两角和与差的正弦
两角和和差的正弦公式
两角和和差的正弦公式正弦公式是三角函数中的基本公式之一,用于求解两角和和差的正弦值。
我们先来看一下两角和的正弦公式,然后再来推导两角差的正弦公式。
1.两角和的正弦公式:sin(A + B) = sin(A)cos(B) + cos(A)sin(B)其中A和B是任意两个角。
推导:根据向量的加法:设向量A的模为a,向量B的模为b,A与y轴的夹角为α,B与y轴的夹角为β,A与B的夹角为θ。
则向量A可以表示为:A = a(sinα, cosα)向量B可以表示为:B = b(sinβ, cosβ)向量A+B可以表示为:A+B = a(sinα, cosα) + b(sinβ, cosβ)= (asinα + bsinβ, acosα + bcosβ)设向量A+B与y轴的夹角为γ,则:tanγ = (asinα + bsinβ) / (acosα + bcosβ)根据三角函数的定义:sinγ = (asinα + bsinβ) / √[(asinα + bsinβ)² + (acosα + bcosβ)²]cosγ = (acosα + bcosβ) / √[(asinα +bsinβ)² + (acosα + bcosβ)²]根据正弦函数的定义:sin(A + B) = sinγ所以:sin(A + B) = (asinα + bsinβ) / √[(asinα + bsinβ)² + (acosα + bcosβ)²]= [(sinα + (b/a)sinβ) / √(1 + (b/a)cos(β - α))²]= (sinαcos(β - α) + sinβcos(β - α)) / √(1 +(b/a)cos(β - α))²= sinαcos(β - α) + sinβcos(β - α) / √(1 +2(b/a)cos(β - α) + (b/a)²cos²(β - α))= sinαcos(β - α) + sinβcos(β - α) / √(1 - sin²(β - α) + (b/a)²(cos(β - α))²)= sinαcos(β - α) + sinβcos(β - α) / √(cos²(β - α) - sin²(β - α) + (b/a)²(cos(β - α))²)由于sin²θ + cos²θ = 1,所以:sin(A + B) = sinαcos(β - α) + sinβcos(β - α) /√(cos²(β - α) - sin²(β - α) + (b/a)²(cos(β - α))²) = sinαcos(β - α) + sinβcos(β - α) / √cos²(β - α)(1 + (b/a)²cos²(β - α))= sinαcos(β - α) + sinβcos(β - α) / cos(β - α)√(1 + (b/a)²cos²(β - α))= sinα + (sinα/b)sinβ / √(1 + (b/a)²cos²(β - α))= sinα + (sinα/b)sinβ / √(1 + (b/a)²(1 - sin²(θ)))= sinα + (sinα/b)sinβ / √(1 + (b/a)² - (b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √(1 + sin²(α)/cos²(α) -(b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √(cos²(α)/cos²(α) +sin²(α)/cos²(α) - (b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √((cos²(α) + sin²(α))/cos²(α) - (b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √(1/cos²(α) - (b/a)²sin²(θ))由于1/cos²θ = sec²θ,所以:sin(A + B) = sinα + (sinα/b)sinβ / √(sec²(α) -(b/a)²sin²(θ))= sinα + (sinα/b)sinβ / √(1 + tan²(α) - (b/a)²sin²(θ)) = sinα + (sinα/b)sinβ / √(1 + (b/a)²sin²(θ)/cos²(α))= sinα + (sinα/b)sinβ / √(1 + (b/a)²tan²(θ))= sinα + (sinα/b)sinβ / √(1 + sin²(β)tan²(α))根据正弦函数的定义:sin(A + B) = sinα + (sinα/b)sinβ / √(1 +sin²(β)tan²(α))= sinα + sinβ(1/b) / √(1 + sin²(β)tan²(α))所以:sin(A + B) = sinα + sinβ(1/b) / √(1 + sin²(β)tan²(α))这就是两角和的正弦公式。
两角和与差的正弦公式
两角和与差的正弦公式在三角函数中,两角和与差的正弦公式是一组用于计算两个角度的和或差的正弦值的公式。
这两个公式是基于三角函数的相加和相减规则衍生出来的。
在本文中,我们将详细介绍两角和与差的正弦公式,并提供一些实际情景下使用这些公式的示例。
首先,我们来看两角和的正弦公式。
假设有两个角A和B,则它们的正弦和公式可以表示为:sin(A + B) = sinAcosB + cosAsinB这个公式可以通过以下的推导来证明。
根据三角函数的和差公式,我们有:sin(A + B) = sinAcosB + cosAsinB同样地,我们可以推导出两角差的正弦公式。
假设有两个角A和B,则它们的正弦差公式可以表示为:sin(A - B) = sinAcosB - cosAsinB这个公式可以通过以下的推导来证明。
根据三角函数的和差公式,我们有:sin(A - B) = sinAcos(-B) + cosAsin(-B)由于cos(-B) = cosB和sin(-B) = -sinB,我们可以将上式简化为:sin(A - B) = sinAcosB - cosAsinB现在,让我们通过一些实际情景的示例来演示这些公式的用途。
示例1:角度相加假设你正在走进一个圆形迷宫,迷宫的第一步是向前走30度,然后向右转45度。
你想知道这两个角度相加后,你面对的方向。
可以使用两角和的正弦公式来计算这个方向的正弦值,如下所示:sin(30 + 45) = sin30cos45 + cos30sin45根据正弦函数的数值,我们可以计算出:sin(30 + 45) = 0.5 * 0.707 + 0.866 * 0.707因此,我们可以得出:sin(30 + 45) = 0.354 + 0.612 = 0.966这意味着,你面对的方向的正弦值为0.966示例2:角度相减假设你正在拍摄一个汽车广告,希望通过两个镜头的角度来展示汽车的速度感。
两角和与差的正弦、余弦和正切公式
课 前 ·双 基 落 实
课 堂 ·考 点 突 破
课后· 三维演练
两角和与差的正弦、余弦和正切公式 结 束
5π 5 3.已知 α= ,则 cos 6 -2α的值为______. 5 π 5 解析:因为 α∈2,π,sin α= , 5 2 5 2 所以 cos α=- 1-sin α=- . 5 5 4 2 5 sin 2α=2sin αcos α=2× ×- =- , 5 5 5 5 2 3 2 cos 2α=1-2sin α=1-2× = , 5 5 5π 5π 5π 所以 cos 6 -2α =cos cos 2α+sin sin 2α 6 6 4+3 3 4+ 3 3 3 3 1 4 =- × + × -5 =- .答案:- 5 2 10 10 2 π α∈2,π,sin
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
两角和与差的正弦、余弦和正切公式 结 束
1 2.已知函数 f(x)=sin x-cos x,且 f′(x)= f(x),则 tan 2x 2 =________.
