S3大小关系为.9.(5分)给出下列三个命题:①若命题p:2是实数,命题q:2是奇数,则p或q为真命题;②记函数f(x)是导函数为f′(x),若f′(x0)=0,则f(x0)是f(x)的极值;③“a=3”是“直线l1::x+ay﹣3=0,l2:(a﹣1)x+2ay+1=0平行“的充要条件.则真命题的序号是.10.(5分)(文)设f(x)=sinx﹣2cosx+1的导函数为f′(x),则f′()=.11.(理)设向量=(2,2s﹣2,t+2),=(4,2s+1,3t﹣2),且∥,则实数s+t=.12.(5分)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,有以下结论:①GH与EF平行;②BE与MN为异面直线;③GH与AF成60°角;④MN∥平面ADF;其中正确结论的序号是.13.(5分)过双曲线﹣=1(a>0,b>0)的左焦点F作圆x2+y2=a2的切线,切点为M,延长FM交双曲线右支于点P,若M为FP的中点,则双曲线的离心率是.14.(5分)已知f(x)=ax+,g(x)=e x﹣3ax,a>0,若对∀x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)总有解,则实数a的取值范围为.15.(5分)已知直线ax+by+c=0始终平分圆C:x2+y2﹣2x+4y﹣4=0(C为圆心)的周长,设直线l:(2a﹣b)x+(2b﹣c)y+(2c﹣a)=0,过点P(6,9)作l的垂线,垂足为H,则线段CH 长度的取值范围是.二、解答题:本大题共7小题,共90分.解答写出文字说明、证明过程或演算过程.16.(14分)设直线l1:mx﹣2my﹣6=0与l2:(3﹣m)x+my+m2﹣3m=0.(1)若l1∥l2,求l1,l2之间的距离;(2)若直线l2与两坐标轴的正半轴围成的三角形的面积最大,求直线l2的方程.17.(14分)如图,在四棱锥P﹣ABCD中,ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,PB⊥AB且AD=AB=BP=BC.(1)求证:CD⊥平面PBD;(2)已知点Q在PC上,若AC与BD交于点O,且AP∥平面BDQ,求证:OQ∥平面APD.18.(14分)已知直线l:y=2x+n,n∈R,圆M的圆心在y轴,且过点(1,1).(1)当n=﹣2时,若圆M与直线l相切,求该圆的方程;(2)设直线l关于y轴对称的直线为l′,试问直线l′与抛物线N:x2=6y是否相切?如果相切,求出切点坐标;如果不想切,请说明理由.19.(16分)(文科)已知m∈R,集合A={m|m2﹣am<12a2(a≠0)};集合B={m|方程+=1表示焦点在y轴上的椭圆},若“m∈A”是“m∈B”的充分不必要条件,求a的取值范围.20.(理科)如图,在正方体ABCD﹣A1B1C1D1,O是AC的中点,E是线段D1O上一点,且=λ.(1)若λ=,求异面直线DE与CD1所成角的余弦值;(2)若二面角D1﹣CE﹣D为π,求λ的值.21.(16分)已知函数f(x)=lnx+﹣2,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线方程为2x+y﹣3=0,求a的值;(2)求函数y=f(x)的单调区间;(3)若曲线y=f(x)都在直线(a+1)x+y﹣2(a﹣1)=0的上方,求正实数a的取值范围.22.(16分)如图,在平面直角坐标系xOy中,已知椭圆C:+=1(a>0,b>0)的离心率为,过C的左焦点F1,且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,直线l经过点B且垂直于x轴,点P是点C上异于A,B的任意一点,直线AP交直线l于点Q.①设直线OQ,BP的斜率分别为k1,k2,求证:k1•k2为定值;②当点P运动时,试判断点Q与以BP为直径的圆的位置关系?并证明你的结论.2016-2017学年江苏省无锡市高二(上)期末数学试卷参考答案与试题解析一、填空题:本大题共15小题,每小题5分,共70分).1.(5分)若直线(a﹣2)x﹣y+3=0的倾斜角为45°,则实数a的值为3.