阀门定位器的工作原理与结构(很详细的介绍)

合集下载

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构(很详细的介绍)-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII阀门定位器的工作原理与结构阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。

它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。

随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。

阀门定位器(图1)阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。

当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。

在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。

智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。

控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。

控制电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。

驱动电路用于PWM电流滤波后的功率放大。

喷嘴挡板、喷嘴以及相应组件构成了I/P 转换器,实现电气转换。

调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。

反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。

智能阀门定位器结构图(图2)。

阀门定位器工作原理阀门定位器分类

阀门定位器工作原理阀门定位器分类

阀门定位器工作原理阀门定位器分类气动阀门定位器是一种将电气信号转换成压力信号的转换装置,以压缩空气或氮气为工作气源来控制工业炉调节阀的开度大小。

普遍用于工业炉温度自动控制系统中对气动阀门执行机构的连续控制。

气动阀门工作原理:气动阀门是利用压缩空气进入气动执行器带动活塞运动,旋转或升降扭轴带动阀杆驱动的一种气动控制阀门。

气动阀门分为单作用、双作用、智慧调节型三种,单作用气动执行器内由弹簧推动活塞结构,有两种原理敞开和常闭式,既为气开或气关,无气体进入时由弹簧推动活塞关闭阀门,此原理为常闭式。

当气体进入气缸时阀门关闭,断气时由弹簧带活塞阀门打开,吃结构为敞开式。

选购时应当注意避免弹簧长时间压缩失去作用。

双作用是气开气关的原理,双作用气动阀门需配二位五通电磁阀,当气孔A气体进入气缸带动活塞旋转扭矩阀门关闭,开启阀门时气体由B气孔进入同时A口段断开,活塞带动扭矩阀门开启。

气动阀门定位器的作用:气动智慧型调节阀门是在气动执行器上添加了定位器、二位五通电磁阀配套使用,当需要对介质流量调节控制时,可在定位器上的4~20mA等弱电信号例中进行流量的调节。

由于调节型阀门,阀杆处于中间阶段,对于流动阻力会产生影响,阀杆处在长时间浸泡介质状态对一些高压、腐蚀性流体介质时应当选择不锈钢或较好的材质,避免照成阀杆扭曲或腐蚀想像。

气动阀门在气压不足时,气动就无法进行有效的开关控制,如要求较高的工程或危险系统中应当添加手动附件。

阀门定位器分类:按结构:分气动阀门定位器、电气阀门定位器及智能阀门定位器。

按动作的方向:分为单向阀门定位器和双向阀门定位器。

单向阀门定位器用于活塞式执行机构时,阀门定位器只有一个方向起作用,双向阀门定位器作用在活塞式执行机构气缸的两侧,在两个方向起作用。

按信号的符号:分为正作用阀门定位器和反作用阀门定位器。

正作用阀门定位器的输入信号增加时,输出信号也增加,因此,增益为正。

反作用阀门定位器的输入信号增加时,输出信号减小,因此,增益为负。

气动阀门定位器的工作结构原理说明 定位器工作原理

气动阀门定位器的工作结构原理说明 定位器工作原理

气动阀门定位器的工作结构原理说明定位器工作原理(一)工作原理气动阀门定位器是气动调整阀的紧要附件和配件之一,起阀门定位作用。

气动阀门定位器是按力矩平衡原理工作的,当通入波纹管的信号压力加添时,使主杠杆绕支点转动,使喷嘴挡板靠近喷嘴,喷嘴背压经单向放大器放大后,通入到执行机构薄膜室的压力加添,使阀杆向下移动。

并带动反馈杆绕支点转动,反馈凸轮也随之作逆时针方向转动,通过滚轮使副杠杆绕支点转动,并将反馈弹簧拉伸,弹簧对主杠杆的拉力与信号压力用在波纹管上的力达到力矩平衡时,仪表达到平衡状态。

