电机正反转实验
电机正反转的实验报告
电机正反转的实验报告电机正反转的实验报告引言:电机是现代工业中常见的一种设备,它通过电能转换为机械能,广泛应用于各个领域。
电机的正反转是其基本运行方式之一,本实验旨在探究电机正反转的原理和实现方法。
一、实验目的本实验的目的是通过搭建电路和观察实验现象,深入理解电机正反转的原理和实现方式。
二、实验材料和仪器1. 电源:直流电源2. 电机:直流电机3. 电路元件:开关、电阻、导线等4. 测量工具:万用表、示波器等三、实验原理电机正反转的原理基于电磁感应和洛伦兹力。
当直流电通过电机的线圈时,线圈中产生磁场,根据洛伦兹力的作用,电机会产生转矩,使转子转动。
而电机的正反转则通过改变电流的方向来实现。
四、实验步骤1. 搭建电路:将电机与电源、开关和电阻等元件连接起来,确保电路连接正确无误。
2. 观察电机转动方向:打开电源,观察电机的转动方向。
记录下电机正转和反转时的转动方向。
3. 改变电流方向:通过改变电流的方向,实现电机的正反转。
观察电机的转动方向是否与预期一致。
4. 测量电流和电压:使用万用表测量电路中的电流和电压数值,并记录下来。
5. 分析实验结果:根据实验结果,分析电机正反转的原理和实现方式。
五、实验结果与分析通过实验观察和测量,我们得到了以下结果:1. 电机正转时,转子顺时针旋转;反转时,转子逆时针旋转。
2. 改变电流方向可以实现电机的正反转。
3. 在正转和反转时,电流和电压的数值有所变化,但变化范围较小。
根据以上结果,我们可以得出以下结论:1. 电机正反转是由电流方向的改变所引起的。
2. 电机的正反转与转子的旋转方向有关,与电流的大小无关。
六、实验总结通过本次实验,我们深入了解了电机正反转的原理和实现方式。
电机的正反转是基于电磁感应和洛伦兹力的,通过改变电流方向可以实现电机的正反转。
实验结果表明,电机的正反转与转子的旋转方向相关,与电流的大小无关。
本实验的实验步骤简单明了,实验结果准确可靠。
通过实验,我们对电机正反转的原理有了更深入的理解,为今后的学习和研究奠定了基础。
电动机正反转实验报告
电动机正反转实验报告
实验目的:掌握电动机正反转的原理和实验方法,了解电动机的工作原理和性能。
实验设备:电动机、直流电源、电动机驱动电路、电流表、电压表、开关、连接导线等。
实验原理:电动机是一种将电能转化为机械能的装置。
当电流通过电动机的线圈时,产生磁场与电源磁场相互作用,产生电磁力,使电动机发生运动。
实验步骤:
1. 将电动机接入电路。
根据电动机的接线方式,将电动机的正负极分别与电源的正负极相连。
2. 打开电源。
调整电源电压,并通过电压表测量电源电压。
3. 控制电动机正反转。
通过调节电动机驱动电路中的电流方向和大小,控制电动机的正反转。
实验中可以使用开关控制电动机的正反转。
4. 观察电动机的正反转现象。
正转时电动机的转子开始旋转,反转时电动机的转子逆时针旋转。
5. 测量电动机的电流和电压。
使用电流表测量电动机的电流,使用电压表测量电动机的电压。
通过测量得到的电流和电压数
据,可以计算出电动机的功率和效率。
实验结果:
1. 电动机正反转实验表明,电动机能够根据电流的正反方向改变转动方向。
2. 通过测量得到的电流和电压数据可以计算出电动机的功率和效率。
实验总结:
通过本次实验,我们深入了解了电动机的正反转原理和实验方法。
电动机能够将电能转化为机械能,实现正反转的控制。
掌握了这一原理和方法,我们可以更好地理解和应用电动机,提高电动机的使用效率和性能。
电机正反转接线实验报告
电机正反转接线实验报告电机正反转接线实验报告电机正反转接线实验报告一、实验目的1、掌握三相异步电动机正反转的原理和方法。
2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。
二、实验设备三相鼠笼异步电动机、继电接触控制挂箱等三、实验方法1.为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。
2.为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在ABCFR1KM1KM2Q1L1220VL2L3FU1FU2FU3FU4KM2KM1KM1KM1KM电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。