【解答】解:因为直线(a﹣2)x﹣y+3=0的倾斜角为45°,所以直线的斜率为tan45°=a﹣2=1,所以a=3;故答案为:3.2.(5分)设一辆汽车在公路上做加速直线运动,假设t秒时的速度为v(t)=3t2﹣1米/秒,则在2秒是加速度为12米/秒2.【解答】解:∵v(t)=3t2﹣1,∴v'(t)=6t,根据导数的物理意义,可知t=2时物体的加速度为即为v'(2),∴v'(2)=6×2=12,故答案为:12.3.(5分)圆x2+y2+4x﹣4y﹣8=0与圆x2+y2﹣2x+4y+1=0的位置关系是相交.【解答】解:圆x2+y2+4x﹣4y﹣8=0,即(x+2)2+(y﹣2)2 =16,表示以(﹣2,2)为圆心、半径等于4的圆.圆x2+y2﹣2x+4y+1=0,即(x﹣1)2+(y+2)2=4,表示以(1,﹣2)为圆心、半径等于2的圆.两个圆的圆心距为d==5,大于两圆的半径之差而小于半径之和,故两个圆的位置关系为相交,故答案为:相交.4.(5分)在正四棱柱ABCD﹣A1B1C1D1中,若AA1=2AB,则异面直线BD1与CC1所成角的正切值为.【解答】解:∵在正四棱柱ABCD﹣A1B1C1D1中,CC1∥BB1,∴∠B1BD1是异面直线BD1与CC1所成角,设AA1=2AB=2,则B1D1=,BB1=2,∴tan∠B1BD1==.∴异面直线BD1与CC1所成角的正切值为.故答案为:.5.(5分)设两条直线x+y﹣2=0,3x﹣y﹣2=0的交点为M,若点M在圆(x﹣m)2+y2=5内,则实数m的取值范围为(﹣1,3).【解答】解:由题意可知:,解得,交点(1,1),交点M在圆(x﹣m)2+y2=5的内部,可得(1﹣m)2+1<5,解得﹣1<m<3.∴实数m的取值范围为:(﹣1,3).故答案为:(﹣1,3).6.(5分)若点A(﹣6,y)在抛物线y2=﹣8x上,F为抛物线的焦点,则AF的长度为8.【解答】解:由于抛物线y2=﹣8x的焦点F(﹣2,0),其准线方程为x=2,该抛物线的一点A 到y轴距离为6,则点A到准线的距离为6+2=8,再由抛物线的定义可得|AF|=8,故答案为:8.7.(5分)已知一个圆锥的侧面积是50πcm2,若母线与底面所成角为60°,则此圆锥的底面半径为5.【解答】解:设圆锥的底面半径为R,则母线长为2R,∵圆锥的侧面积是50πcm2,∴50π=π×R×2R,解得R=5cm.故答案为5.8.(5分)如果正方体、球与等边圆柱(圆柱底面圆的直径与高相等)的体积相等,设它们的表面积依次为S1,S2,S3,则S1,S2,S3大小关系为S2<S3<S1.【解答】解:设球的半径为R,正方体的棱长为a,等边圆柱的底面半径为r,且它们的体积都为V,则V=,解得,a=,r=,∴S1=6×a2=6()2=6=,S2=4πR2=4π()2=,S3=2π=.∴S2<S3<S1.故答案为:S2<S3<S1.9.(5分)给出下列三个命题:①若命题p:2是实数,命题q:2是奇数,则p或q为真命题;②记函数f(x)是导函数为f′(x),若f′(x0)=0,则f(x0)是f(x)的极值;③“a=3”是“直线l1::x+ay﹣3=0,l2:(a﹣1)x+2ay+1=0平行“的充要条件.则真命题的序号是①.【解答】解:对于①,因为命题p为真,∴p或q为真命题,故正确;对于②,例如函数f(x)=x3满足f′(0)=0,但f(0)不是f(x)的极值,故错;对于③,当a=0时,直线l1::x+ay﹣3=0,l2:(a﹣1)x+2ay+1=0平行,故错;故答案为:①10.(5分)(文)设f(x)=sinx﹣2cosx+1的导函数为f′(x),则f′()=.【解答】解:f(x)=sinx﹣2cosx+1的导函数为f′(x)=cosx+2sinx,∴f′()=cos+2sin=﹣+2×=,故答案为:11.(理)设向量=(2,2s﹣2,t+2),=(4,2s+1,3t﹣2),且∥,则实数s+t=.【解答】解:∵∥,∴存在实数k,使得=k,则,解得k=,s=,t=6.∴s+t=.故答案为:.12.