函数ysinx 的图像及变换
正弦函数、余弦函数的图像及五点法作图
2 3
4 5
2
3
4
5
6 x 6 x
正弦函数、余弦函数的图像及五点法作图
【用五点法作正弦函数和余弦函数的简图(描点法)】
正弦函数y=sinx,x∈[0,2π]的图象中,五个
关键点是: (0,0) (
,1)
(π,0)
(
3
Hale Waihona Puke ,-1)(2π,0)
2
2
余弦函数y=cosx x[0,2]的五个点关键是
正弦函数余弦函数的图像及五点法作图余弦函数ycosx的图象用几何法作余弦函数的图象可以用反射法将角x的余弦线竖立把坐标轴向下平移过o终点a作x轴的垂线它与前面所作的直线交于a那么oa与aa长度相等且方向同时为正我们就把余弦线oa竖立起来成为aa用同样的方法将其它的余弦线也都竖立起来
知识点——
正弦函数、余弦函数 的图像及五点法作图
(0,1) ( ,0) (,-1) (3 ,0) (2,1)
2
2
只要这五个点描出后,图象的形状就基本
确定了.因此在精确度不太高时,常采用
五点法作正弦函数和余弦函数的简图,要
求熟练掌握.优点是方便,缺点是精确度
不高,熟练后尚可以.
正弦函数、余弦函数的图像及五点法作图
【典型例题】
1、用五点法作函数 y 1 sin x, x 0,2 的图象.
)6 ,.把3 角, 2x,的…正,
弦线向右平行移动,使得正弦线的起点与x轴上相
应的点x重合,则正弦线的终点就是正弦函数图象
上的点(等价于“描点” ).
正弦函数、余弦函数的图像及五点法作图
【函数y=sinx的图象】 第三步:连线.用光滑曲线把这些正弦线的终点连 结起来,就得到正弦函数y=sinx,x∈[0,2π]的 图象.
(完整版)三角函数图像平移变换
三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。
1。
为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。
正弦函数、余弦函数的图象_优质课件
3) y 3sin(1 x ), x R 一般
35
结论:
函数y Asin(x )及y Acos(x ), x R
( A,,为常数, A 0, 0)的周期T 2
新课讲解. 正弦函数、余弦函数的性质 (三)关于奇偶性(复习)
一般地, •如果对于函数f( x )的定义域内任意一个x, 都有f(- x )= f( x ),那么就说f( x )是偶函数 •如果对于函数f( x )的定义域内任意一个x, 都有f(- x )= -f( x ),那么就说f( x )是奇函数
小结回顾
正切函数的基本性质
4 5
应用提升
练习1:试着画出y | tan x | 和y tan | x |
并讨论它们的单调性,周期性和奇偶性.
练习2.如果、
(
,
)且
tan
cot
,
2
那么必有( )
A.
B.
C. 3 D. 3
2
2
应用提升
例3.求函数y tan x 1 的定义域 3 tan x
例4.试讨论函数y loga tan x的单调性
2
2
y=cosx
y cos x : 定义域为R,值域[1,1]
1
最-6大 值1,此-5时 x
2-k4; 最小值-3-1,
此时x
-2
2k
-;
-1
2 3 2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
(2) y sin x, y cosx与y Asin(x ), y Acos(x )间的换元思想
正弦函数余弦函数的图象完整版课件
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
因为终边相同的角的三角函数值相同,所以y=sinx,x∈R的图象在
4,2 ,2,0, 0,2, 2,4,…与y=sinx,x∈[0,2π]的图象相同
正弦曲线:ysinx xRy
1
-1
x
-cosx -1 0
1
0 -1
y
y=-cosx x[0,2 ]
1
●
o
●
3●
2
x
2
2
-1 ●
●
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
y=1+sinx x[0, 2]
1
o
3
2
-1
2
2
x
y=sinx x[0, 2]
1
●
●
●
●
●
7 4 3 5 11
6
6 3 2 3 6 2
●
2 0
2 5
●
11
6 32 3 6
●
●
x
●
5
6
-1
●
●
●
3
y
ysinx x [0 ,2 ]
1-
-
-1
o 6
3
2
2 3
5
7
6
6
4 3
3
5
2
3
11 6
2
-1 -
正弦函数图象及其变换
π π π 2π 6 3 2 3 3 1 3 1 2 2 2
5π π 7π 4π 3π 5π11π 6 6 3 2 3 6 2π 3 3 10 1 0 1 1 1 2 2 2 2 2
.