1 1 解析:因为 f′(x)=cos x+sin x= sin x- cos x, 2 2 所以 tan x=-3, -6 3 2tan x 所以 tan 2x= = = . 1-tan2x 1-9 4 3 答案: 4
所以 sin α=- 1-cos α=- 所以
π cos4 +α=cos
2
3 4 2 1- -5 =- , 5
π π cos α-sin sin α 4 4
2 3 2 4 2 2 = × -5 - × -5 = .答案: 2 2 10 10
两角和与差的正弦余弦正切公式
两角和与差的正弦余弦正切公式两角和的公式可以表示为:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)两角差的公式可以表示为:sin(A - B) = sinA * cosB - cosA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式可以通过三角函数的定义及相关几何知识进行推导。
我们以sin(A + B)的公式为例进行推导。
设点P(x, y)在单位圆上,与x轴正半轴的夹角为A + B。
则点P的坐标为(x, y) = (cos(A + B), sin(A + B))。
根据三角函数的定义可知:x = cos(A + B)y = sin(A + B)在单位圆上再取点Q(x', y'),与x轴正半轴的夹角为A,点Q的坐标为(x', y') = (cosA, sinA)。
同理再取点R(x'', y''),与x轴正半轴的夹角为B,点R的坐标为(x'', y'') = (cosB, sinB)。
由于圆上任意两点间的距离为1,因此PQ与PR的长度均为1,可以分别表示为:PQ = sqrt((x - x')^2 + (y - y')^2)PR = sqrt((x - x'')^2 + (y - y'')^2)同时利用勾股定理可知:PQ^2 = (x - x')^2 + (y - y')^2 = (cos(A + B) - cosA)^2 + (sin(A + B) - sinA)^2PR^2 = (x - x'')^2 + (y - y'')^2 = (cos(A + B) - cosB)^2 + (sin(A + B) - sinB)^2将上述两个式子相加得:PQ^2 + PR^2 = (cos(A + B) - cosA)^2 + (sin(A + B) - sinA)^2 + (cos(A + B) - cosB)^2 + (sin(A + B) - sinB)^2展开计算可得:PQ^2 + PR^2 = 2 + 2 * (cos(A + B) * cosA + sin(A + B) * sinA - cos(A + B) * cosB - sin(A + B) * sinB)利用三角函数的和角公式可进一步化简:PQ^2 + PR^2 = 2 + 2 * (cosA * cos(A + B) + sinA * sin(A + B) - cosB * cos(A + B) - sinB * sin(A + B))= 2 + 2 * (cosA * cos(A + B) - sinA * sin(A + B) + cosB * cos(A + B) - sinB * sin(A + B))利用余弦函数的差角公式可进一步化简:PQ^2 + PR^2 = 2 + 2 * (cos(A + B - A) + cos(A + B + A) - cos(B - A) - cos(B + A))= 2 + 2 * (cosA + cos(B + A) - cos(B - A) - cosA)= 2 + 2 * (cosA + cosB * cosA - sinB * sinA - cosB * cosA + sinB * sinA)= 2 + 2 * cosA因此,PQ^2 + PR^2 = 2 + 2 * cosA。
两角和与差的正弦正切
sin( )
sin( )
两角和与差的正切公式:
问题2:根据正切函数与正弦,余弦函数的关系, 从和差的正弦,余弦公式出发,能否推导出任意 角α,β的和与差的正切公式。
eg7.已 知tan , tan 是 方 程6 x 2 5 x 1 0的 两 根 3 且0 , , 求 2 2 (1) tan( )及 的 值 ( 2) sin2 ( ) cos( ) sin( ) 3 cos 2 ( )的 值
4
)
( 2) tan( )
eg6.(1)已知A B , 求(1 tan A)(1 tan B )的值。 4 ( 2)求(1 tan 10 )(1 tan 20 ) (1 tan 440 )(1 tan 450 )的值。 ( 3)斜ABC中,求证: A tan B tan C tan A tan B tan C tan
1 1 2 eg10.已知ABC中A,B,C成等差数列,且 , cosA cosC cosB A-C 求cos . 2
题型三:凑角求值
4 12 eg 3.已 知sin( ) ,cos( ) ,且 2 5 2 13
为 第 二 象 限 角 , 为 第 三 象 限 角 , 2 2 求cos 的值。 2
4 练习:已知 (0, ), cos( ) , ( , ) 3 3 5 6 2 2 cos( ) , 求 cos( )的值。 6 2
两角和与差的正弦公式
两角和与差的正弦公式
首先,让我们来看两角和的正弦公式。
假设有两个角A和B,它们的正弦分别为sinA和sinB。
那么,根据两角和的正弦公式,我们有:sin(A + B) = sinA * cosB + cosA * sinB
这个公式表达了两个角的正弦之和与它们的正弦和余弦的乘积之间的关系。
根据这个公式,我们可以通过已知一个角的正弦、余弦和另一个角的正弦来求解两个角的和的正弦。
接下来,我们来看两角差的正弦公式。
同样假设有两个角A和B,它们的正弦分别为sinA和sinB。
那么,根据两角差的正弦公式,我们有:sin(A - B) = sinA * cosB - cosA * sinB
与两角和的公式相比,两角差的公式只是将正弦的符号变为减号,其余部分完全一致。
根据这个公式,我们可以通过已知一个角的正弦、余弦和另一个角的正弦来求解两个角的差的正弦。
需要注意的是,两角和与差的正弦公式是基于三角函数的基本定义和三角恒等式推导出来的。
在使用这些公式时,我们需要了解它们的证明过程和数学原理,以便能够正确地应用它们。
此外,两角和与差的正弦公式还可以进一步推广到其他三角函数,如余弦和正切等。
它们的形式类似,只是将公式中的正弦替换为对应的三角函数即可。
总结起来,两角和与差的正弦公式在解决三角方程和简化三角函数问题时起到了重要的作用。
通过合理运用这些公式,我们可以将复杂的问题
转化为简单的计算,并得到精确的结果。
这不仅在数学学习中非常有帮助,同时也在实际应用中具有重要价值。
两角和和差的正弦公式
两角和和差的正弦公式在三角函数的学习中,我们经常会遇到求两角的和或差的正弦值的问题。
为了解决这类问题,我们需要掌握两角和和差的正弦公式。
设A和B为两个角,则有:sin(A ± B) = sinA * cosB ± cosA * sinB其中,"+"号适用于求两角的正弦和,"-"号适用于求两角的正弦差。
与两角和的公式类似,设A和B为两个角,则有:sin(A ± B) = sinA * cosB ∓ cosA * sinB其中,"+"号适用于求两角的正弦和,"-"号适用于求两角的正弦差。
下面我们来证明这两个公式。
1.两角和的正弦公式的证明:我们假设一个单位圆O,以O为中心,OA为半径作出角A,以OB为半径作出角B。
设这两条半径与其终边的交点分别为C和D。
根据三角函数的定义,我们可以得到:sinA = OC / OA cosA = AC / OAsinB = OD / OB cosB = BD / OB现在我们要求两角和的正弦值,即sin(A + B),根据正弦的定义可得:sin(A + B) = OD / OA同时,根据平面几何知识,我们可以知道:OD = OC * cosB + OD * sinBOC=OCOA=OA代入前面的三角函数定义中,可以得到:OD / OA = (OC * cosB + OD * sinB) / OA进一步化简,有:sin(A + B) = cosB * sinA + sinB * cosA由此证得,两角和的正弦公式成立。
2.两角差的正弦公式的证明:同样假设单位圆O,以O为中心,OA为半径作出角A,以OB为半径作出角B。
根据三角函数的定义,我们可以得到:sinA = OC / OA cosA = AC / OAsinB = OD / OB cosB = BD / OB现在我们要求两角差的正弦值,即sin(A - B),根据正弦的定义可得:sin(A - B) = OD / OA同时,根据平面几何知识,我们可以知道:OD = OC * cosB - OD * sinBOC=OCOA=OA代入前面的三角函数定义中,可以得到:OD / OA = (OC * cosB - OD * sinB) / OA进一步化简,有:sin(A - B) = cosB * sinA - sinB * cosA由此证得,两角差的正弦公式成立。
两角和与差的正弦_正切公式
= sin 60 cos 45 cos 60 sin 45 3 2 1 2 2 2 2 2 6 2 4
6 2 (2) 15 sin 4
解: tan15=
tan(4530)
tan45 o - tan30 o o o 1+ tan45 tan30
3 1 3 3 3 12 6 3 2 3 6 3 3 3 1 3
3 例2:已知 sin a , 是第四象限的角,求 sin( ), 5 4 cos( ), tan( )的值。 4 4 3 解:由sin =- , 是第四象限的角,得 5 4 2 3 2 cos 1 sin 1 ( 5 ) , 5 sin 3 所以 tan cos 4
Sα +β SC CS
sin( ) sin cos cos sin
Sα -β SC CS
公式特征: 1、“S C S C ,符号依然”
2、公式中的α,β是任意角。
cos(-)= coscos+sinsin ( C(-) ) cos(+)= coscos-sinsin ( C(+) ) sin(+)= sincos+cossin ( S(+) ) sin(-)= sincos-cossin ( S(-) ) 思考:两角和与差的正切公式是怎样的呢?