(5分)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,有以下结论:①GH与EF平行;②BE与MN为异面直线;③GH与AF成60°角;④MN∥平面ADF;其中正确结论的序号是③④.【解答】解:正四面体的平面展开图还原成正四面体,如图:在①中,GH与EF是异面直线,故①错误;在②中,BE与MN相交于点N,故②错误;在③中,∵GH∥AD,∴GH与AF成60°角,故③正确;在④中,∵MN∥AF,∴MN∥平面ADF,故④正确.故答案为:③④.13.(5分)过双曲线﹣=1(a>0,b>0)的左焦点F作圆x2+y2=a2的切线,切点为M,延长FM交双曲线右支于点P,若M为FP的中点,则双曲线的离心率是.【解答】解:如图|OF|=c,|OM|=a,|FG|=2c;∴|F|=b,又∵M为PF的中点,|PG|=2|OM|=2a,|PF|=2b,∴|PF|﹣|PG|=2b﹣2a=2a;∴b=2a,∴c=a,∴e==.故答案为.14.(5分)已知f(x)=ax+,g(x)=e x﹣3ax,a>0,若对∀x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)总有解,则实数a的取值范围为[,+∞).【解答】解:当x∈(0,1)时,f(x)=ax+为减函数,由f(1)=2a得:f(x)的值域为(2a,+∞),若若对∀x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)总有解,则g(x)的值域B应满足(2a,+∞)⊆B,令g′(x)=e x﹣3a=0,则e x=3a,即x=ln3a,若ln3a≤1,即3a≤e,此时g(x)>g(1)=e﹣3a,此时由e﹣3a≤2a得:≤a≤,若ln3a>1,即3a>e,g(x)=(1,ln3a)上为减函数,在(ln3a,+∞)上为增函数,此时当x=ln3a时,函数取最小值3a(1﹣ln3a)<0<2a满足条件;综上可得:实数a的取值范围为[,+∞)故答案为:[,+∞).15.(5分)已知直线ax+by+c=0始终平分圆C:x2+y2﹣2x+4y﹣4=0(C为圆心)的周长,设直线l:(2a﹣b)x+(2b﹣c)y+(2c﹣a)=0,过点P(6,9)作l的垂线,垂足为H,则线段CH 长度的取值范围是[] .【解答】解:由题意,圆心C(1,﹣2)在直线ax+by+c=0上,可得a﹣2b+c=0,即c=2b﹣a.直线l:(2a﹣b)x+(2b﹣c)y+(2c﹣a)=0,即a(2x+y﹣3)+b(4﹣x)=0,由,可得x=4,y=﹣5,即直线过定点M(4,﹣5),由题意,H在以PM为直径的圆上,圆心为A(5,2),方程为(x﹣5)2+(y﹣2)2=50,∵|CA|=4∴CH最小为5=,CH最大为4,∴线段CH长度的取值范围是[].故答案为[].二、解答题:本大题共7小题,共90分.解答写出文字说明、证明过程或演算过程.16.(14分)设直线l1:mx﹣2my﹣6=0与l2:(3﹣m)x+my+m2﹣3m=0.(1)若l1∥l2,求l1,l2之间的距离;(2)若直线l2与两坐标轴的正半轴围成的三角形的面积最大,求直线l2的方程.【解答】解:(1)若l1∥l2,则,∴m=6,∴l1:x﹣2y﹣1=0,l2:x﹣2y﹣6=0∴l1,l2之间的距离d==;(2)由题意,,∴0<m<3,直线l2与两坐标轴的正半轴围成的三角形的面积S=m(3﹣m)=+,∴m=时,S最大为,此时直线l2的方程为2x+2y﹣3=0.17.(14分)如图,在四棱锥P﹣ABCD中,ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,PB⊥AB且AD=AB=BP=BC.(1)求证:CD⊥平面PBD;(2)已知点Q在PC上,若AC与BD交于点O,且AP∥平面BDQ,求证:OQ∥平面APD.【解答】证明:(1)∵平面PAB⊥平面ABCD,PB⊥AB,平面PAB∩平面ABCD=AB,∴PB⊥平面ABCD,∵CD⊂平面ABCD,∴CD⊥PB,∵AD=AB=BC,∠BAD=90°,∴BD=AD,BC=2AD,∠DBC=45°,∴∠BDC=90°,∴CD⊥BD,∵PB∩BD=B,∴CD⊥平面PBD;(2)∵AP∥平面BDQ,∴AP∥OQ,∵OQ⊄平面APD,AP⊂平面APD,∴OQ∥平面APD.18.