三、互锁环节:具有禁止功能在线路中起安全保护作用1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。
当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。
四、电动机正向(或反向)启动运转后,不必先按停止按钮使电动机停止,可以直接按反向(或正向)启动按钮,使电动机变为反方向运行。
五、电动机的过载保护由热继电器FR完成。
三.注意事项1、检查主回路路的接线是否正确,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。
2、检查接线无误后,通电试验,通电试验时为防止意外,应先将电动机的接线断开。
扩展阅读:电机正反转接线图5电机正反转接线图为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。
电机正反转控制实验报告
电机正反转控制实验报告
实验名称,电机正反转控制实验。
实验目的,通过实验掌握电机正反转的控制方法,加深对电机控制原理的理解。
实验设备,电机、电源、开关、控制器、示波器。
实验原理,电机正反转的控制实质上是通过改变电机的供电极性来实现的。
在直流电机中,交换电机的两个电源线的极性可以使电机正反转。
在实际应用中,通过控制器可以实现对电机的正反转控制。
实验步骤:
1. 将电机与电源连接,通过开关控制电机的通断。
2. 使用控制器来控制电机的正反转,观察电机的运行状态。
3. 使用示波器来观察电机正反转时电流和电压的变化情况。
实验结果:
通过实验观察和数据记录,我们发现通过控制器可以很好地实
现对电机的正反转控制。
当改变电机的供电极性时,电机的运转方
向也随之改变。
同时,通过示波器观察到电流和电压在正反转过程
中的变化情况,验证了电机正反转的控制实验结果。
实验结论:
通过本次实验,我们深入了解了电机正反转控制的原理和方法,掌握了电机正反转的控制技术。
这对于今后在工程和实际应用中对
电机进行控制具有重要的意义。
同时,通过实验我们也加深了对电
机控制原理的理解,为进一步深入学习和研究电机控制奠定了基础。
电动机正反转控制实验报告
电动机正反转控制实验报告电动机正反转控制实验报告引言:电动机是现代工业中最常见的设备之一,广泛应用于各个领域。
电动机的正反转控制是电机控制中的基础问题之一,对于实现电机的灵活运行和精确控制具有重要意义。
本实验旨在通过对电动机正反转控制的研究,深入了解电动机的工作原理和控制方法。
一、实验原理1. 电动机的工作原理电动机是将电能转化为机械能的装置,其工作原理基于电磁感应现象。
当通过电动机绕组中通入电流时,产生的磁场与定子磁场相互作用,使电动机转子受到力矩作用而转动。
2. 正反转控制原理电动机的正反转控制是通过改变电动机绕组中的电流方向来实现的。
当电流方向与磁场方向一致时,电动机正转;当电流方向与磁场方向相反时,电动机反转。
二、实验器材和方法1. 实验器材本实验所需器材包括电动机、电源、开关、继电器等。
2. 实验方法(1)搭建电动机正反转控制电路。
(2)接通电源,观察电动机的运行状态。
(3)通过控制开关和继电器,改变电流方向,观察电动机的正反转效果。
(4)记录实验数据并进行分析。
三、实验结果与分析通过实验观察,我们成功实现了电动机的正反转控制。
当电流方向与磁场方向一致时,电动机正转;当电流方向与磁场方向相反时,电动机反转。
这表明电动机的运行状态与电流方向密切相关。
在实验过程中,我们还发现了电动机正反转的时间延迟现象。
当改变电流方向后,电动机并不会立即改变转动方向,而是有一个短暂的停顿时间。
这是由于电动机内部的机械结构和电磁感应的特性所决定的。
这个时间延迟现象需要在实际应用中进行合理的控制和调整。
此外,我们还观察到电动机在正反转过程中的能耗差异。
在电动机正转时,电流方向与磁场方向一致,能耗较低;而在电动机反转时,电流方向与磁场方向相反,能耗较高。
这对于电动机的能源管理和效率提升具有一定的指导意义。
四、实验总结通过本次实验,我们深入了解了电动机正反转控制的原理和方法。
电动机的正反转控制是电机控制中的基础问题,对于实现电机的灵活运行和精确控制具有重要意义。
电机正反转实验报告
电机正反转实验报告
PLC实验报告
实验名称:
实验时间:
电动机基本控制单元杨键61翟俊66张万权71自动化2012-1-11
一、实验目的
1.能够制作I/O分配表;
2.能够独立完成程序的编辑;
3.能够调试并运行程序;