π/2
o1
A
.o
-1
. π
3π/2
2
.π
x
.
函数y=sinx, x∈[0,2π]的图象 函数 ∈ π 的图象
五点画图法
A
y=
1 2
5π π 12
A
-A
0
5π π 6
x
(3) y=sin2x
解: x 2x 0 0
π 4 π 2 π 2 3π 4 π 3π 2π π 2
1 (4) y=sin x 2
x
1 x 2 1 sin x 2
0 0 0
π
π 2
2π 3π 4π π π π
π
π
3π 2π π 2
sin2x 0 y 1 o -1
π/2
y=1+sinx, x∈[0,2π] ∈ π
.
π 3π/2
.
o
.
2π
实质: 实质:f(x)=sinx向左平 向左平 移π/2,即f(x+π/2)=sin , (x+ π/2)=cosx
y
1
π -4
π -3
π -2
-π
-1
o
π/2 π 3π/2 2 π
3 π
4 π
x
函数y=cosx x∈R的图象 函数 ∈ 的图象
变换后正弦函数的五点法作图
y=Asin(wx+φ)(A>0, w>0)中的常数 ,w, φ 中的常数A, , 中的常数 的作用 正数A决定了? 正数 决定了? 决定了
关于y=sinx图象及性质变化
关于y =sinx 图象 函数y=Asin(ωx+Φ)的图象变化规律:图象变换(1) 振幅变换:Rx x y ∈=,sin −−−−−−−−−−−−−−→−<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,sin A(2)周期变换:Rx x y ∈=,sin −−−−−−−−−−−−−−→−<<>倍到原来的或伸长所有点的横坐标缩短ωωω11)(01)(R x x y ∈=,sin ω(3)相位变换:Rx x y ∈=,sin −−−−−−−−−−−−→−<>个单位长度平移或向右所有点向左||0)(0)(ϕϕϕR x x y ∈+=,)(sin ϕ(4)复位变换:Rx x y ∈=,sin −−−−−−−−−−−−→−<>个单位长度平移或向右所有点向左||0)(0)(ϕϕϕR x x y ∈+=,)(sin ϕ−−−−−−−−−−−−−−→−<<>倍到原来的或伸长所有点的横坐标缩短ωωω11)(01)(R x x y ∈+=),sin(ϕω−−−−−−−−−−−−−−→−<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(ϕω1.为了得到sin(2)3y x π=-的图象,只需将sin 2y x =的图象( )A 向左平移3π个单位 B 向右平移3π个单位 C 向左平移6π个单位 D 向右平移6π个单位2.为了得到3sin 2y x =的图象,只需将3sin y x =的图象( ) A 横坐标伸长到原来的2倍,纵坐标不变. B 横坐标缩短到原来的12倍,纵坐标不变. C 纵坐标伸长到原来的2倍,横坐标不变.D 纵坐标缩短到原来的12倍,横坐标不变.3.为了得到1cos 2y x =的图象,只需将cos y x =的图象( ) A 横坐标伸长到原来的2倍,纵坐标不变. B 横坐标缩短到原来的12倍,纵坐标不变. C 纵坐标伸长到原来的2倍,横坐标不变. D 纵坐标缩短到原来的12倍,横坐标不变.4.函数()sin(2)3f x x π=+的图象关于直线4x π=对称,则( ).A 关于点(,0)4π对称B 关于直线4x π=对称C 关于点(,0)3π对称 D 关于直线3x π=对称5.函数12sin()24y x π=+的振幅为 ,周期为 ,频率为 ,初相为 ,相位为 ,值域为 .6.函数sin y x =按向量(,3)4a π=-r 平移后的图象的解析式为 .7.函数()2sin(),(0,)2f x x πωϕωϕ=+><的最小正周期为π,且(0)3f =,试求函数的单调增区间.8.(年福建).已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( )A .关于点0π⎛⎫ ⎪3⎝⎭,对称 B .关于直线x π=4对称 C .关于点0π⎛⎫⎪4⎝⎭,对称 D .