(14分)已知直线l:y=2x+n,n∈R,圆M的圆心在y轴,且过点(1,1).(1)当n=﹣2时,若圆M与直线l相切,求该圆的方程;(2)设直线l关于y轴对称的直线为l′,试问直线l′与抛物线N:x2=6y是否相切?如果相切,求出切点坐标;如果不想切,请说明理由.【解答】解:(1)设M的方程为x2+(y﹣b)2=r2,(1,1)代入,可得1+(1﹣b)2=r2,①∵直线l与圆M相切,∴=r,②由①②可得b=3或,∴M的方程为x2+(y﹣3)2=5,或x2+(y﹣)2=,(2)因为直线l的方程为y=2x+n所以直线l′的方程为y=﹣2x+n.与抛物线联立得x2+12x﹣6n=0.△=144+24n①当n=﹣6,即△=0时,直线l′与抛物线C相切;,切点坐标为(﹣6,6)②当n≠﹣6,即△≠0时,直线l′与抛物线C不相切.19.(16分)(文科)已知m∈R,集合A={m|m2﹣am<12a2(a≠0)};集合B={m|方程+=1表示焦点在y轴上的椭圆},若“m∈A”是“m∈B”的充分不必要条件,求a的取值范围.【解答】解:对于集合A,由m2﹣am<12a2,故(m﹣4a)(m+3a)<0,对于集合B,解,解得:﹣4<m<2;①a>0时,集合A:﹣3a<m<4a,若“m∈A”是“m∈B”的充分不必要条件,则,解得:0<a<;②a<0时,集合A:a<m<﹣3a,若“m∈A”是“m∈B”的充分不必要条件,则,解得:﹣<a<0,综上:a∈(﹣,0)∪(0,).20.(理科)如图,在正方体ABCD﹣A1B1C1D1,O是AC的中点,E是线段D1O上一点,且=λ.(1)若λ=,求异面直线DE与CD1所成角的余弦值;(2)若二面角D1﹣CE﹣D为π,求λ的值.【解答】解:(1)设正方体的棱长为1,分别以DA、DC、DD1为x,y,z轴,建立空间直角坐标系,则A(1,0,0),O(,0),C(0,1,0),D1(0,0,1),D(0,0,0),设E(x0,y0,z0),∵=,∴=,∴(x0,y0,z0﹣1)=(,,﹣x0),解得x0=,y0=,z0=,E(,,),∴=(,,),CD1=(0,﹣1,1),∴cos<,>==,∴异面直线DE与CD1所成角的余弦值为.(2)设平面CD1E的法向量为=(x,y,z),=(,0),=(0,﹣1,1),=(0,1,0),则,取z=1,得=(1,1,1),由=λ,0≤λ≤1,得E(,,),=(,,),设平面CDE的法向量=(x,y,z),则,取x=﹣2,得=(﹣2,0,λ),∵二面角D1﹣CE﹣D为π,∴|cos|==,由0≤λ≤1,解得λ=8﹣2.21.(16分)已知函数f(x)=lnx+﹣2,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线方程为2x+y﹣3=0,求a的值;(2)求函数y=f(x)的单调区间;(3)若曲线y=f(x)都在直线(a+1)x+y﹣2(a﹣1)=0的上方,求正实数a的取值范围.【解答】解:(1)函数的定义域是(0,+∞),f′(x)=﹣,f′(1)=1﹣a,f(1)=a﹣2,故曲线y=f(x)在(1,f(1))处的曲线方程是:y﹣(a﹣2)=(1﹣a)(x﹣1),即(a﹣1)x+y﹣2a+3=0,又曲线y=f(x)在(1,f(1))处的切线为:2x+y﹣3=0,故a=3;(2)由于f′(x)=,①若a≤0,对于x∈(0,+∞),f′(x)>0恒成立,即f(x)在(0,+∞)递增,故函数的递增区间是(0,+∞);②若a>0,当x∈(0,a)时,f′(x)<0,f(x)递减,x∈(a,+∞)时,f′(x)>0,f(x)递增,故f(x)在(0,a)递减,在(a,+∞)递增;(3)a>0时,直线即y=﹣(a+1)x+2(a﹣1),令g(x)=f(x)﹣[﹣(a+1)x+2(a﹣1)]=lnx++(a+1)x﹣2a,g′(x)=,∵a>0,x>0,∴a+1>0,x+1>0,且∈(0,1),当0<x<时,g′(x)<0,g(x)在(0,)递减,x>时,g′(x)>0,g(x)在(,+∞)递增,故x=时,g(x)取得最小值ln+a+1+a﹣2a=1+ln,∵曲线y=f(x)都在直线(a+1)x+y﹣2(a﹣1)=0的上方,故g(x)≥0,故g(x)min=1+ln>0,>,a>,故a的范围是(,+∞).22.