4.能够学以致用,把所学习的知识融会贯通来控制电机的运行;
5.能够在所学习的基础上有所创新,让电机有一些新的功能;
二、实验内容
(1)电动机的正反转控制及运行(必须实现)
(2)可以延时自动切换正反转,可以手动,或者其他控制想法,可自由发挥。
视实现难度评分。
I/O分配表
三、小结与体会
通过本次试验,使我对“运动控制系统”这门课程中电机的运行有了形象直观的了解,通过程序控制电机的启停,以及正反转的转换,形象的展现出在理论课上所学习的抽象的难以理解的知识。
在编辑的过程中,我们遇到的麻烦不少,就像正反转不能同时运行,否则会损坏电机,因此在编程时的自锁与互锁就尤为
重要,而且三相电的连线方法也必须正确,否则无法正常运行。
在解决这些问题.的过程中,我们不断的战胜困难,不断进取,不断创新,最终取得了胜利的果实。
精品资料欢迎下载。
电动机正反转实验报告
电动机正反转实验报告电动机正反转实验报告实验一三相异步电动机的正反转控制线路一、实验目的1、掌握三相异步电动机正反转的原理和方法。
2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。
二、实验设备三相鼠笼异步电动机、继电接触控制挂箱等三、实验方法1、接触器联锁正反转控制线路(1)按下“关”按钮切断交流电源,按下列图接线。
经指导老师检查无误后,按下“开”按钮通电操作。
(2)合上电源开关Q1,接通220V三相交流电源。
(3)按下SB1,观察并记录电动机M的转向、接触器自锁和联锁触点的吸断情况。
(4)按下SB3,观察并记录M运转状态、接触器各触点的吸断情况。
(5)再按下SB2,观察并记录M的转向、接触器自锁和联锁触点的吸断情况。
图1接触器联锁正反转控制线路ABCFR1KM1KM2Q1220VL1L2L3FU1FU2FU3FU4KM2KM1KM1KM1KM3、按钮联锁正反转控制线路(1)按下“关”按钮切断交流电源。
按图2接线。
经检查无误后,按下“开”按钮通电操作。
(2)合上电源开关Q1,接通220V三相交流电源。
(3)按下SB1,观察并记录电动机M的转向、各触点的吸断情况。
(4)按下SB3,观察并记录电动机M的转向、各触点的吸断情况。
(5)按下SB2,观察并记录电动机M的转向、各触点的吸断情况。
220VL2L1Q1L3FU2FU3FU1FU4KM1KM2FR1SB2SB1图2按钮联锁正反转控制线路ABC四、分析题1、接触器和按钮的联锁触点在继电接触控制中起到什么作用?实验二交流电机变频调速控制系统一实验目的1.掌握交流变频调速系统的组成及基础原理;2.掌握变频器常用控制参数的设定方法;3.掌握由变频器控制交流电机多段速度及正反向运转的方法。
二实验设备1.变频器;2.交流电机。
三、实验方法(一)注意事项参考变频器的端子接线图,完成变频器和交流电机的接线。
主要使用端子为RST;UVW;PLCFWDREVBXRSTX1X2X3X4CM。
电动机正反转控制实验心得
电动机正反转控制实验心得概述电动机是现代社会生活中广泛应用的一种设备,它能将电能转化为机械能,广泛应用于工业生产、家用电器等领域。
在实际应用中,电动机使用正反转功能非常重要,可以实现设备的多功能操作。
本文将详细介绍电动机正反转控制的实验心得和经验总结。
实验目的通过实验,探究电动机正反转的控制方法,加深对电动机原理的理解,培养实际操作技能。
实验设备与材料•电动机•电源•开关•电阻箱•电压表•电流表•连接线等实验步骤1.将电动机、电源、开关和电阻箱等设备连接好,按照电路图正确接线。
2.打开电源,确认电路连接无误。
3.将开关拨到正转位置,观察电动机的运动方向。
4.将开关拨到反转位置,观察电动机的运动方向。
5.根据实验需要,调整电阻箱的阻值,观察电动机的转速变化。
实验结果与分析根据实验步骤进行操作,实验结果如下:正转控制1.开关拨到正转位置,电动机正转运行,方向与预期一致。
2.调整电阻箱的阻值,观察转速变化,阻值越小,转速越快。
反转控制1.开关拨到反转位置,电动机反转运行,方向与预期一致。
2.调整电阻箱的阻值,观察转速变化,阻值越小,转速越快。
实验心得•电动机正反转控制是实际操作中常见的一种需求,掌握相关原理和方法对于工程技术人员非常重要。
•在实验过程中,要保证电路连接准确,确保实验结果的准确性。
•实验过程中观察电动机的运动方向和转速变化,能更好地理解电动机的工作原理,加深对电机学的理解。