执行机构的阀位维持在确定的开度上,确定的信号压力就对应于确定的阀位开度。

以上作用方式为正作用,若要更改作用方式,只要将凸轮翻转,A向变成B 向等,即可。

所谓正作用定位器,就是信号压力加添,输出压力亦加添;所谓反作用定位器,就是信号压力加添,输出压力则削减。

一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。

(二)结构原理气动阀门定位器接收来自掌控器或掌控系统中4~20mA等弱电信号,并向气动执行机构输送空气信号来掌控阀门位置的装置。

其与气动调整阀配套使用,构成闭环掌控回路。

把掌控系统给出的直流电流信号转换成驱动调整阀的气信号,掌控调整阀的动作。

同时依据调整阀的开度进行反馈,使阀门位置能够按系统输出的掌控信号进行正确定位。

(三)紧要功能气动阀门定位器与气动执行机构共同构成自控单元和各种调整阀连接经过调试安装后,组合成气动调整阀。

用于各种工业自动化过程掌控领域当中。

定位器的安装怎样?智能阀门定位器为环路供电设备,能够驱动线性和90、旋转气动阀门。

4—20mA输入信号确定阀门的设定点。

精准明确的掌控通过阀位反馈实现—自动更改空气输出压力以克服阀杆摩擦力和流体的力的作用,维持所需要的阀位。

阀位通过连续的行程%数字显示。

阀位反馈通过基于霍尔效应的非接触技术获得。

阀门定位器的工作原理

阀门定位器的工作原理

阀门定位器的工作原理
阀门定位器是一种用于确定阀门开闭状态的设备,其工作原理如下:
1. 传感器感知:阀门定位器通过内置的传感器,感知阀门是否处于开启或关闭状态。

传感器可以是物理接触式的,也可以是非接触式的,如光电传感器或磁力传感器。

2. 信号传输:一旦传感器感知到阀门状态的变化,它会将相应的信号传输给阀门定位器的控制单元。

这些信号可以是电信号、光信号或其他类型的信号,取决于传感器的类型和设备的设计。

3. 数据分析:控制单元接收到传感器发送的信号后,会对信号进行数据分析和处理。

它会判断阀门是处于正常开启状态、正常关闭状态还是在中间位置,即半开或半关状态。

4. 显示和输出:一旦控制单元完成数据分析,它会将结果显示在设备的显示屏上,以便操作员准确了解阀门的开闭状态。

此外,阀门定位器还可以通过电子输出信号,将阀门状态信息传输给其他控制系统或记录设备,以实现进一步的处理或监控。

总的来说,阀门定位器通过传感器感知阀门的开闭状态,将信号传输给控制单元进行数据分析和处理,然后将结果显示或输出,帮助操作员准确了解和控制阀门的位置。

费希尔阀门定位器的工作原理

费希尔阀门定位器的工作原理

费希尔阀门定位器的工作原理
费希尔阀门定位器是一种新型的机电一体化设备,可以实现阀门的自
动定位,是阀门自动控制的关键设备之一。

下面我们就来详细了解一
下费希尔阀门定位器的工作原理。

一、费希尔阀门定位器的基本结构
费希尔阀门定位器由电动机、减速机、驱动摆杆、手动装置、位置传
感器等部分组成。

其中电动机和减速机组成了阀门定位器的动力系统,驱动摆杆通过摆杆支承,将驱动力传递到阀门中,实现阀门的定位。

手动装置是为了在发生故障时手动控制阀门的定位,位置传感器则是
用来检测阀门的开度和关闭情况。

二、阀门定位过程
当阀门开始运动时,动力系统会将驱动力传递到驱动摆杆上,最终使
阀门的开度得以控制。

随着驱动摆杆的摆动,位置传感器会不断检测
阀门的开度,并将结果反馈给控制系统。

控制系统通过分析位置传感
器传来的数据,对电动机输出控制信号,实现对阀门位置的精准控制。

三、阀门定位器的特点
费希尔阀门定位器集成了多种先进技术,具有以下几点特点:
1、精确度高,能够实现毫米级别的精准定位;
2、响应速度快,能够在微秒级别内完成阀门的开关动作;
3、结构紧凑,占用空间小,安装方便;
4、维护简单,运行稳定,故障率低;
5、具有自我保护功能,能够实现电机过流、过载、过压等多重保护。

通过以上介绍,我们可以知道费希尔阀门定位器的工作原理及其特点,正是这种设备的高精度、快速响应和可靠性,使得它能够广泛应用于
化工、石油、天然气、造纸等领域的自动化阀门控制中,成为工业自动化领域中不可或缺的重要设备。