(16分)如图,在平面直角坐标系xOy中,已知椭圆C:+=1(a>0,b>0)的离心率为,过C的左焦点F1,且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,直线l经过点B且垂直于x轴,点P是点C上异于A,B的任意一点,直线AP交直线l于点Q.①设直线OQ,BP的斜率分别为k1,k2,求证:k1•k2为定值;②当点P运动时,试判断点Q与以BP为直径的圆的位置关系?并证明你的结论.【解答】解(1):由离心率e===,可得a2=4b2,∵过点F 垂直于x轴的直线被椭圆所截得弦长为1,∴=1,解得b=1,a=2,∴椭圆C方程为+y2=1.(2)①证明:令P(x0,y0),点A(﹣2,0)则直线PA的方程为y=(x+2),令x=2,得y=,则Q点的坐标为(2,)∴k1=,k2=.∴k1•k2=,∵P(x0,y0)满足+y2=1,则∴k1•k2=﹣,②以BP为直径的圆的方程为(x﹣2)(x﹣x0)+y(y﹣y0)=0,把Q点(2,)代入方程左边,得(﹣y0)=4=4•=4•.(*),∵x0∈(﹣2,2),∴x0+2>0,∴(*)>0,∴Q与以BP为直径的圆外,。
2020届江苏省无锡市2017级高三上学期期末考试数学试卷及解析
2020届江苏省无锡市2017级高三上学期期末考试数学试卷★祝考试顺利★(解析版)一、填空题1.集合{|21,}A x x k k Z ==-∈,{1,2,3,4}B =,则A B =_____.【答案】{1,3}【解析】分析出集合A 为奇数构成的集合,即可求得交集.【详解】因为21,k k Z -∈表示为奇数,故A B ={1,3}.故答案为:{1,3}2.已知复数z a bi =+(),a b ∈R ,且满足9iz i =+(其中i 为虚数单位),则a b +=____.【答案】8-【解析】计算出2iz ai bi b ai =+=-+,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【详解】2iz ai bi b ai =+=-+,所以1,9a b ==-,所以8a b +=-.故答案为:-83.某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时7分钟,有15人用时为8分钟,还有4人用时为10分钟,则高二(4)班全体同学用餐平均用时为____分钟.【答案】7.5【解析】分别求出所有人用时总和再除以总人数即可得到平均数. 详解】76+147+1584107.5714154⨯⨯⨯+⨯=+++ 故答案为:7.54.函数()(1)3x f x a =--(1,2)a a >≠过定点________.【答案】(0,2)-【解析】令0x =,(0)132f =-=-,与参数无关,即可得到定点.【详解】由指数函数的性质,可得0x =,函数值与参数无关,所有()(1)3x f x a =--过定点(0,2)-.故答案为:(0,2)-5.等差数列{}n a (公差不为0),其中1a ,2a ,6a 成等比数列,则这个等比数列的公比为_____.【答案】4【解析】根据等差数列关系,用首项和公差表示出2216a a a =,解出首项和公差的关系,即可得解.【详解】设等差数列{}n a 的公差为d ,由题意得: 2216a a a =,则2111(+)(5)a d a a d =+整理得13d a =,2114a a d a =+=,所以21=4a a 故答案为:46.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____. 【答案】12【解析】从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有246C =种,小李会其中的三道题,则抽到的2道题小李都会的情况共有233C =种, 所以其概率为23241=2C C . 故答案为:12。