•对于不同型号、不同功率的电动机,可能需要调整电阻箱的阻值来控制转速,需要根据实际情况进行调整。
•在操作过程中,要注意安全,避免触电、短路等意外情况的发生。
实验总结本次实验通过对电动机的正反转控制进行了实际操作,加深了对电动机工作原理的理解。
实验中注意了电路连接的准确性,观察了电动机的运动方向和转速变化。
实验过程中注意了安全事项,避免了操作中的意外发生。
通过本次实验,我掌握了电动机正反转控制的方法和技巧,在实际工作中能够更好地应用电动机。
步进电机正反转实验报告
一、实验名称:
步进电机正反转训练
二、控制要求
要求实现电机的正转三圈, 反转三圈, 电机正转和反转的频率可不相同, 然后这样循环3次, 3次后电机停止转动。
三、PLC I/O地址分配表
PLC的I/O地址连接的外部设备
Y0 电机转向输出点控制转速点CP
Y1 电机的转速输出点控制转向点CW
四、程序梯形图
五、程序分析:
M11.M12、M13的波形图M21.M22.M23的波形图
电机正转的频率是20赫兹, 通过MOV指令送到D5中, 在电机正传三圈后, 电机反转, 反转的频率是40赫兹, 通过MOV指令送到D5中。
电机正转3次, 反转2次, 再通过M23得电进入正转, 重复上面的循环, 即电机正转后再反转, M23才得电一次, 所以可以加一个M23控制一个计数器计数, 当计数器计数到3时, 再通过计数器的常闭开关把M10线圈断电, 从而实现电机停止。
1实验一 电动机正反转
1实验一电动机正反转实验一:电动机正反转引言:电动机是一种将电能转化为机械能的装置,广泛应用于各个领域。
在很多应用场景中,需要控制电动机的转向。
本实验旨在通过控制电动机的接线和转向开关,实现电动机的正转和反转。
一、实验目的:1.了解电动机的基本原理和工作方式。
2.熟悉控制电动机正转和反转的方法。
3.实现电动机正转和反转的操作。
二、实验器材:1.电动机2.转向开关3.电源4.导线5.万用表三、实验步骤:1.接线:将电动机的正极和负极分别与电源正极和负极相连,用导线连接好后,将电源接通。
2.转向开关:将转向开关与电动机的中心引线连接。
转向开关共有三个接口,分别为正极、中心引线和负极。
将中心引线与电动机的引线相连。
3.实验操作:(1)首先将电源开关打开,确认电动机接线正确无误。
(2)将转向开关调整到正转位置,观察电动机的转动情况。
(3)将转向开关调整到反转位置,观察电动机的转动情况。
(4)重复上述步骤,确认电动机的正转和反转正常运行。
四、实验记录与分析:1.实验记录:观察电动机在不同转向开关位置下的转动情况,并记录相关数据。
2.实验分析:根据实验记录,分析电动机正转和反转的原因。
正转时,电流通过电动机的线圈方向和磁场方向一致,产生力矩使电动机正转;反转时,电流通过电动机的线圈方向和磁场方向相反,产生力矩使电动机反转。
五、实验结论:通过实验,我们成功实现了电动机的正转和反转操作,并观察到了电动机在不同转向开关位置下的转动情况。
根据实验结果,我们可以得出结论:通过控制电流的方向和转向开关的位置,可以实现电动机的正转和反转。
六、实验总结:通过本次实验,我们更加深入地了解了电动机的工作原理和控制方法,掌握了电动机的正转和反转的操作。
在实际应用中,控制电动机的正转和反转对于实现特定功能非常重要,例如车辆的行驶、机器人的活动等。
通过不断的实验和学习,我们能够更好地应用电动机,并解决实际问题。
七、实验安全注意事项:1.实验时应注意电源的使用安全,避免触电事故的发生。
电动机正反转控制实验心得
电动机正反转控制实验心得一、实验目的本次实验的主要目的是了解电动机正反转控制原理,掌握电动机正反转控制的基本方法和技巧,以及通过实验验证电动机正反转控制的正确性。
二、实验原理1. 电动机正反转控制原理电动机正反转控制是指通过改变电动机绕组中的相序来改变其旋转方向。
在三相交流电路中,相序是指三相交流电压波形中各个相位之间的先后顺序。
当三相交流电压波形中各个相位之间的先后顺序发生改变时,由于三相绕组所受到的磁场方向也随之改变,因此可以改变电动机旋转方向。
2. 电动机正反转控制方法(1)交换两个绕组端子将两个绕组端子交换位置即可改变其旋转方向。
这种方法适用于单相异步电动机和直流电动机。
(2)更换接线板上的接线方式更换接线板上的接线方式可以改变三相异步电动机旋转方向。
具体方法为:将接线板上任意两条不同颜色的导线互换位置即可。
(3)使用单极性开关控制电源极性使用单极性开关控制电源极性可以改变直流电动机旋转方向。