阀门定位器内部结构

阀门定位器内部结构

阀门定位器内部结构阀门定位器是一种用于定位阀门位置的仪器设备。

它主要由传感器部分、处理部分和显示部分组成。

下面将详细介绍阀门定位器的内部结构。

1.传感器部分:阀门定位器的传感器部分包括角度传感器、位移传感器和力传感器。

角度传感器用来测量阀门的开度角度,位移传感器用来测量阀门的行程长度,力传感器用来测量阀门的开启和关闭力。

这些传感器可以精确地测量阀门的位置和状态,并将信号传输至处理部分进行处理。

2.处理部分:阀门定位器的处理部分通常由微处理器、数字信号处理器和存储器组成。

微处理器用来执行控制算法和处理传感器信号,数字信号处理器用来滤波和放大传感器信号,存储器用来存储阀门的位置和状态数据。

这些处理器能够实时计算阀门的位置和状态,并根据需要进行控制操作。

3.显示部分:阀门定位器的显示部分通常由液晶显示屏和操作按钮组成。

液晶显示屏用来显示阀门的位置和状态信息,操作按钮用来进行参数设置和控制操作。

通过显示屏和操作按钮,用户可以直观地了解阀门的工作情况,并进行相应的调整和控制。

除了以上三个部分,阀门定位器还包括供电部分和通信接口。

供电部分主要用来提供电源给传感器部分和处理部分,通信接口用来与上位机或其他设备进行数据交换和控制指令传输。

阀门定位器的工作原理如下:当阀门开启或关闭时,传感器部分会感知到阀门的位置和状态,并将相关信号传输至处理部分。

处理部分会对传感器信号进行处理和分析,并计算出阀门的准确位置和状态。

然后,这些信息会由显示部分显示在液晶显示屏上,供用户查看和操作。

用户可以通过操作按钮进行参数设置和控制操作,以实现对阀门的远程控制和监测。

阀门定位器的应用广泛,特别适用于需要远程监测和控制阀门位置的工业领域。

它可以提高工作效率和安全性,减少人工干预和误操作的风险。

通过实时监测和控制阀门的位置和状态,阀门定位器可以及时发现和解决问题,保障工业生产的正常运行。

总之,阀门定位器是一种具有传感器、处理器和显示器的仪器设备,能够实时监测和控制阀门的位置和状态。

几种阀门定位器工作原理的介绍

几种阀门定位器工作原理的介绍

几种阀门定位器工作原理介绍:气动阀门定位器(一)气动阀门定位器是按力平衡原理设计工作的,其工作原理方框见上图所示,它是按力平衡原理设计和工作的。

如图所示当通入波纹管的信号压力增加时,使杠杆2绕支点转动,档板靠近喷嘴,喷嘴背压经放大器放大后,送入薄膜执行机构气室,使阀杆向下移动,并带动反馈杆(摆杆)绕支点转动,连接在同一轴上的反馈凸轮(偏心凸轮)也跟着作逆时针方向转动,通过滚轮使杠杆1绕支点转动,并将反馈弹簧拉伸、弹簧对杠杆2的拉力与信号压力作用在波纹管上的力达到力矩平衡时仪表达到平衡状态。

此时,一定的信号压力就与一定的阀门位置相对应。

以上作用方式为正作用,若要改变作用方式,只要将凸轮翻转,A向变成B向等,即可。

所谓正作用定位器,就是信号压力增加,输出压力亦增加;所谓反作用定位器,就是信号压力增加,输出压力则减少。

一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。

气动阀门定位器(二)气动阀门定位器是一种将电气信号转换成压力信号的转换装置,以压缩空气或氮气为工作气源来控制工业炉调节阀的开度大小。

普遍用于工业炉温度自动控制系统中对气动阀门执行机构的连续控制。

气动阀门定位器是按力平衡原理工作的,实现由输入的4~20mA电流信号控制气动阀门由0~100%的开启度。

其工作原理如下图。

当需要增加阀门开启度,计算机控制系统的输出电流信号就会上升,力矩马达①产生电磁场,挡板②受电磁场力远离喷嘴③。

喷嘴③和挡板②间距变大,排出放大器④内部的线轴⑤上方气压。

受其影响线轴⑤向右边移动,推动挡住底座⑦的阀芯⑨,气压通过底座⑦输入到执行机构⑩。

随着执行机构气室⑩内部压力增加,执行机构推杆⑥下降,通过反馈杆⑩把执行机构推杆@的位移变化传达到滑板⑩。

这个位移变化又传达到量程④反馈杆,拉动量程弹簧16。

当量程弹簧16和力矩马达①的力保持平衡时,挡板②回到原位,减小与喷嘴③间距。

阀门定位器工作原理及作用 定位器技术指标

阀门定位器工作原理及作用 定位器技术指标

阀门定位器工作原理及作用定位器技术指标电气阀门定位器是气动调整阀紧要附件之一,通常与气动调整阀配套使用,它接受调整器的输出信号,然后以它的输出信号去掌控气动调整阀,当调整阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位情形通过电信号传给上位系统。