变形:
tanα+ tanβ= tan(α+β)(1- tanαtanβ)
tanα- tanβ= tan(α-β)(1+ tanαtanβ)
tan tan (1 tanαtanβ)= tan( )
3.1.2两角和与差的正弦、正切公式
两角和与差的正弦课件
03
CHAPTER
两角和与差的正弦公式的扩 展
半角公式
半角公式
sin(A/2) = ±√[(1-cosA)/2]
应用
在解三角形问题中,利用半角公式可以求得角度的半角值,进而求得角度的精确值。
积化和差与和差化积公式
积化和差公式
sinAcosB = 1/2[sin(A+B) + sin(A-B)]
05
CHAPTER
两角和与差的正弦公式的注 意事项
公式使用的条件
01
02
03
公式适用范围
两角和与差的正弦公式适 用于角度在$0$到$pi$之 间的情况,超出此范围需 要特别处理。
角度单位统一
在使用公式时,需要确保 角度的单位统一,一般以 弧度为单位。
特殊角的处理
对于一些特殊角,如 $frac{pi}{2}$,需要特别 注意公式的应用,避免出 现错误的结果。
在三角函数图象和性质中的应用
两角和与差的正弦公式在研究三角函数的图象和性质时也 具有重要意义。通过运用正弦公式,可以推导出一些三角 函数的性质,如周期性、奇偶性等。
在绘制三角函数的图象时,可以利用正弦公式计算出不同 角度下的正弦值,从而绘制出完整的正弦函数图象。此外 ,在研究三角函数的对称性和周期性时,也需要用到两角 和与差的正弦公式。
公式推导过程
总结词
详细描述了如何推导两角和与差的正弦公式。
详细描述
首先,利用三角函数的加法公式,将sin(α+β)表示为sinαcosβ + cosαsinβ。然后, 利用三角函数的减法公式,将sin(α-β)表示为sinαcosβ - cosαsinβ。通过这两个公 式,可以方便地计算出任意两个角度的和与差的正弦值。
两角和与差的正弦、余弦和正切公式(含解析)
归纳与技巧:两角和与差的正弦、余弦和正切公式基础知识归纳1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.常用的公式变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4.基础题必做1. 若tan α=3,则sin 2αcos 2α的值等于( )A .2B .3C .4D .6解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 2.sin 68°sin 67°-sin 23°cos 68°的值为( )A .-22B.22C.32D .1解析:选B 原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 3.已知sin α=23,则cos(π-2α)等于( )A .-53 B .-19C.19D.53解析:选B cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.4.(教材习题改编)若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4=________ 解析:由已知条件sin α=-1-cos 2α=-35,sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=-7210. 答案:-72105.若tan ⎝⎛⎭⎫α+π4=25,则tan α=________. 解析:tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=25, 即5tan α+5=2-2tan α. 则7tan α=-3,故tan α=-37.答案:-37解题方法归纳1.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.三角函数公式的应用 典题导入[例1] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. [自主解答] (1)∵f (x )=2sin ⎝⎛⎭⎫13x -π6, ∴f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65, ∴2sin α=1013,2sin ⎝⎛⎭⎫β+π2=65. 即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665.解题方法归纳两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.(2) 已知α为锐角,cos α=55,则tan ⎝⎛⎭⎫π4+2α=( ) A .-3 B .-17C .-43D .-7 解析:(1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π,∴cos α=-45. ∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝⎛⎭⎫π4+2α=1-431+43=-17. 答案:(1)-75 (2)B三角函数公式的逆用与变形应用典题导入[例2] 已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. [自主解答] (1)∵f (x )=2cos 2x2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎫x +π3,∴周期T =2π,f (x )的值域为[-1,3].(2)∵f ⎝⎛⎭⎫α-π3=13,∴1+2cos α=13,即cos α=-13. ∵α为第二象限角,∴sin α=223. ∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.解题方法归纳运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1) 已知sin ⎝⎛⎭⎫α+π6+cos α=435,则sin ⎝⎛⎭⎫α+π3的值为( ) A.45 B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎫α+π3=45. (2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2角 的 变 换 典题导入[例3] (1) 若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2) 设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. [自主解答] (1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.故tan(β-2α)=tan [(β-α)-α] =tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.(2)因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425, cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. [答案] (1)43 (2)17250解题方法归纳1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧: α=2·α2;α=(α+β)-β;α=β-(β-α); α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)]; π4+α=π2-⎝⎛⎭⎫π4-α;α=π4-⎝⎛⎭⎫π4-α.以题试法3.设tan ()α+β=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4=( ) A.1318 B.1322 C.322D.16解析:选C tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.1. 设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, tan(α+β)=tan α+tan β1-tan αtan β=-3.2. 已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ) A .-233B .±233C .-1D .±1解析:选C cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=-1. 3. 已知α满足sin α=12,那么sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α的值为( ) A.14 B .-14C.12D .-12解析:选A 依题意得,sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos ⎝⎛⎭⎫π4+α=12sin ⎝⎛⎭⎫π2+2α=12cos 2α=12(1-2sin 2α)=14.4.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值和最小正周期为( )A .1,πB .2,π C.2,2πD.3,2π解析:选B 由题意得f ′(x )=3x 2+b , f ′(1)=3+b =4,b =1. 所以g (x )=3sin 2x +b cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 故函数的最大值为2,最小正周期为π. 5. 设α、β都是锐角,且cos α=55,sin ()α+β=35,则cos β=( ) A.2525B.255C.2525或255D.55或525 解析:选A 依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α、β均为锐角,因此0<α<α+β<π, cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.6.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53. 7. 满足sin π5sin x +cos 4π5cos x =12的锐角x =________.解析:由已知可得 cos 4π5cos x +sin 4π5sin x =12,即cos ⎝⎛⎭⎫4π5-x =12,又x 是锐角,所以4π5-x =π3,即x =7π15.答案:7π158.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α=________. 解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12sin 2αcos 2α =cos 2αsin 2α·12sin 2αcos 2α=12. 答案:129. 已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45.又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35.∴cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-35×⎝⎛⎭⎫-13+45×223 =3+8215.答案:3+821510.已知α∈⎝⎛⎭⎫0,π2,tan α=12,求tan 2α和sin ⎝⎛⎭⎫2α+π3的值. 解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1, ∴5sin 2α=1,而α∈⎝⎛⎭⎫0,π2, ∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. 11.已知:0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=45. (1)求sin 2β的值; (2)求cos ⎝⎛⎭⎫α+π4的值.解:(1)法一:∵cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin β=22cos β+22sin β=13, ∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79. (2)∵0<α<π2<β<π, ∴π4<β<-π4<34π,π2<α+β<3π2, ∴sin ⎝⎛⎭⎫β-π4>0,cos (α+β)<0. ∵cos ⎝⎛⎭⎫β-π4=13,sin (α+β)=45, ∴sin ⎝⎛⎭⎫β-π4=223,cos (α+β)=-35. ∴cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos (α+β)cos ⎝⎛⎭⎫β-π4 =-35×13+45×223=82-315. 12. 函数f(x)=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2,x ∈R . (1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝⎛⎭⎫0,π2,求tan ⎝⎛⎭⎫α+π4的值. 解:(1)f (x )=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 故f (x )的最小正周期T =2π12=4π. (2)由f (α)=2105,得sin α2+cos α2=2105, 则⎝⎛⎭⎫sin α2+cos α22=⎝⎛⎭⎫21052, 即1+sin α=85,解得sin α=35,又α∈⎝⎛⎭⎫0,π2,则cos α=1-sin 2α= 1-925=45, 故tan α=sin αcos α=34, 所以tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.1.若tan α=lg(10a ),tan β=lg ⎝⎛⎭⎫1a ,且α+β=π4,则实数a 的值为( ) A .1B.110 C .1或110 D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝⎛⎭⎫1a 1-lg (10a )·lg ⎝⎛⎭⎫1a =1⇒lg 2a +lg a =0, 所以lg a =0或lg a =-1,即a =1或110. 2.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:123.已知sin α+cos α=355,α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35,β∈⎝⎛⎭⎫π4,π2. (1)求sin 2α和tan 2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,∴sin 2α=45.又2α∈⎝⎛⎭⎫0,π2,∴cos 2α=1-sin 22α=35, ∴tan 2α=sin 2αcos 2α=43. (2)∵β∈⎝⎛⎭⎫π4,π2,β-π4∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35, ∴cos ⎝⎛⎭⎫β-π4=45, 于是sin 2⎝⎛⎭⎫β-π4=2sin ⎝⎛⎭⎫β-π4cos ⎝⎛⎭⎫β-π4=2425. 又sin 2⎝⎛⎭⎫β-π4=-cos 2β, ∴cos 2β=-2425, 又∵2β∈⎝⎛⎭⎫π2,π,∴sin 2β=725, 又∵cos 2α=1+cos 2α2=45⎝⎛⎭⎫α∈⎝⎛⎭⎫0,π4, ∴cos α=255,sin α=55. ∴cos(α+2β)=cos αcos 2β-sin αsin 2β=255 ×⎝⎛⎭⎫-2425-55×725=-11525.1. 已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎡⎦⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值.解:(1)令f (x )=0,得sin x ·(3sin x +cos x )=0, 所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎡⎦⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎡⎦⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6,π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32. 因为x ∈⎣⎡⎦⎤π2,π,所以2x -π3∈⎣⎡⎦⎤2π3,5π3. 所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3; 当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32. 2.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; 解:∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π. ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β = 1-⎝⎛⎭⎫232=53,sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2 = 1-⎝⎛⎭⎫-192=459. ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =-19×53+459×23=7527. ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.。