具体方法为:在电源正负极之间接一个单极性开关,通过控制开关的状态来改变电源的正负极性。
三、实验步骤1. 准备工作(1)检查实验设备和器材是否正常工作。
(2)将电动机连接到电源上,确认其旋转方向。
(3)将实验仪器和器材按照实验要求连接好。
2. 实验操作(1)使用交换两个绕组端子的方法改变单相异步电动机旋转方向,并记录下观察结果。
(2)更换接线板上的接线方式,改变三相异步电动机旋转方向,并记录下观察结果。
(3)使用单极性开关控制直流电动机旋转方向,并记录下观察结果。
3. 实验注意事项(1)在操作实验设备和器材时要小心谨慎,不要造成任何损坏或意外事故。
(2)在更换接线板上的接线方式时,一定要注意正确连接各个导线,并检查无误后再进行实验操作。
四、实验结果分析通过本次实验,我成功地掌握了电动机正反转控制的基本方法和技巧,并通过实验验证了其正确性。
在实验过程中,我发现交换两个绕组端子的方法适用于单相异步电动机和直流电动机,更换接线板上的接线方式可以改变三相异步电动机旋转方向,使用单极性开关控制直流电动机旋转方向也是可行的。
电机正反转实验报告
电机正反转实验报告实验目的本实验旨在通过电机正反转的实验,让学生了解电机的性能及运行原理,培养学生实验操作能力。
实验器材和仪器电机、电源、电流表、电压表、开关。
实验原理电机是运用电磁学原理制成的能把电能转换成机械能的装置。
电机的转矩大小与通过它的电流大小成正比,转速与电压成正比。
在电机正转时,电流从电源的正极流向电机的一个端子,从另一个端子流回电源的负极。
进入电机的电流经过电枢线圈,感受到磁力作用力,因而转动电机的转子。
在电机反转时,电流的流向反过来,故电机的转向也相应地反向。
实验步骤1. 把电机与电源连接好。
2. 把电流表和电压表分别连接在电机电源的两端,以便测量电机电压和电流。
3. 打开电源,调节电压,使电压恰好可以使电机运行。
4. 断开电源,交换两个接线,再接通电源,使电机反转。
5. 分别测量电机正/反转时的电流值和电压值,记录下来。
实验结果和分析实验测得如下结果:电机正转:电流为1.2A,电压为6V电机反转:电流为1.1A,电压为5.8V实验结果表明,在相同的电压下,电机正转时的电流略大于反转时的电流,这是因为正转时电枢内部的磁场与外部电磁场方向相同,从而能够得到更大的力矩。
而反转时,电枢内部的磁场与外部电磁场方向相反,产生的力矩也相应地减小。
结论电机正转时的电流略大于反转时的电流,这是由于正转时电机内部的磁场与外部电磁场方向相同,产生的力矩较大。
而反转时,电机内部的磁场与外部电磁场方向相反,产生的力矩也相应地减小。
参考文献王自忠.机电一体化实验教程.北京:高等教育出版社,2015.。
电机正反转实训报告
电机正反转实训报告引言实训是大学生学习和实践的重要环节,通过实训,我们能够将课堂上学到的知识与实际操作相结合,加深对理论的理解和应用。
本次实训的主题是电机正反转,通过实际操作与观察,我们将学习并掌握电机正反转的原理和方法,提高我们的实际动手能力。
一、实训内容本次实训的主要内容是掌握通过开关控制电机正反转的原理和方法。
首先,我们需要了解电机的基本原理,电机是将电能转化为机械能的装置,通过导线中的电流与磁场相互作用产生电磁力,从而使电机转动。
在电机正反转过程中,需要通过改变电流方向或者改变磁场方向来实现。
二、实训步骤1. 连接电路首先,我们需要连接电路,将电机与电源以及开关相连。
请注意,在连接电路时,一定要确保电源已经关闭,以免发生触电等意外事故。
2. 电机正转实验接下来,我们开始进行电机正转实验。
首先,将电源接通,观察电机是否正转。
如果电机静止不动或者反转,那么说明电机接线错误,需要重新连接。
3. 电机反转实验当电机正转正常后,我们开始进行电机反转实验。
首先,我们需要改变电流方向,实现电机反转。
这一步需要通过改变连接电机的导线的位置来实现。
在实际操作中,我们可以选择简单的将导线拔下来重新插入相反的位置,或者通过开关控制电流的正反转。
4. 观察与记录在进行实验的过程中,我们需要观察电机正反转的现象,并记录下来。
可以记录下电机的转速,以及正反转时的声音等特点。
通过观察与记录,我们可以更加深入地理解电机正反转的原理和特点。
三、实训收获1. 掌握电机正反转原理通过本次实训,我们深入理解了电机正反转的原理和方法。
电机正反转是通过改变电流方向或者改变磁场方向来实现的,这一点对于我们后续的学习和实践都非常重要。