电气阀门定位器工作原理电气阀门定位器是掌控阀的紧要附件。

它将阀杆位移信号作为输入的反馈测量信号,以掌控器输出信号作为设定信号,进行比较,当两者有偏差时,更改其到执行机构的输出信号,使执行机构动作,从而建立阀杆位移与掌控器输出信号之间的对应关系。

因此,阀门定位器构成以阀杆位移为测量信号,以掌控器输出为设定信号的反馈掌控系统。

该掌控系统的操纵变量是阀门定位器去执行机构的输出信号。

电气阀门定位器作用1、用于对调整质量要求高的紧要调整系统,以提高调整阀的定位精准明确及牢靠性。

2、用于阀门两端压差大(△p》1MPa)的场合。

通过提高气源压力增大执行机构的输出力,以克服液体对阀芯产生的不平衡力,减小行程误差。

3、当被调介质为高温、高压、低温、有毒、易燃、易爆时,为了防止对外泄漏,往往将填料压得很紧,因此阀杆与填料间的摩擦力较大,此时用定位器可克服时滞。

4、被调介质为粘性流体或含有固体悬浮物时,用定位器可以克服介质对阀杆移动的阻力。

5、用于大口径(Dg》100mm)的调整阀,以增大执行机构的输出推力。

6、当调整器与执行器距离在60m以上时,用定位器可克服掌控信号的传递滞后,改善阀门的动作反应速度。

7、用来改善调整阀的流量特性。

8、一个调整器掌控两个执行器实行分程掌控时,可用两个定位器,分别接受低输入信号和高输入信号,则一个执行器低程动作,另一个高程动作,即构成了分程调整。

阀门定位器的详情介绍阀门定位器按结构分:气动阀门定位器、电气阀门定位器及智能阀门定位器,是调整阀的紧要附件,通常与气动调整阀配套使用,它接受调整器的输出信号,然后以它的输出信号去掌控气动调整阀,当调整阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位情形通过电信号传给上位系统。

气动阀门定位器的结构原理及功能

气动阀门定位器的结构原理及功能

气动阀门定位器的结构原理及功能引言流程控制是工业生产中至关重要的一部分,保证流程系统的正常运行需要各种各样的装置。

其中气动阀门是常用的流量控制装置之一。

然而,单靠气动阀门往往不能完全满足工业流程控制的要求,需要配合气动阀门定位器来使用。

本文将介绍气动阀门定位器的结构原理及功能。

气动阀门定位器的结构气动阀门定位器通常由五部分组成:1.供气部分:包括气源过滤器、减压阀等组件,用于提供气源并对气源进行过滤、减压等处理;2.空气放大器:将气源信号放大,从而产生足够的输出功率来控制阀门;3.限制器:限制输出功率,避免阀门因为过于强烈的信号输入而造成破坏;4.阻尼器:通过稳定气源信号波动,避免阀门因为气源压力波动而产生的阀门震荡等不稳定现象;5.执行器:实际控制阀门的部件,由气缸、活塞、气门等组成。

气动阀门定位器的工作原理当需要控制某一个阀门时,气源信号经过空气放大器和限制器处理后进入阻尼器中,经过阻尼器的调节后信号进入执行器,气门以相应的幅度运动,从而将阀门控制在必要的位置。

当阀门关闭时,阀门位置反馈信号通过执行器和阻尼器传回空气放大器,从而调节空气放大器的输出信号,让其能够更好地控制阀门位置。

由此可见,气动阀门定位器通过反馈控制实现了对阀门控制的闭环控制,从而能够更准确地控制阀门位置。

在智能化控制系统中,气动阀门定位器也可以通过现场总线等方式实现远程控制和监控。

气动阀门定位器的功能气动阀门定位器的主要功能是高精度控制阀门的位置。

它具有以下的优点:1.准确度高:由于气动阀门定位器采用了闭环控制策略,所以其控制准确度很高,能够使阀门控制在期望位置,保证流程稳定性;2.响应速度快:气动阀门定位器响应速度快,能够快速响应实时流程变化,使流程控制更加精确;3.结构简单:气动阀门定位器结构相对简单,易于维护和维修;4.操作便捷:气动阀门定位器的操作只需通过系统控制,无需手动调节,非常方便。