两角和与差的公式
两角和与差的正弦、余弦、正切公式1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)设sin 2α=-sin α,α∈(π2,π),则tan 2α= 3.( √ )1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.2.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34 B.34 C .-43 D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34.3.(2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,且θ为第二象限角,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.4.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为1.题型一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1D .3(2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33B .-33 C.539D .-69答案 (1)A (2)C解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.故选A. (2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4, ∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.故选C.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35 B.45 C .-35D .-45(2)计算:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°)=________.答案 (1)A (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A. 2 B.22 C.12D.32(2)化简:2cos 4x -2cos 2x +122tan (π4-x )sin 2(π4+x )=________.(3)求值:cos 15°+sin 15°cos 15°-sin 15°=________.答案 (1)B (2)12cos 2x (3) 3解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22.故选B. (2)原式=12(4cos 4x -4cos 2x +1)2×sin (π4-x )cos (π4-x )·cos 2(π4-x )=(2cos 2x -1)24sin (π4-x )cos (π4-x )=cos 22x 2sin (π2-2x )=cos 22x 2cos 2x =12cos 2x .(3)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.答案 (1)cos α (2) 3解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cosα2=(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tanA +C2=3, 所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=________,cos β=________.(2)(2013·课标全国Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16 B.13 C.12 D.23 答案 (1)-1010 95010 (2)A 解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,选A.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.高考中的三角函数求值、化简问题典例:(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=________.(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2(3)(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53 B .-59 C.59 D.53(4)(2012·重庆)sin 47°-sin 17°cos 30°cos 17°等于( )A .-32 B .-12 C.12 D.32思维点拨 (1)注意和差公式的逆用及变形.(2)“切化弦”,利用和差公式、诱导公式找α,β的关系. (3)可以利用sin 2α+cos 2α=1寻求sin α±cos α与sin αcos α的联系. (4)利用和角公式将已知式子中的角向特殊角转化. 解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.(3)方法一 ∵sin α+cos α=33,∴(sin α+cos α)2=13, ∴2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角, ∴cos 2α=-1-sin 22α=-53. 方法二 由sin α+cos α=33两边平方得1+2sin αcos α=13, ∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α=153.由⎩⎨⎧ sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧ sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53. (4)原式=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17° =sin 30°cos 17°cos 17°=sin 30°=12. 答案 (1)3+22 (2)B (3)A (4)C温馨提醒 (1)三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.(2)三角求值要注意角的变换,掌握常见的配角技巧.方法与技巧1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.A组专项基础训练(时间:30分钟)1.已知tan(α+β)=25,tan⎝⎛⎭⎫β-π4=14,那么tan⎝⎛⎭⎫α+π4等于() A.1318 B.1322 C.322 D.16答案 C解析因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以tan⎝⎛⎭⎫α+π4=tan⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan(α+β)-tan⎝⎛⎭⎫β-π41+tan(α+β)tan⎝⎛⎭⎫β-π4=322.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于()A.35 B.45 C.74 D.34答案 D解析由sin 2θ=387和sin2θ+cos2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为( ) A .4 3B.654 C .4 D.233答案 B解析 1+cos 2α+8sin 2αsin 2α=2cos 2α+8sin 2α2sin αcos α, ∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654. 4.(2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32 C. 3 D .22-1 答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3. 5.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是( ) A .-233B .±233C .-1D .±1 答案 C解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1. 6. sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.3tan 12°-3(4cos212°-2)sin 12°=________.答案-4 3解析原式=3sin 12°cos 12°-32(2cos212°-1)sin 12°=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin(-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3.9.已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.解因为1+sin α1-sin α-1-sin α1+sin α=(1+sin α)2cos2α-(1-sin α)2cos2α=|1+sin α||cos α|-|1-sin α||cos α|=1+sin α-1+sin α|cos α|=2sin α|cos α|, 所以2sin α|cos α|=-2tan α=-2sin αcos α. 所以sin α=0或|cos α|=-cos α>0.故α的取值集合为{α|α=k π或2k π+π2<α<2k π+π或2k π+π<α<2k π+3π2,k ∈Z }. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310. B 组 专项能力提升(时间:25分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( ) A .-255 B .-3510 C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.12.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于() A.22 B.33 C. 2 D. 3答案 D解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.13.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=________.答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45,又由θ∈(0,π4),得2θ∈(0,π2),所以cos 2θ=1-sin 22θ=35,所以sin(2θ+π4)=sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210.14.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. (1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45, 两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2, ∴[f (β)]2-2=4sin 2π4-2=0. 15.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4). (1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围. 解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。
高考数学两角和与差的正弦、余弦和正切公式
11 4 3 3 .已知 cos(2α - β) =- , sin(α - 2β) = , 14 7 π π 0<β< <α< .则 cos(α+β)的值为________. 4 2
11 π 解析:∵cos(2α-β)=- 且 <2α-β<π, 14 4 5 3 ∴sin(2α-β)= . 14 ∵sin(α-2β)= 4 3 π π 且- <α-2β< , 7 4 2
1 ∴cos(α-2β)= , 7 ∴cos(α+β)=cos[(2α-β)-(α-2β)] =cos(2α-β)cos(α-2β)+sin(2α-β)sin(α-2β) 11 1 5 3 4 3 1 =- × + × = . 14 7 14 7 2 1 答案: 2
考点一
三角函数公式的基本应用 基础送分型考点——自主练透
7 答案:- 9
2. 在△ABC 中, 若 tan Atan B= tan A+tan B+1, 则 cos C 的值为________.
解析: 由 tan Atan B= tan A+ tan B+ 1, tan A+ tan B 可得 =- 1, 1- tan Atan B 即 tan(A+ B)=- 1,又 A+ B∈ (0, π), 3π 所以 A+ B= , 4 π 2 则 C= , cos C= . 4 2 2 答案: 2
4. 已知
π 2 π 3 tanα- = , tan +β= , 则 6 7 6 5
tan(α+ β)= ________.
π π 解析: tan(α+ β)=tanα- + + β 6 6 π π 3 2 tan α- + tan + β + 6 6 7 5 = = = 1. 3 2 π π 1- tan α- · tan + β 1-7×5 6 6
两角和与差的正弦余弦和正切公式
第六页,共43页。
3.(2013·课标全国卷Ⅱ)已知 sin 2α=23,是 cos2α+π4=
()
1
1
1
2
A.6
B.3
C.2
D.3
【解析】
∵sin
2α=23,∴cos2α+π4=1+cos22α+π2
=
1-sin 2
2α=1-2 23=16.