关于直线x π=3对称 9.(江苏卷1).下列函数中,周期为2π的是( ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 10.(山东卷文4).要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )A .向右平移π6个单位 B .向右平移π3个单位C .向左平移π3个单位 D .向左平移π6个单位11.(江西卷文2).函数5tan(21)y x=+的最小正周期为12.已知函数()2sin()f x xωφ=+的图像如图所示,则712fπ⎛⎫=⎪⎝⎭________________.13..34331654+log log8145-⎛⎫+=⎪⎝⎭________.14.【山东省聊城一中2015届高三上学期期中考试文】函数()sin()f x A xωϕ=+(其中0,||2Aπϕ><)的图象如图所示,为了得到xxg2sin)(=的图像,则只需将()f x的图像()A.向右平移6π个长度单位B.向右平移3π个长度单位C.向左平移6π个长度单位D.向左平移3π个长度单位15.【山东省曲阜师大附中2015届高三上学期期中考试文】函数()sin()f x A xωφ=+(0,0,||)2Aπωφ>><的部分图象如图所示,则,ωφ的值分别为()A .2,3πB .1,26πC .2,3π-D .2,6π16.【山东省潍坊市寿光现代中学2015届高三12月段检测文】已知函数()y Asin x B =ω+ϕ+的一部分如下图所示。
正弦函数图像与性质
正弦函数的图像与性质是正弦函数y=sinx。
余弦函数y=cosx,正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减,余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减等。
正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减,余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减。
正弦函数关于x=π/2+2kπ轴对称,关于(kπ,0)中心对称。
正弦型函数的图像
正弦型函数y=Asin(ωx+φ)图象的几何画法是,在横轴Ox上任取一点C 为圆心,A为半径作圆,与x轴相交于两点A0和A6.以A0为始点,任意等分此圆(图1中是12等份),设分点为Ai其中A0与A12重合。
在x轴上取OA′0=-φ/ω,然后从A′0起作A′i使A′iA′i+1=π/6ω,即周期2π/ω的1/12,过Ai与A′i分别与x轴和y轴平行的直线交于点Pi,连结Pi各点成光滑曲线,即得y=Asin(ωx+φ)在一个周期内的近似图象。
正弦型函数的图象也称为正弦型曲线或称正弦波。
正弦函数图像变换.
各点横坐标伸长到原来的 2 倍
y=sinx
(周期变换)
y=sin 1 x
2
所有点向右平移于 2 个单位
3y=sin(源自1x-)(变相位换)
23
各点纵坐标伸长到原来的 3
倍
1
y=3sin(
x-
)
(振幅变换)
23
上一张 下一张 图象
小结 先相位变换再周期变换
1、相位变换:把的图象上所有点向左(>0)或向
右(<0)平移 个单位。
2、周期变换:把所有点的的横坐标缩短(>1)或
伸长 (0<<1)到原来的 1 倍。(纵坐标不变)
3、振幅变换:把所有点的纵坐标伸长(A>1)或缩
短(0<A<1)到原来的 A 倍。(横坐标不变)
上一张 下一张 图象
小结 先周期变换再相位变换
1、周期变换:把所有点的的横坐标缩短(>1)或
设计与制作: 顺德市北滘中学
雷沅江
问题1
函数y=sinx与函数y=Asinx(A>0)的 图象间有何关系?
观察结果: 在y=sinx的基础上,把所有各点的纵坐标
伸长(A>1)或缩短(0<A<1)到原来的 A 倍
(横坐标不变)得到y =Asinx图象。
上一张 下一张 图象
问题2
函数y=sinx与函数y=sinx( >0)图 象间有何关系?