结论气动阀门定位器是工业流程控制中不可或缺的一部分。

智能阀门定位器的简要原理说明

智能阀门定位器的简要原理说明

智能阀门定位器的简要原理说明
1.传感器测量阀门位置:智能阀门定位器通过安装在阀门上的传感器,来实时测量阀门的位置。

常见的传感器有角度传感器和位置传感器,它们
会随着阀门的移动而输出相应的电信号。

2.信号处理与转换:传感器输出的电信号被智能阀门定位器内部的电
路进行处理和转换。

这些电路通常包括放大、滤波和数字信号处理等功能,将传感器的电信号转换为可供控制系统使用的数字信号。

3.控制算法:智能阀门定位器内部搭载了控制算法,用于基于传感器
输出的信号来计算和控制阀门的位置。

这些算法可以根据不同的应用需求
来实现阀门的打开、关闭或者调节。

4.位置反馈:智能阀门定位器通过控制机构将计算得到的位置指令传
达给阀门,然后通过传感器对阀门位置进行反馈。

这个反馈机制可以用于
验证阀门是否达到目标位置,以获取位置的准确性和可靠性。

5.与控制系统的通信:智能阀门定位器通常具有与控制系统进行通信
的能力,以便实现远程监控和控制。

它可以通过各种通信接口将阀门位置
数据传输给控制系统,并接收控制系统的指令进行相应的位置调整。

智能阀门定位器的工作原理是基于传感器测量阀门位置,将其转换为
数字信号,然后通过控制算法来实现阀门位置的控制。

该设备可应用于各
种工业领域,例如化工、石油、天然气和水处理等,能够提高阀门的精确
性和稳定性。

同时,智能阀门定位器还具有实时监控和远程控制的能力,
提高了维护和管理的便利性。

1 阀门定位器的工作原理和系统结构

1 阀门定位器的工作原理和系统结构

阀门定位器的工作原理和系统结构1.1 工作原理阀门定位器是按力矩平衡原理工作的。

如正作用的气动薄膜阀,来自调节器或输出式安全栅的4~20mA直流信号输入到转换组件中的线圈时,由于线圈两侧各有一块极性方向相同的永久磁铁,所以线圈产生的磁场与永久磁铁的恒定磁场,共同作用在线圈中间的可动铁芯即阀杆上,使杠杆产生位移。

当输入信号增加时,杠杆向下运动(作逆时针偏转),固定在杠杆上的挡板便靠近喷嘴,使放大器背压增高,经放大后输出气压也随之增高。

此输出气压作用在调节阀的膜头上,使调节阀的阀杆向下运动。

阀杆的位移通过拉杆转换为反馈轴和反馈压板的角位移,并通过调量程支点作用于反馈弹簧上,该弹簧被拉伸,产生一个反馈力矩,使杠杆作顺时针偏转,当反馈力矩和电磁力矩相平衡时,阀杆就稳定于某一位置,从而实现了阀杆位移与输入信号电流成正比例的关系。

调整调量程支点于适当位置,可以满足调节阀不同杆行程的要求。

1.2 系统结构阀门定位器与阀门配套使用,组成一个闭合控制回路的系统。

该系统主要由磁电组件、零位弹簧、挡板、气动功率放大器、调节阀、反馈杠杆、量程调节机构、反馈弹簧组成。

其系统方框图如图1所示。

I - 输入电流;H - 调零弹簧长度;M1- 输入电流所产生的电磁力矩;M o- 零位弹簧所产生的调零点力矩;M f - 反馈弹簧所产生的反馈力矩;h - 挡板微小位移;P - 气动功率放大器的输出压力;L - 调节阀的行程为了分析的方便,我们假设阀门定位器为线性的,则在一般情况下,各环节均可近似为线性环节,那么系统的方框图如图2所示。