【答案】 A
第七页,共43页。
4.(2014·南昌质检)若ssiinn
θ 2cos
θ2+2cos2θ2)(sin
θ2-cos
θ 2)
=2cos θ2(sin2θ2-cos2θ2)=-2cos θ2cos θ.
-2cos 故原式=
θ
2cos θ
θ =-cos
θ.
2cos 2
第十二页,共43页。
规律方法 1 1.注意到第(2)题中有开方运算,联想二倍角 公式的特征进行升幂,化为完全平方式.
第十四页,共43页。
考向 2 三角函数的求值问题 【例 2】 (2013·广东高考)已知函数 f(x)= 2cosx-1π2, x∈R. (1)求 f-π6的值; (2)若 cos θ=35,θ∈32π,2π,求 f2θ+π3.
第十五页,共43页。
【思路点拨】 (1)把 x=-π6代入函数解析式,借助特殊 角的三角函数值和诱导公式求 f-π6.(2)由 cos θ 求出 sin θ, 利用两角和的余弦公式和二倍角公式求 f2θ+π3.
定,(4)错. 【答案】 (1)√ (2)× (3)× (4)×
第五页,共43页。
2.(人教 A 版教材习题改编)sin 34°sin 26°-cos 34°cos 26°
两角和与差的正弦、余弦、正切公式
两角和与差的正弦、余弦、正切公式
两角和与差的正弦余弦正切公式:sin(α±β)=sinα·cosβ±cosα·sinβ,
cos(α+β)=cosα·cosβ-sinα·sinβ,tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。
1、两角和(差)公式包括两角和差的正弦公式、两角和差的余弦公式、两角和差的正切公式。
两角和与差的公式是三角函数恒等变形的基础,其他三角函数公式都是在此公式基础上变形得到的。
正弦公式是描述正弦定理的相关公式,而正弦定理是三角学中的一个基本定理,它指出:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。
几何意义上,正弦公式即为正弦定理。
2、先利用单位圆(向量)推到两角和与差的余弦公式,再利用诱导公式推导正弦公式,最后利用同角三角函数的基本关系推到正切公式。
3、正弦和差公式始终是sin与cos相乘; 余弦和差公式始终是cos与cos相乘,sin与sin相乘,两角和与差的正弦公式:正=正余余正符号同两角和与差的余弦公式:余=余余正正符号异。
两角和与差的正弦、余弦和正切公式
第5节 两角和与差的正弦、余弦和正切公式知 识 梳 理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β.tan(α±β)=tan α±tan β1∓tan αtan β. 2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.tan 2α=2tan α1-tan 2α. 3.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎪⎪⎫其中tan φ=b a 或f (α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎪⎪⎫其中tan φ=a b . [常用结论]1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 考点一 三角函数式的化简【例1】 (1)化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.(2)cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β)B.sin αC.cos(α+2β)D.cos α考点二 三角函数式的求值【例2】 (1) 1. sin 347°cos 148°+sin 77°·cos 58°=________.(2)tan 20°+tan 40°+3tan 20°·tan 40°=________.(3)(2018·洛阳一模)若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=________. 【训练】(1)(2015·全国Ⅰ卷)sin 20°cos 10°-cos 160°sin 10°=( )A.-32B.32C.-12D.12(2)(2017·山东卷)已知cos x =34,则cos 2x =( )A.-14B.14C.-18D.18(3)已知α∈⎝ ⎛⎭⎪⎫0,π2,cos ⎝ ⎛⎭⎪⎫α+π3=-23,则cos α=________. (4)若tan α=13,tan(α+β)=12,则tan β等于( ) A.17 B.16 C.57 D.56 考点三 三角变换的简单应用【例3】 (2017·北京卷)已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12. (1)解 f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x =32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3, 所以f (x )的最小正周期T =2π2=π.(2)证明 由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. ∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6, ∴当2x +π3=-π6,即x =-π4时,f (x )取得最小值-12.1∴f(x)≥-2成立.。
【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式
两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β),β,α±β≠π2+k π,k ∈两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α≠k π+π2且α≠k π2+π4,k ∈二倍角是相对的,例如,α2是α43α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φsin φ=b a 2+b 2,cos φ考点一三角函数公式的直接应用[典例](1)已知sin α=35,αtan β=-12,则tan(α-β)的值为()A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin (π-α)=13,且π2≤α≤π,则sin 2α的值为()A .-229B .-429C.229D.429[解析](1)因为sin α=35,α所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×=-429.[答案](1)A(2)B[解题技法]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.[题组训练]1.已知sin α=13+cos α,且α,则cos 2α()A .-23B.23C .-13D.13解析:选A因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2α=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且αsin α________.解析:因为sin α=45,且αα所以cos α=-1-sin 2α=-=-35.因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以αsin 2αcos π3+cos 2αsin π3=-24+7350.答案:-24+7350考点二三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解析](1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°=3.[答案](1)-12(2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin αsin α2±cos ;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知sin α=435,则________.解析:由sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,∴3sin =435,即=45.答案:453.化简sin sin sin 2α的结果是________.解析:sin 2α=1-12cos ααsin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12考点三角的变换与名的变换考法(一)三角公式中角的变换[典例](2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点-35,-若角β满足sin(α+β)=513,则cos β的值为________.[解析]由角α的终边过点-35,-得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.[答案]-5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=考法(二)三角公式中名的变换[典例](2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值;(2)求tan(α-β)的值.[解](1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法]三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos ()A.12B.13C.14D.15解析:选C由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos =1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若=7210A sin A 的值为()A.35B.45C.35或45D.34解析:选B ∵A A +π4∈∴=-210,∴sin A =-π4=cos π4-sin π4=45.3.已知sin α=-45,α∈3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=()A.613B.136C .-613D .-136解析:选A ∵sin α=-45,α∈3π2,2π,∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos[(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=()A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +1,则cos 2x =()A .-89B .-79C.79D .-725解析:选C 因为2sin x +1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若=-33,则cos α=()A .-223B .±223C .-1D .±1解析:选C cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos =-1.4.tan 18°+tan 12°+33tan 18°tan 12°=()A.3B.2C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33.5.若α3cos 2α=sin 2α的值为()A .-118B.118C .-1718D.1718解析:选C由3cos 2α=3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos ()A .-13B.13C .-23D.23解析:选Dcos =12+12sin 2α=12+12×13=23.7.已知=12,α-π2,cos________.解析:由已知得cos α=12,sin α=-32,所以=12cos α+32sin α=-12.答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若=16,则tan α=________.解析:tan α=+π4=tanπ41-tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-111.已知tan α=2.(1)求tan(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:=tan α+tan π41-tan αtan π4=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β,∴-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×=91050.B 级1.(2019·广东五校联考)若4cos(2π-θ),|θ|<π2,则tan2θ=________.解析:∵4cos(2π-θ),∴cos θsin θ=4cos θ,又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157.答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,=35,则________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,=35,所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,=-45,可得cos (A +B )=-2425×+725×35=117125.答案:1171253.(2019·石家庄质检)已知函数f (x )=x ∈R.(1)求f(2)若cos θ=45,θf θ解:(1)-π4+=-12.(2)θθ-π3+θ=22(sin 2θ-cos 2θ).因为cos θ=45,θsin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以θ=22(sin 2θ-cos 2θ)=22×=17250.。
两角和与差的正弦、余弦和正切公式及二倍角公式
答案 D 由cos +sin α= , 可得 cos α+ sin α+sin α= , 即 sin α+ cos α= , ∴ sin = , 即sin = , ∴sin =-sin =- .
单击此处添加大标题内容
2-1 已知cos +sin α= ,则sin 的值是 ( ) A.- B. C. D.-
方法技巧 三角恒等变换的变“角”与变“名”问题的解题思路 角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角 与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α= (α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°, + = , =2× 等. 名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、 诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
添加标题
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
添加标题
cos2α=⑩ ,sin2α= ;
添加标题
1.sin 20°cos 10°-cos 160°sin 10°= ( ) A.- B. C.- D.