2. 增强实际动手能力通过实际操作,我们提高了我们的实际动手能力。
在实训的过程中,我们需要仔细观察和操作,确保连接正确并且能够准确控制电机的转动方向,这对我们今后的实际工作和生活都非常有帮助。
3. 团队合作能力的提升本次实训是以小组为单位进行的,通过和同伴一起进行实际操作,我们培养了团队合作和沟通的能力。
电机正反转实验
四、实验内容及步骤(包括仿真模型、程序代码、仿真数据、波形截图等)
1)三相异步电动机正、反转控制线路原理图如图4.1所示。
三相异步电动机接线请安异步电动机上方名牌提示接线(有2种方式)。
2)检查各电器元件的质量情况,了解其使用方法、结构及工作原理。
3)按图4.2所示放置好元器件的位置,按图4.1电路原理图接线,经指导老师检查无误后,可进行通电实验。
4)按下SB1按钮启动电机运转(反转)。
待电机稳定之后按下SB3按钮(停止),观察电机的启动和停车情况。
5)按下SB2按钮启动电机运转(正转)。
待电机稳定之后按下SB1按钮,观察电机的启动和停车情况。
6)断开电源开关QF,在KM1的自锁辅助触头中插入纸片,再合上开关QF后,再按下SB1,观察并记录状况。
7)拉开电源开关QF,抽出KM1中的纸片,再合上QF,按下按钮SB1,观察并记录。
图4.1 接触器联锁正反转电机控制原理图
表4-1 I/O分配表
序号符号功能描述
1 I0.0 正转输入信号
2 I0.1 反转输入信号
3 I0.2 停止输入信号
4 Q0.0 输出到KM1线圈
5 Q0.1 输出到KM2线圈
图4.2 正反转控制电路接线图
图4.3 实际编程图
实验成绩评定(教师填写)。
电动机正反转实验总结
电动机正反转实验总结
实验目的,通过实验验证电动机的正反转原理,了解电动机的工作原理和特性。
实验原理,电动机是将电能转换为机械能的装置,其工作原理是利用电磁感应
原理。
当电流通过电动机的线圈时,会在线圈周围产生磁场,根据洛伦兹力的作用,线圈会受到力的作用而转动,实现正反转。
实验材料,电动机、直流电源、开关、导线等。
实验步骤:
1. 将电动机接入直流电源,观察电动机的转动方向;
2. 改变电源极性,再次观察电动机的转动方向;
3. 通过控制开关,实现电动机的正反转。
实验结果:
1. 当电动机接入直流电源时,根据右手定则,电动机按照特定方向转动;
2. 改变电源极性后,电动机的转动方向发生变化,验证了电动机的正反转原理;
3. 通过控制开关,可以实现电动机的正反转。
实验分析:
通过实验,我们验证了电动机的正反转原理。
在实际应用中,正反转是电动机
常见的工作状态,如风扇、洗衣机、电动车等都需要实现正反转。
了解电动机的正反转原理,有助于我们更好地应用和维护电动机设备。
实验总结:
本次实验通过实际操作验证了电动机的正反转原理,加深了对电动机工作原理
的理解。
通过实验,我们不仅学习了电动机的正反转原理,还掌握了实验操作的技巧和方法。
希望通过这次实验,能够对大家有所帮助,增进对电动机的认识和理解。
结语:
电动机的正反转原理是电机学习的基础,通过实验验证这一原理,有助于我们
更深入地理解电动机的工作原理和特性。
希望大家能够通过实验加深对电动机的认识,为今后的学习和工作打下坚实的基础。
电机正反转的实验报告
电机正反转的实验报告
《电机正反转的实验报告》
实验目的:通过实验观察电机在正反转过程中的工作原理和性能。
实验器材:直流电机、电源、开关、导线、螺丝刀。
实验步骤:
1. 将直流电机连接到电源上,确认电源电压和电机额定电压相匹配。
2. 用导线将电机与开关连接起来,确保电路连接正确。
3. 打开开关,观察电机的转动方向。
记录下正转时的转速和转动方向。
4. 关闭开关,将导线的两端交换连接,再次打开开关,观察电机的转动方向。
记录下反转时的转速和转动方向。
5. 重复以上步骤,进行多次实验,以确保实验结果的准确性。
实验结果:
在正转时,电机按照设定的方向转动,转速稳定,转动方向一致。
在反转时,电机按照相反的方向转动,转速与正转时基本一致,转动方向相反。
实验分析:
电机正反转的原理是由电机内部的电磁场和电流方向决定的。
在正转时,电流通过导线产生的磁场与电机内部的磁场相互作用,导致电机产生转动力矩,从而实现正转。
而在反转时,改变电流方向后,电机内部的磁场与外部磁场相互作用的方向发生改变,导致电机产生相反方向的转动力矩,从而实现反转。
结论:
通过实验观察和分析,我们验证了电机在正反转过程中的工作原理和性能。
电机在正反转时能够稳定、准确地实现转动,这为电机在实际应用中的控制和运