移 个4 单位,得到的函数( )C的图象。
(A)y=cos(2x+ 4) (B)y=cos(x 2 - 4) (C)y=cos( x 2- 8) (D)y=cos( x 2+ 8)
上一张 下一张 图象 总结1 总结2
正弦函数、余弦函数的图像及五点法作图
正弦函数、余弦函数的图像及五点法作图
【余弦函数y=cosx的图象】
用几何法作余弦函数的图象,可以用“反射法”将
角 与 终xx点的轴A余的作弦 正x轴线 半的“ 轴垂竖 成线立4,”角它[的把与直坐前线标面,轴所又向作过下的余平直弦移线线,交O过于1OAA1的′作,
那么 O1 A与AA′长度相等且方向同时为正,我们就 把余弦线 O1 A“竖立”起来成为AA′,用同样的方 法,将其它的余弦线也都“竖立”起来.再将它们 平移,使起点与x轴上相应的点x重合,则终点就是 余弦函数图象上的点.]
解:按五个关键点列表
利用正弦函数的特征描点画图:
正弦函数、余弦函数的图像及五点法作图
【变形训练】
1、作出 y cos x, x 0, 2 的简图
解:按五个关键点列表
x
0
2
π
3
2π
2
cosx 1
0
-1
0
1
-cosx -1
0
1曲线连接起来.
y=cosx的图象. 正弦函数y=sinx的图象和余弦函数y=cosx的图象 分别叫做正弦曲线和余弦曲线.
正弦函数、余弦函数的图像及五点法作图
【余弦函数y=cosx的图象】
-6 -5 -6 -5
-4 -3 -4 -3
-2 -
-2
-
y y=sinx
1
o
-1
y y=cosx
1
正弦函数、余弦函数的图像及五点法作图
【余弦函数y=cosx的图象】
也可以用“旋转法”把角 的余弦线“竖立”(把
角置诱x=x,导si的n则公x余的式O弦1图cM线o象s1与Ox向1OM左1sM按i平n长(逆移x度时 2相2针)单等方,还位,向可即方旋以得向转把余相2正弦同到弦函.O)函数1M根数1据位
正弦函数的图像和性质
; /redianticai/ 热点概念股 ;
招呼.至于陈三六,和白狼马の女人们,孩子们就暂时没有放出来了,要不然の话挤の慌.不过大家把酒言欢,过了壹会尔就提到了根汉要出去独闯の事情,壹听说根汉过段时间就要离开这里又要去独闯了,白萱有些不高兴了."小姨,要不你跟着根汉哥哥出去壹起闯荡吧."瑶瑶建议道:"你们 都这么久不见了,现在又要分开,太残忍了.""没什么,以后不是有你们陪伴嘛,他也不能总陪着咱,再说了,咱这么大人了要人陪干吗."白萱虽然壹开始有些不高兴,但是还是欣然接受.根汉也想说,要不和白萱还有钟薇壹起去吧,也算是对她们の弥补了.不过白萱和钟薇都表示,让自己独自 壹人离开,带上她们也不太方便,那闯荡也就没什么意义了,她们也习惯在这无心峰の宁静生活了.现在再出去打拼反而不美,不如就呆在这里好好体验生活,感悟天道,或许可以早壹日突破桎梏.对此根汉也只能是表示,罢了,就让她们呆在这里吧.这壹次自己出去独闯,也不知道要面对多少 艰难险阻,她们呆在这无心峰也挺好の,起码挺安全の.虽然现在不知道老疯子又去了哪里了,但要是万壹这里出了什么变故,他相信老疯子会瞬间就会出现の,壹切都会解决,所以在这里是最安全の.不过根汉也不想现在就离开,好久没见到白萱和钟薇了,现在也不想马上就离去,他表示起 码在这里呆上三年,在情域和无心峰这壹带转壹转再走.几天之后,根汉终于是来到了旁边の壹座侧峰.这里半山腰处,有壹个山洞,洞府口贴上了几张符纸,还是壹座封印结界."咱说蓝霞妹子,这么多年过去了,你还记着咱呢."根汉站在洞口,有些无奈の苦笑.这封印结界明显是刚刚不久前 才弄出来の,显然是蓝霞仙子,不乐意待见自己,故意将这里给封上の.里面没有传来回馈,不过这样の封印结界,却完全挡不住根汉.根汉壹步便迈进了封印结界之中,然后下壹秒,他就知道自己又闯
正弦、余弦、正切函数图象及其性质