02
03
已知sin(α-kπ)= (k∈Z),则cos 2α的值为 ( ) A. B.- C. D.-
A
若tan = ,则tan α= .
.
考点突破
典例1 (1)已知sin =cos ,则tan α= ( ) A.-1 B.0 C. D.1 (2)(2017课标全国Ⅰ,15,5分)已知α∈ ,tan α=2,则cos = (3)设sin 2α=-sin α,α∈ ,则tan 2α的值是 .
两角和与差的正弦公式推导过程
两角和与差的正弦公式推导过程
正弦公式的推导是数学中重要的课题,两角和与差的正弦公式推导也不例外。
在本文中,将介绍两角和与差的正弦公式推导过程。
首先,我们考虑一个直角三角形,它由直角边(即a和b)和斜边(即c)组成,它们间的关系如下:
c = a + b
据此,可以推导出两角的余弦公式:
cos = a/c
cos = b/c
其次,我们再考虑一个有角α和β的平行四边形,它由四条边组成,它们之间的关系如下:
a +
b =
c + d
根据此,可以推导出两角和与差的正弦公式:
sin (α +) = (c + d) / 2
sin (α -) = (c - d) / 2
最后,我们考虑将sin (α -)代入sin (α +),结果得到:sin (α +) = sin [(α +) - (α -)]
将上式右边各项展开,可得:
sin (α +) = 2sin (α) cos (β)
综上,我们可以得到两角和与差的正弦公式的推导结果:
sin (α +) = 2sin (α) cos (β)
sin (α -) = (c - d) / 2
总之,两角和与差的正弦公式推导过程一共包括三部分,分别是考虑一个直角三角形,考虑一个有角α和β的平行四边形,以及将sin (α -)代入sin (α +),最终推导出两角和与差的正弦公式。
只要按照上述过程,我们就可以准确地推导出这一正弦公式。
两角和与差的正弦、余弦和正切公式
三角函数两角和与差及二倍角公式一、知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.注意:1.在使用两角和与差的余弦或正切公式时运算符号易错. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. [试一试]1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22 B .22 C .32D .1 答案:B2.若sin α2=33,则cos α=( )A .-23B .-13C .13D .23答案:C解析:因为sin α2=33,所以cos α=1-2sin 2 α2=1-2×233⎛⎫ ⎪ ⎪⎝⎭=13二、方法归纳 1.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin 4πα⎛⎫± ⎪⎝⎭2.角的变换技巧2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=22βααβ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭3.三角公式关系[练一练]1.已知tan 6πα⎛⎫-⎪⎝⎭=37,tan 6πβ⎛⎫+ ⎪⎝⎭=25,则tan(α+β)的值为( ) A .2941 B .129 C .141 D .1答案:D2.已知sin 2α=23,则cos 24πα⎛⎫+ ⎪⎝⎭=( ) A .16 B .13 C .12 D .23答案:A解析:法一:cos 24πα⎛⎫+ ⎪⎝⎭=121cos 22πα⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=12(1-sin 2α)=16. 法二:cos 4πα⎛⎫+ ⎪⎝⎭=22cos α-22sin α, 所以cos 24πα⎛⎫+ ⎪⎝⎭=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16 三、考点精讲考点一 三角函数公式的基本应用1.已知sin α=35,α∈,2ππ⎛⎫⎪⎝⎭,则cos 22sin 4απα⎛⎫+ ⎪⎝⎭=________. 答案:-75解析:cos 22sin 4απα⎛⎫+ ⎪⎝⎭=22cos sin 222sin cos 22αααα-⎛⎫+ ⎪⎝⎭=cos α-sin α,∵sin α=35,α∈,2ππ⎛⎫⎪⎝⎭,∴cos α=-45,∴原式=-75.2.设sin 2α=-sin α,α∈,2ππ⎛⎫⎪⎝⎭,则tan 2α的值是________. 答案: 3解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12,又α∈,2ππ⎛⎫⎪⎝⎭,∴sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=()223313-=--3.已知函数f (x )=2sin 136x π⎛⎫- ⎪⎝⎭,x ∈R . (1)求f 54π⎛⎫⎪⎝⎭的值; (2)设α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 32πα⎛⎫+ ⎪⎝⎭=1013,f (3β+2π)=65,求cos(α+β)的值. 解:(1)∵f (x )=2sin 136x π⎛⎫-⎪⎝⎭,∴f 54π⎛⎫⎪⎝⎭=2sin 5126ππ⎛⎫- ⎪⎝⎭=2sin π4=2. (2)∵α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 32πα⎛⎫+ ⎪⎝⎭=1013,f (3β+2π)=65, ∴2sin α=1013,2sin 2πβ⎛⎫+ ⎪⎝⎭=65,即sin α=513,cos β=35.∴cos α=1213,sin β=45∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665.[解题通法]两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.考点二 三角函数公式的逆用与变形应用(1)在△ABC 中,若tan A ·tan B =tan A +tan B +1,则cos C 的值是( ) A .-22 B .22 C .12 D .-12(2)sin 110°sin 20°cos 2155°-sin 2155°的值为( ) A .-12 B .12 C .32 D .-32答案:(1)B (2)B解析:(1)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B=-1,即tan(A +B )=-1,所以A +B =3π4,则C =π4,cos C =22,故选B .(2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12. [解题通法]运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等. [针对训练] 1.已知sin 6πα⎛⎫+⎪⎝⎭+cos α=435,则sin 3πα⎛⎫+ ⎪⎝⎭的值为( ) A .45 B .35 C .32 D .35答案:A 解析:由条件得32sin α+32cos α=435, 即12sin α+32cos α=45,∴sin 3πα⎛⎫+ ⎪⎝⎭=45. 2.若α+β=3π4,则(1-tan α)(1-tan β)的值是________.答案:2解析:-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β.∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 考点三 角的变换已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值. 解:(1)∵α,β∈0,2π⎛⎫⎪⎝⎭,从而-π2<α-β<π2 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45,∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=45×31010+35×1010⎛⎫- ⎪ ⎪⎝⎭=91050变式练习:在本例条件下,求sin(α-2β)的值 解:∵sin(α-β)=-1010,cos(α-β)=31010, cos β=91050,sin β=131050.∴sin(α-2β)=sin[(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β=-2425.[解题通法]1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”;3.注意角变换技巧. [针对训练]1.设tan ()α+β=25,tan 4πβ⎛⎫- ⎪⎝⎭=14,则tan 4πα⎛⎫+ ⎪⎝⎭=( )A .1318B .1322C .322D .16答案:C解析:tan 4πα⎛⎫+ ⎪⎝⎭=()tan 4παββ⎡⎤⎛⎫+-- ⎪⎢⎥⎝⎭⎣⎦=()()tan tan 34221tan tan 4παββπαββ⎛⎫+-- ⎪⎝⎭=⎛⎫++- ⎪⎝⎭2.设α为锐角,若cos 6πα⎛⎫+ ⎪⎝⎭=45,则sin 212πα⎛⎫+ ⎪⎝⎭的值为________. 答案:17250解析:因为α为锐角,cos 6πα⎛⎫+⎪⎝⎭=45, 所以sin 6πα⎛⎫+ ⎪⎝⎭=35,sin 26πα⎛⎫+ ⎪⎝⎭=2425, cos 26πα⎛⎫+⎪⎝⎭=725, 所以sin 212πα⎛⎫+⎪⎝⎭=sin 264ππα⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=2425×22-725×22=17250. 考点四 三角函数式的化简1.化简:2sin 22cos sin 4ααπα-⎛⎫- ⎪⎝⎭=________.答案:22cos α解析:原式=2sin αcos α-2cos 2α22α-cos α=22cos α.2.化简:42212cos 2cos 22tan sin 44x x x x ππ-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭解:原式=()222221112sin cos 1sin 2cos 22222sin cos 2sin cos sin 244442cos 4x x x x x x x x x x ππππππ-+-==⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫- ⎪⎝⎭=1cos 22x 3.