行提供了重要的参考和基础。
实验中还可以通过改变电流大小、改变电机负载等条件,进一步探究电机正反转的性能和特点,以期更深入地理解电机的工作原理和应用。
电机拖动实验【电机正反转】
实验二按钮控制电动机正反转一.实验目的1、掌握控制电路的互锁工作原理2、熟悉看图接线二.实验器材1、、380V三相四线制电源(由DJDK-3型电工实验装置提供)2、三相闸刀开关1个3、交流接触器2个4、按键开关1个5、鼠笼式电动机1台6、万用表1个7、起子、钳子(自备)8、导线若干三.实验线路启/停电机控制线路连接如图1,主电路连接如图2。
图1、控制电路连线图图2、主电路接线图四.实验原理按下常开触点按钮时,控制电路中交流接触器1CJ得电,1CJ常开触点吸合,电机得电正转,1CJ对电路进行自锁,使电机可以持续正转。
当按下第一个开关的常闭时,1CJ线圈失电,电机停止转动。
当按下第二个按钮常开触点时,2CJ线圈得电吸合,电机开始反转,2CJ对电路进行自锁,使电机可以持续反转。
当按下第二个开关常闭时,2CJ失电,电机停止转动。
为了消除误操作在控制线路的两条之路上进行了互锁。
五.实验步骤注意:(该实验为380V强电实验,在实验过程中身体应该远离裸露在外的带电触点注意安全。
)1、阅读实验二讲义,看懂实验线路、理解实验原理。
2、按照实验电路图准备实验器材,用万用表检测实验器材是否完好。
3、按照实验电路图进行电路主线路和控制线路的连接。
4、检查线路是否连接正确。
5、把闸刀开关电源线和控制电路电源线依次接入到实验台控制面板上的三相调压电流保护一端的U端插孔、V端插孔和W端插孔。
6、合上闸刀开关,打开实验台上的钥匙总开关,按下实验台上的电压启动按钮后再按下第一支路电路中开关的常开触点。
7、观察实验现象,三分钟后再按下第一支路电路中开关的常闭触点,再按下第二支路电路中开关的常开触点。
8、观察实验现象,三分钟后再按下第二支路电路中开关的常闭触点。
8、按下实验台上的停止按钮,关闭实验台上的钥匙总开关,拔出各个电源线。
9、整理器材,写出实验报告。
电工实训正反转实验报告
一、实验目的1. 了解三相异步电动机的基本结构、工作原理及运行特性。
2. 掌握电动机正反转控制电路的接线方法和操作步骤。
3. 熟悉电动机正反转控制电路中的联锁和自锁原理。
4. 提高实际操作能力,培养严谨的实验态度。
二、实验原理1. 三相异步电动机正反转原理:通过改变电动机电源的相序,使电动机旋转方向改变。
在电动机的接线盒中,通过改变三相电源的相序,实现电动机的正反转。
2. 联锁原理:在电动机正反转控制电路中,为了防止电动机同时进行正转和反转,设置了联锁保护。
当电动机处于正转状态时,反转按钮无法操作;当电动机处于反转状态时,正转按钮无法操作。
3. 自锁原理:在电动机正反转控制电路中,为了使电动机在启动后能自动保持运行状态,设置了自锁保护。
当电动机启动后,控制电路中的自锁继电器吸合,使电动机持续运行。
三、实验器材1. 三相异步电动机一台2. 万能表一台3. 联动空气开关QS1一台4. 单向空气开关QS2一台5. 交流接触器KM1、KM2各一台6. 组合按钮SB1、SB2、SB3各一只7. 端子排7副8. 导线若干9. 螺丝刀一把四、实验步骤1. 根据实验原理图,连接三相异步电动机的主电路和控制电路。
2. 将三相异步电动机的电源接到联动空气开关QS1上,QS2作为保护开关。
3. 将交流接触器KM1、KM2的线圈分别接到控制电路中,KM1控制电动机正转,KM2控制电动机反转。
4. 将组合按钮SB1、SB2、SB3分别接到控制电路中,SB1为正转启动按钮,SB2为反转启动按钮,SB3为停止按钮。
5. 将端子排连接到相应的电器元件上,确保接线正确。
6. 合上QS1,检查电路连接无误。
7. 按下SB1,观察电动机是否正转;按下SB2,观察电动机是否反转;按下SB3,观察电动机是否停止。
8. 改变电动机电源的相序,观察电动机的旋转方向是否改变。
9. 检查电动机在正转和反转状态下的联锁和自锁功能是否正常。
五、实验结果与分析1. 实验结果:电动机能够按照预期实现正反转,并且在正转和反转状态下,联锁和自锁功能正常。
电机正反转的实验报告
电机正反转的实验报告电机正反转的实验报告概述:电机是现代生活中不可或缺的重要设备,它广泛应用于工业生产、交通运输、家用电器等领域。
在电机的正常运行中,正反转是一个基本功能。
本实验旨在通过搭建实验装置,观察和研究电机的正反转原理和实现方法。