函数正弦函数y=sinx 余弦函数y=cosx 正切函数y=tanx图像定义域R R{x∣x≠Kπ+π/2,K∈Z}值域[-1,1][-1,1]R周期性最小正周期都是2π最小正周期都是2π最小正周期都是π奇偶性奇函数偶函数奇函数对称性对称中心是(Kπ,0),K∈Z;对称轴是直线x=Kπ+π/2,K∈Z对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z对称中心是(Kπ/2,0),K∈Z单调性在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增最值当X=2Kπ(K∈Z)时,Y取最大值1;当X=2Kπ+3π/2(K∈Z时,Y取最小值-1当X=2Kπ+π/2(K∈Z)时,Y取最大值1;当X=2Kπ+π(K∈Z时,Y取最小值-1无最大值和最小值正弦、余弦、正切函数图象及其性质注意1、正弦函数y=sinx在[2kπ-π/2, 2kπ+π/2](k∈Z)上是增函数,但不能说它在第一或第四象限是增函数;对于正切函数,它在定义域的每一个单调区间内都是增函数,但不能说它在定义域上是增函数。
2、对于复合函数y=Asin(ωx+φ)、y=Acos(ωx+φ)、y=Atan(ωx+φ)均可以将ωx+φ视为一个整体,用整体的数学方法转化为熟悉的形式解决。
当ω<0时,要特别注意。
如:y=sin(-2x+π/4)可以化为y=-sin(2x-π/4)或y=cos(2x+π/4)再求解。
3、函数y=Asin(ωx+φ)、y=Acos(ωx+φ)的最小正周期为2π/∣ω∣,y=Atan(ωx+φ) 的最小正周期为π/∣ω∣。
正切函数的图像和性质
z|z k , k Z , 2
4
)的定义域是
1、换元法
例1.求函数y tan x )的定义域. ( 4
4 , 那么函数y tan z的定义域是
解:令z x
由x z k , 可得 x k k 2 4 4 4 2
函数y tan(x
x| x k , k Z , 2
z|z k , k Z , 2
4
)的定义域是
2、渐近线平移法
例1.求函数y tan x )的定义域. ( 4 y
2
0
2
x
它的图象由 经过向左平移 得到, 4 渐近线也跟着向左平移 个单位。
x x k ,k Z 2
k, x k 0 k ,k 2 2 2 k Z k Z k Z
书面作业:习题4、10 1
3 tan2( x ) 2 4
f (x ) 2
周期T 2
小结:
(1) y
tan x 的图象是利用平移正切线得到的。简单画法:三点两线法。
(2) y tan x 性质: 定义域
值 周 奇 域 期 偶 性 奇 R 函 数
单调增区间
对 称 中心渐近线 方程来自例1.求函数y tan x )的定义域. ( 4
1、换元法
解:令z x
4
, 那么函数y tan z的定义域是
由x z k , 可得 x k k 2 4 4 4 2
三角函数正弦函数的图像与性质正弦函数的图像课件ppt
xx年xx月xx日
目录
• 正弦函数图像生成 • 正弦函数的性质 • 常见三角函数公式 • 正弦函数的应用 • 实战案例:使用正弦函数和余弦函数解决实际问
题
01
正弦函数图像生成
准备绘制正弦函数图像
选择坐标系
在直角坐标系中,选择一个周期内的图像,可选择 $y=sin(x)$或$y=sin(2x)$等。
03
常见三角函数公式
两角和与差的余弦函数和正弦函数公式
$\cos(x+y)=\cos x\cos y-\sin x\sin y$
$\sin(x+y)=\sin x\cos y+\cos x\sin y$
$\cos(x-y)=\cos x\cos y+\sin x\sin y$
$\sin(x-y)=\sin x\cos y-\cos x\sin y$
倍角公式和半角公式
$\cos 2x=cos^2 x-sin^2 x$ $\cos\frac{x}{2}=\frac{\cos x+1}{2}$
$\sin 2x=2sin x cos x$ $\sin\frac{x}{2}=\frac{\sqrt{1-cos x}}{2}$
积化和差和反三角函数公式
使用正弦函数和余弦函数解决桥梁振动问题
总结词
利用正弦、余弦函数的性质,建立模型并解决实际问题。
详细描述
通过实例演示如何利用正弦、余弦函数的性质,建立模型并解决桥梁振动问题, 包括振幅、频率、相位等的求解。
使用正弦函数和余弦函数解决日常生活中的优化问题
总结词
将正弦、余弦函数应用于优化问题中,提高解决方案的效率 和精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1.“五点法”作函数 其中“五点”是指什么?