化简:1tan 1tan tan 22tan 2αααα⎛⎫ ⎪⎛⎫-⋅+⋅ ⎪ ⎪⎝⎭ ⎪⎝⎭.解:1tan 1tan tan 22tan 2αααα⎛⎫⎪⎛⎫-⋅+⋅ ⎪ ⎪⎝⎭ ⎪⎝⎭=cos sin sin sin 2221cos sin cos cos222αααααααα⎛⎫⎛⎫ ⎪ ⎪-⋅+⋅⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=cos 2α2-sin 2α2sin α2cos α2⋅cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α⋅cos α2cos αcosα2=2sin α[解题通法]三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.考点五 三角函数式的求值研究三角函数式的求值,解题的关键都是找出条件中的角与结论中的角的联系,依据函数名称的变换特点,选择合适的公式求解.归纳起来常见的命题角度有:给值求值; 给角求值; 给值求角. 角度一 给值求值1.已知函数f (x )=2cos 12x π⎛⎫- ⎪⎝⎭,x ∈R . (1)求f 3π⎛⎫⎪⎝⎭的值; (2)若cos θ=35,θ∈3,22ππ⎛⎫⎪⎝⎭,求f 6πθ⎛⎫- ⎪⎝⎭. 解:(1)因为f (x )=2cos 12x π⎛⎫-⎪⎝⎭, 所以f 3π⎛⎫⎪⎝⎭=2cos 312ππ⎛⎫- ⎪⎝⎭=2cos π4=2×22=1. (2)因为θ∈3,22ππ⎛⎫⎪⎝⎭,cos θ=35, 所以2234sin 1cos 155θθ⎛⎫=--=--=- ⎪⎝⎭.所以f 6πθ⎛⎫-⎪⎝⎭=2cos 612ππθ⎛⎫--⎪⎝⎭=2cos 4πθ⎛⎫-⎪⎝⎭=2×22cos sin 22θθ⎛⎫+⎪ ⎪⎝⎭=cos θ+sin θ=35-45=-15.角度二 给角求值2.(1)4cos 50°-tan 40°=( ) A . 2 B .2+32C . 3D .22-1 答案:C解析:4cos 50°-tan 40°=4cos 50°-sin 40°cos 40°=4sin 40°·cos 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2cos 10°-sin 40°cos 40°=2cos 10°-+cos 40°=32cos 10°-32sin 10°cos 40°=330°cos 10°-cos 40°=3cos 40°cos 40°=3.(2)化简:sin 50°(1+3tan 10°)=________. 答案:1解析:sin 50°(1+3tan 10°)=sin 50°00sin1013cos10⎛⎫+ ⎪⎝⎭ =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×000132cos10sin1022cos10⎛⎫+ ⎪⎝⎭ =2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.角度三 给值求角3.已知α,β为锐角,sin α=35,cos ()α+β=-45,求2α+β.解:∵sin α=35,α∈0,2π⎛⎫⎪⎝⎭,∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×45⎛⎫- ⎪⎝⎭+45×35=0.又2α+β∈30,2π⎛⎫⎪⎝⎭,∴2α+β=π. 4.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13>0,∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2123113⨯⎛⎫- ⎪⎝⎭=34>0,∴0<2α<π2, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.[解题通法]三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.考点六 三角恒等变换的综合应用 已知函数f (x )=sin 6x π⎛⎫-⎪⎝⎭+cos 3x π⎛⎫-⎪⎝⎭,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=335,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 解:f (x )=sin 6x π⎛⎫-⎪⎝⎭+cos 3x π⎛⎫-⎪⎝⎭=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin 6x π⎛⎫+ ⎪⎝⎭≥12, 从而522666k x k πππππ+≤+≤+,k ∈Z , 即2223k x k πππ≤≤+,k ∈Z . 故使f (x )≥g (x )成立的x 的取值集合为222,3x k x k k Z πππ⎧⎫≤≤+∈⎨⎬⎩⎭. [解题通法]三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题. [针对训练]设函数f (x )=sin 23x π⎛⎫+⎪⎝⎭+33sin 2x -33cos 2x . (1)求f (x )的最小正周期及其图像的对称轴方程;(2)将函数f (x )的图像向右平移π3个单位长度,得到函数g (x )的图像,求g (x )在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域.解:(1)f (x )=12sin 2x +32cos 2x -33cos 2x =12sin 2x +36cos 2x =33sin 26x π⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为T =2π2=π. 令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ).(2)将函数f (x )的图像向右平移π3个单位长度,得到函数g (x )=33sin 236x ππ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦=-33cos 2x 的图像. 即g (x )=-33cos 2x . 当x ∈,63ππ⎡⎤-⎢⎥⎣⎦时,2x ∈2,33ππ⎡⎤-⎢⎥⎣⎦,得cos 2x ∈1,12⎡⎤-⎢⎥⎣⎦所以-33cos 2x ∈33,36⎡⎤-⎢⎥⎣⎦,即函数g (x )在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域是33,36⎡⎤-⎢⎥⎣⎦课后作业课后练习一、选择题1.已知sin3πα⎛⎫+⎪⎝⎭+sin α=-435,则cos23πα⎛⎫+⎪⎝⎭等于()A.-45B.-35C.35D.45答案:D2.已知cos6πα⎛⎫+⎪⎝⎭-sin α=233,则sin76πα⎛⎫-⎪⎝⎭的值是()A.-233B.233C.-23D.23答案:D3.已知向量a=sin,16πα⎛⎫⎛⎫+⎪⎪⎝⎭⎝⎭,b=(4,4cos α-3),若a⊥b,则sin43πα⎛⎫+⎪⎝⎭等于() A.-34B.-14C.34D.14答案:B4.函数y=sin x+cos x图象的一条对称轴方程是()A.x=5π4B.x=3π4C.x=-π4D.x=-π2答案:A5.在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则C的大小为()A.π6B.56πC.π6或56πD.π3或23π答案:A6.已知0<α<π,3sin 2α=sin α,则cos(α-π)等于()A.13B.-13C.16D.-16答案:D解析:∵0<α<π,3sin 2α=sin α,∴6sin αcos α=sin α,又∵sin α≠0,∴cos α=16,cos(α-π)=cos(π-α)=-cos α=-167.已知tan(α+β)=25,tan4πβ⎛⎫-⎪⎝⎭=14,那么tan4πα⎛⎫+⎪⎝⎭等于()A .1318B .1322C .322D .16答案:C解析:因为α+π4+β-π4=α+β,所以α+π4=(α+β)-4πβ⎛⎫- ⎪⎝⎭.所以tan 4πα⎛⎫+ ⎪⎝⎭=tan ()()()tan tan 344221tan tan 4παββπαββπαββ⎛⎫+-- ⎪⎡⎤⎛⎫⎝⎭+--== ⎪⎢⎥⎛⎫⎝⎭⎣⎦++- ⎪⎝⎭8.已知cos 2α=12 (其中α∈,04π⎛⎫- ⎪⎝⎭),则sin α的值为 ( )A .12B .-12C .32D .-32答案:B解析:∵12=cos 2α=1-2sin 2α,∴sin 2α=14.又∵α∈,04π⎛⎫- ⎪⎝⎭,∴sin α=-129.若f (x )=2tan x -2sin 2x2-1sin x 2cosx2,则f 12π⎛⎫⎪⎝⎭的值为 ( )A .-433B .8C .4 3D .-4 3 答案:B解析:f (x )=2tan x +1-2sin 2x212sin x =2tan x +2cos x sin x =2sin x cos x =4sin 2x∴f 12π⎛⎫⎪⎝⎭=4sinπ6=8 10.在△ABC 中,若cos 2B +3cos(A +C )+2=0,则sin B 的值是 ( ) A .12B .22C .32D .1答案:C解析:由cos 2B +3cos(A +C )+2=0化简变形,得2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴sin B =32二、填空题 1.如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等.设第i 段弧所对的圆心角为αi (i =1,2,3),则cos α13cos α2+α33- sinα13·sin α2+α33=________ 答案:-122.设sin α=352παπ⎛⎫<< ⎪⎝⎭,tan(π-β)=12,则tan(α-β)=________答案:-2113.已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈,22ππ⎛⎫- ⎪⎝⎭,则tan(α+β)=__________,α+β的值为________. 答案:3 -23π4.已知α为第二象限的角,且sin α=35,则tan 2α=________.