实验目的:1. 了解电机正反转的基本原理;2. 掌握电机正反转的实验方法;3. 分析电机正反转时的电路变化。
实验器材:1. 直流电源;2. 电机;3. 开关;4. 电阻;5. 电压表。
实验步骤:1. 将直流电源接入实验电路,注意极性的正确连接;2. 将电机与电源相连,确保电机的正极与电源的正极相连,负极与负极相连;3. 将开关接入电路,使电机与电源之间隔开;4. 将电压表与电路串联,以测量电压的变化;5. 打开电源,观察电机的转动方向;6. 关闭电源,将电机的正负极互换,再次打开电源,观察电机的转动方向;7. 记录电压表的读数,并观察电机的转动情况;8. 将电阻接入电路,观察电机的转动变化。
实验结果:通过实验观察,我们得出以下结论:1. 当电机的正负极连接正确时,电机正常运行,转动方向与电机设计一致;2. 当电机的正负极互换时,电机反转,转动方向与正常运行相反;3. 当电阻接入电路时,电流减小,电机的转速下降。
实验分析:电机正反转的原理是基于电磁感应和洛伦兹力的作用。
当电流通过电机的线圈时,产生的磁场与永磁体的磁场相互作用,导致电机转动。
正常情况下,电机的正负极连接正确,电流通过线圈的方向与磁场的方向相逆,从而产生一个力矩使电机转动。
而当电机的正负极互换时,电流通过线圈的方向与磁场的方向相同,力矩方向相反,导致电机反转。
实验中引入电阻的目的是为了改变电路的电阻值,从而观察电机的转速变化。
电阻的引入会导致电路中的电流减小,进而影响电机的转动。
当电流减小时,电机的转速也会相应下降。
实验结论:电机正反转的实现是通过改变电机线圈中电流的方向来实现的。
正确连接电机的正负极可以使电机正常运行,而互换正负极则导致电机反转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电机正反转实验
一.实验目的
1.了解机床电气中三相电机的正反转控制和星三角启动控制。
2.掌握电动机的常规控制电路设计。
3.了解电动机电路的实际接线。
4.掌握GE FANUC 3I系统的电动机启动程序编写。
二.实验原理和电路
交流电动机有正转启动和反转启动,而且正反转可以切换,启动时,要求电动机先接成星型连接,过几秒钟再变成三角形连接运行。
PLC控制电动机的I/O 地址如下表所示:
PLC模拟控制电动机I/O地址表
输入输出
器件(触摸屏M)说明器件说明I1(M21)正转Q2 正转
I2(M22)反转Q3 星形
I3(M23)停止Q4 三角形
Q5 反转
电动机星三角启动电气接口图:
模块的现场接线
接线前请熟悉接线图,我们在这里简单介绍下输入输出模块的接线方法,在接下来的实验中不再赘述。
详细请见第一章的模块介绍。
●输入模块现场接线
IC694MDL645,数字量输入模块,提供一组共用一个公共端的16个输入点,如图所示。
该模块即可以接成共阴回路又可以接成共阳回路,这样在硬件接线时就非常灵巧方便。
但在本系统中,我们统一规定本模块接成共阳回路,即1号端子由系统提供负电源,外部输入共阳。
IC694MDL645数字量输入模块现场接线
●输出模块现场接线
IC694MDL754,数字输出模块,提供两组(每组16个)共32个输出点。
每组
有一个共用的电源输出端。
这种输出模块具有正逻辑特性;它向负载提供的源电流来自用户共用端或者到正电源总线。
输出装置连接在负电源总线和输出点之间。
这种模块的输出特性兼容很广的负载,例如:电动机、接触器、继电器,BCD 显示和指示灯。
用户必须提供现场操作装置的电源。
每个输出端用标有序号的发光二极管显示其工作状态(ON/OFF)。
这个模块上没有熔断器。
接线必须注意。
即:17端接正电源,18端接负电源及外部负载的共阴端。
IC694MDL754数字量输出模块现场接线
三:实验步骤:
1.编写PLC程序,可参照参考程序,并检查,保证其正确。
2.按照电器接口图接线。
3.下载程序。
4.置PLC于运行状态,按下启动键,观察电机运行。
5.实验结束后,关电源,整理实验器材。
四:实验器材
1.GE FANUC 3I系统一套
2.PYS3电机正反转模块一块
3.网线一根
4.KNT连接导线若干
五:预习要求
1.复习控制电机星三角启动电路和正反转电路。
2.熟悉本节实验原理、电路、内容及步骤。
六:实验报告要求
1.按照一定格式完成实验报告
2.在控制三相交流的实际电路中,电器接口应该如何连接?并采取哪些保
护措施
七:电动机星三角启动PLC控制参考程序如下所示:。