简图的步骤,
“五点作图法”注意:这五个点应该是使得 函数取得最大值、最小值的点以及曲线与x 轴的交点。
,
0 1 0 -1 0
的图象。
·
-
描点作图
·2 · · -
· y=sinx
思考:
问题2.作函数
的图象时“五点”怎样确定呢?
(这个问题的答案就在我们今天所讲的内容里)
函数ysinx 的图像及变 换
2020年4月24日星期五
生活实例:
放大
交流电的电流y与时间x变化的图象
y
5 4 3 2 1
O 0.01 0.02 0.03 0.04 x
-1 -2 -3 -4 -5
与正弦曲线相似
问题提出:
那么对于
又有哪些变换呢?
函数y=Asin(ωx+φ) +b的图像.
.
•第一课时 函数y=sin(ωx+φ) 的 图像及变换
结论:
是由y=sinx图像上所有点的的横坐标变为原来 的2倍(纵坐标不变)得到的。
结论:
函数y=sinx的图像可以看作是把y=sinx的图像上所有 点的横坐标变为原来的1/倍(纵坐标不变)而得到。
思考:
周期发生了什么变化?
周期变为原来
[小问题·大思维] 提示:y=sin x.
• 练习题:课本第57页第1题(1)(2) • 用五点作图法尝试作课本第58页第2题(1)(2)
• 教学重点、难点:
• 1.求函数图象对应的函数解析式.(重点)
• 2.运用y=Asin(ωx+φ)的性质解决有关综合问
题.(难点)
• 3.求函数解析式时φ值的确定.(易错点)
(一)探索 对 y=sin(x+ ), x∈R的图象的影响.
上述问题“作函数 y = sin( x +φ)的图象时“五点”怎样 确定呢?”,
讲授新课
• 教学目标:
• 1.知识目标:掌握参数A,ω,φ对函数y=Asin(ωx+φ)图象的影响.
• 2.能力目标: • (1)能熟练运用“五点法”作函数y=Asin(ωx+φ)的图象 • (2)掌握函数y=Asin(ωx+φ)振幅、周期、频率、相位、初相 • (3)能够根据图象或条件求解析式. • 3.情感目标: • (1)渗透数形结合思想; • (2)培养动与静的辩证关系; • (3)提高数学修养.
它的解决的方法是先做变量代换设X= x +φ, 再用方程
思想由X 取 0、
来确定对应的x值
x
0
1
0
-1
0
y
O
x
观察:由
的变化过程。xຫໍສະໝຸດ . O. . . .y=sinx
猜测由 y=sinx
的变换过程
一般地,函数y=sin(x+),(≠0)的图象,可以看作是把
y=sinx的图象上所有的点向左(当>0时)或向右(当 <0 时)平行移动 || 个单位而得到的。
• 作业:《创新导学案》1.5第一课时基础自主演练习题
平移变换
左加右减
.
(二)探索
对 y=sinx , x∈R的图象的影响.
画出y=sinx与y=sin2x的简图,并观察他们之间的联系
用“五点作图法”,列表得:
X=2 0
1
0
-1
0
y
2
o
x
-3
结论:
是由y=sinx的图像上所有点的的横坐标变为原来
的1/2倍(纵坐标不变)得到的。
思考:
•
是由
经过怎样的变换得到的?