答案:-247解析:因为α为第二象限的角,又sin α=35,所以cos α=-45,tan α=sin αcos α=-34,所以tan 2α=2tan α1-tan 2α=-247. 5.函数y =2cos 2x +sin 2x 的最小值是________. 答案:1- 2解析:∵y =2cos 2x +sin 2x =sin 2x +1+cos 2x=sin 2x +cos 2x +1=2sin 24x π⎛⎫+⎪⎝⎭+1, ∴当sin(2x +π4)=-1时,函数取得最小值1- 26.若cos 2sin 4απα⎛⎫- ⎪⎝⎭=-22,则cos α+sin α的值为________.答案:12解析:∵cos 2sin 4απα⎛⎫- ⎪⎝⎭=cos 2α-sin 2α22α-cos α=-2(sin α+cos α)=-22,∴cos α+sin α=12.三、解答题 1.(1)已知α∈0,2π⎛⎫⎪⎝⎭,β∈,2ππ⎛⎫⎪⎝⎭且sin(α+β)=3365,cos β=-513.求sin α; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:(1)∵β∈,2ππ⎛⎫⎪⎝⎭,cos β=-513,∴sin β=1213又∵0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=3365,∴cos(α+β)=-1-sin 2α+β=233165⎛⎫-- ⎪⎝⎭=-5665 ∴sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β =33556123651365135⎛⎫⎛⎫⋅---⋅= ⎪ ⎪⎝⎭⎝⎭ (2)∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=13+121-13×12=1∵α,β∈(0,π),tan α=13<1,tan β=-17<0,∴0<α<π4,π2<β<π,∴-π<2α-β<0,∴2α-β=-3π42.(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β. (2)已知△ABC 的面积S =12,AB →·AC →=3,且cos B =35,求cos C解:(1)①证明:如上图,在直角坐标系xOy 内作单位圆O ,并作出角α、β与-β,使角α的始边为Ox ,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3;角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)), 由|P 1P 3|=|P 2P 4|及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2, 展开并整理得:2-2cos(α+β)=2-2(cos αcos β-sin αsin β), ∴cos(α+β)=cos αcos β-sin αsin β ②解 由①易得,cos 2πα⎛⎫- ⎪⎝⎭=sin α, sin 2πα⎛⎫-⎪⎝⎭=cos α. sin(α+β)=cos ()2παβ⎡⎤-+⎢⎥⎣⎦=cos ()2παβ⎡⎤⎛⎫-+- ⎪⎢⎥⎝⎭⎣⎦=cos 2πα⎛⎫-⎪⎝⎭cos(-β)-sin 2πα⎛⎫- ⎪⎝⎭sin(-β) =sin αcos β+cos αsin β. ∴sin(α+β)=sin αcos β+cos αsin β(2)解:由题意,设△ABC 的角B 、C 的对边分别为b 、c . 则S =12bc sin A =12,AB →·AC →=bc cos A =3>0,∴A ∈0,2π⎛⎫⎪⎝⎭,cos A =3sin A ,又sin 2A +cos 2A =1, ∴sin A =1010,cos A =31010, 由cos B =35,得sin B =45,∴cos(A +B )=cos A cos B -sin A sin B =1010.故cos C =cos[π-(A +B )]=-cos(A +B )=-10103.设函数f (x )=a·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈,33ππ⎡⎤-⎢⎥⎣⎦,求x ; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.解:(1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin 26x π⎛⎫+⎪⎝⎭+1. 由2sin 26x π⎛⎫+ ⎪⎝⎭+1=1-3, 得sin 26x π⎛⎫+⎪⎝⎭=-32∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6.∴2x +π6=-π3,即x =-π4(2)-π2+2k π≤2x +π6≤π2+2k π (k ∈Z ),即36k x k ππππ-+≤≤+ (k ∈Z ),得函数单调增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦(k ∈Z ). 列表:x 0 π6 π3 π2 2π3 5π6 π y232-12描点连线,得函数图象如图所示:4.设函数f (x )=3sin x cos x -cos x sin 2x π⎛⎫+ ⎪⎝⎭-12. (1)求f (x )的最小正周期; (2)当x ∈0,2π⎡⎤⎢⎥⎣⎦时,求函数f (x )的最大值和最小值. 解:f (x )=3sin x cos x -cos x sin 2x π⎛⎫+⎪⎝⎭-12 =32sin 2x -12cos 2x -1 =sin 26x π⎛⎫-⎪⎝⎭-1 (1)T =2π2=π,故f (x )的最小正周期为π(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以当2x -π6=π2,即x =π3时,f (x )有最大值0,当2x -π6=-π6,即x =0时,f (x )有最小值-32.6.已知函数f (x )=2cos 2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.解:(1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以,当cos x =-1时,f (x )取得最大值6; 当cos x =23时,f (x )取得最小值-73.。
两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳
两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+ 3 t an 25°·tan 35°= 3 (1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22 (sin 56°-cos 56°)=22 s in 56°-22 c os 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210,∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1.4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1. 12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和与差的正弦、余弦和正切公式复习学案(一)
复习要求:
1、掌握两角和与差的三角函数
2、能运用两角和与差的三角公式解决三角求值问题
自主梳理
1.(1)两角和与差的余弦
cos(α+β)=____________________________________, cos(α-β)=____________________________________. (2)两角和与差的正弦
sin(α+β)=_____________________________________, sin(α-β)=_____________________________________. (3)两角和与差的正切
tan(α+β)=_____________________________________, tan(α-β)=____________________________________ (α,β,α+β,α-β均不等于k π+π
2,k ∈Z ) (4)公式的变式
)
t a n (t a n t a n )t a n (t a n t a n βαβαβαβα+=+++
基础训练 1.cos 50°cos 20°+sin50°sin20°的值为________.
2.已知tan α=2,则tan(α-4
π
)=________.
3.sin(-15°)=________.
典型例题:
1、给值求值问题(已知某角的三角函数值,求另一角的三角函数值)
例1:已知)2,2
3(,1312cos ),2,0(,53sin ππ
ββπαα∈=∈=,求:
)tan(),sin(),cos(βαβαβα+++的值。
例2: 已知2π<β<α<3π4,cos )(βα-=1312,sin (βα+)=5
3
—,求sin α2的
值.
点拨:观察角的关系是三角解题的重要举措。
因此解题前首要解决的问题是观察角有怎样的关系
举一反三:若41)4tan(,52)tan(=-=+πB B A ,求)4
tan(π
+A 的值
2、给值求角问题(已知某角的三角函数值,求另一角的值)
例3: 已知βα,均为锐角,且,10
10
3cos ,552cos ==
βα求βα+的值 分析:求角可通过求角的三角函数来解决。
因为根据三角函数值可求角。
点拨:在选择求βα+的三角函数时,求)cos(βα+较为合理,因为),(πβα0∈+而),(π0是余弦函数的单调区间,当然也可以选择求)tan(βα+,但求)sin(βα+就不合理,因为)
,(π0不是正弦函数的单调区间。
举一反三:已知a tan =71,βtan =3
1
,且A 、B 均为锐角,求βα2+的值.
巩固练习
1、若α是锐角,31
)6sin(=-πα,则=αcos ( )
A.
6162- B.6162+ C.4132- D.4
1
32+ 2.=- 115sin 25cos 115cos 65cos ( ) A.0 B.1 C.-1 D. 50cos
3.在ABC ∆中,已知13
12
,53cos ==coaB A ,求C cos
4.已知锐角βα,满足13
5
)cos(,53cos -=+=βαα,求βcos
5已知223)4tan(,52)tan(=+=+παβα,求)4
tan(π
β-。