图2 线性化的系统方框图K o - 零位弹簧的弹性系数;K4 - 反馈弹簧的弹性系数;K1,K2,K3,K5,K6,K v - 磁电组件、挡板、放大器、量程调整机构、反馈杠杆和调节阀的放大系数由图2可知,令:K c= K2K3K v(1)K F=K4K5K6(2)则L=K c(K o H+K1I)/(1+ K c K f)= [K G K1/(1+K G K f)]*I+K c K o H/(1+K c K f)(3)由(3)式可知:K c K o H/(1+K G K f)为阀门定位器的零点。

各类型阀门定位器构造及工作原理

各类型阀门定位器构造及工作原理

各类型阀门定位器构造及工作原理阀门定位器是一种用于控制阀门位置的装置,它能够确保阀门在需要的位置上精确停止。

根据不同的阀门类型和工作原理,阀门定位器的构造和工作原理也会有所不同。

下面我将从不同类型的阀门定位器构造和工作原理的角度来进行详细解释。

首先,我们来看气动阀门定位器的构造和工作原理。

气动阀门定位器通常由气源接口、气动执行机构、位置反馈装置和控制单元组成。

气源接口用于连接气源管道,通过控制气源的压力来实现阀门的定位。

气动执行机构是阀门定位器的核心部件,它接收气源信号并将其转换为机械运动,从而驱动阀门实现开启、关闭或调节。

位置反馈装置用于监测阀门位置,并将实际位置信息反馈给控制单元,以便实现闭环控制。

控制单元则根据位置反馈信息和设定值来控制气源的输出,从而实现对阀门位置的精确控制。

其次,液动阀门定位器的构造和工作原理也有所不同。

液动阀门定位器通常由液压执行机构、位置传感器和控制系统组成。

液压执行机构通过液压力来实现阀门的定位,位置传感器用于监测阀门位置并将反馈信号传输给控制系统,控制系统则根据反馈信号和设定值来控制液压执行机构,从而实现对阀门位置的精确控制。

另外,电动阀门定位器的构造和工作原理也是不同的。

电动阀门定位器通常由电动执行机构、位置传感器和控制系统组成。

电动执行机构通过电动机驱动来实现阀门的定位,位置传感器用于监测阀门位置并将反馈信号传输给控制系统,控制系统则根据反馈信号和设定值来控制电动执行机构,从而实现对阀门位置的精确控制。

总的来说,不同类型的阀门定位器在构造和工作原理上有所不同,但它们的共同目标都是实现对阀门位置的精确控制,以确保系统的安全运行和有效控制。

希望以上信息能够对你有所帮助。

几种阀门定位器工作原理的介绍

几种阀门定位器工作原理的介绍

几种阀门定位器工作原理介绍:气动阀门定位器(一)气动阀门定位器是按力平衡原理设计工作的,其工作原理方框见上图所示,它是按力平衡原理设计和工作的。

如图所示当通入波纹管的信号压力增加时,使杠杆2绕支点转动,档板靠近喷嘴,喷嘴背压经放大器放大后,送入薄膜执行机构气室,使阀杆向下移动,并带动反馈杆(摆杆)绕支点转动,连接在同一轴上的反馈凸轮(偏心凸轮)也跟着作逆时针方向转动,通过滚轮使杠杆1绕支点转动,并将反馈弹簧拉伸、弹簧对杠杆2的拉力与信号压力作用在波纹管上的力达到力矩平衡时仪表达到平衡状态。

此时,一定的信号压力就与一定的阀门位置相对应。

以上作用方式为正作用,若要改变作用方式,只要将凸轮翻转,A向变成B向等,即可。

所谓正作用定位器,就是信号压力增加,输出压力亦增加;所谓反作用定位器,就是信号压力增加,输出压力则减少。

一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。

气动阀门定位器(二)气动阀门定位器是一种将电气信号转换成压力信号的转换装置,以压缩空气或氮气为工作气源来控制工业炉调节阀的开度大小。

普遍用于工业炉温度自动控制系统中对气动阀门执行机构的连续控制。

气动阀门定位器是按力平衡原理工作的,实现由输入的4~20mA电流信号控制气动阀门由0~100%的开启度。

其工作原理如下图。

当需要增加阀门开启度,计算机控制系统的输出电流信号就会上升,力矩马达①产生电磁场,挡板②受电磁场力远离喷嘴③。

喷嘴③和挡板②间距变大,排出放大器④内部的线轴⑤上方气压。

受其影响线轴⑤向右边移动,推动挡住底座⑦的阀芯⑨,气压通过底座⑦输入到执行机构⑩。

随着执行机构气室⑩内部压力增加,执行机构推杆⑥下降,通过反馈杆⑩把执行机构推杆@的位移变化传达到滑板⑩。

这个位移变化又传达到量程④反馈杆,拉动量程弹簧16。

当量程弹簧16和力矩马达①的力保持平衡时,挡板②回到原位,减小与喷嘴③间距。

阀门定位器工作原理及介绍

阀门定位器工作原理及介绍

阀门定位器工作原理及介绍阀门定位器是一种用于调节装置的自动控制仪器,可以监测阀门的实际位置,并根据设定的控制信号实现对阀门位置的调节。

阀门定位器广泛应用于石油、化工、能源、冶金、电力等行业中的各种流体控制系统中。

本文将详细介绍阀门定位器的工作原理及其应用介绍。

一、阀门定位器的工作原理1.传感器采集:阀门定位器通过安装在阀门上的传感器来采集阀门的位置信息。

常用的传感器包括位移传感器、角度传感器等。

传感器将阀门的位置信息转化为电信号,并传送给控制系统。

2.信号处理:阀门定位器接收到传感器采集的位置信号后,进行信号处理,对信号进行放大、滤波等处理,以确保信号的稳定性和准确性。

3.控制信号计算:阀门定位器接收控制系统发送的控制信号,通过与位置信号进行比较,计算出阀门的实际位置误差。

4.控制算法:根据实际位置误差,阀门定位器内部的控制算法计算出调节阀门的操作量。

常见的控制算法包括比例控制、积分控制、微分控制等。

5.控制信号输出:阀门定位器将计算得到的调节阀门的操作量转化为电信号,通过执行机构输出到阀门,实现对阀门位置的精确控制。

二、阀门定位器的应用介绍1.石油化工行业:在炼油、化工生产中,阀门定位器广泛应用于各类调节阀、截止阀的控制系统中,实现对流体的精确控制和调节,提高生产过程的稳定性和安全性。

2.电力行业:阀门定位器在火力发电、核电等领域中的应用非常广泛。

它可以实现对锅炉、汽轮机等关键设备中的阀门位置的精确控制,提高能源转换的效率。

3.冶金行业:冶金过程中,阀门定位器可用于控制各类流体,如煤气、煤油等的流量和温度,以确保生产过程的稳定性和安全性。

4.环保领域:阀门定位器在废气处理、废水处理等环保设备中有广泛的应用。

通过精确控制阀门的位置,可以实现废气和废水的准确排放和处理,提高环保设备的工作效率。

5.建筑领域:阀门定位器在暖通空调、给排水系统中的应用也很常见。

通过控制阀门的位置,可以实现对室内温度和湿度的精确控制,提高室内环境的舒适度。

气动阀门定位器的工作结构原理说明

气动阀门定位器的工作结构原理说明

气动阀门定位器的工作结构原理说明气动阀门定位器是一种可用于控制阀门位置的装置,采用气动信号控制阀门的开关,通过反馈信号来实现准确的阀门控制。

本文将介绍气动阀门定位器的工作原理和结构。

工作原理气动阀门定位器的工作原理主要是通过气压控制,将准确的信号传输到执行体上,以实现精确的位置控制。

其工作过程如下:1.控制信号输入:信号源产生控制信号,经过传输管道导入气动控制器的控制室中。

2.气源压力加压:控制室的气源入口通过气压调节阀调节气源压力,使得气源压力达到设定的工作值。

3.控制气路控制:气源压力经过气路控制,分别用于推动执行体和传送反馈信号。

4.位置计量器反馈:执行体改变位置后,位置计量器获得反馈信号并通过传输管道传送回信号源。

5.控制信号变更:信号源根据反馈信号对控制信号进行自动或手动调整,以实现阀门位置控制。

结构组成气动阀门定位器的主要组成部分包括控制室、执行机构、位置计量器、气源压力控制部分等。

1.控制室:包括控制室壳体、调节阀、气压调节器、安全阀、手动操作装置、连接管道等部分。

控制室壳体用于保护和支持调节阀等组件,通过连接管道与执行机构相连,实现阀门控制。

2.执行机构:主要由执行体、气路组件和阀门连接构成。

执行体是气动阀门定位器的核心,它负责执行控制信号并控制阀门位置。

气路组件则是连接控制室和执行体的桥梁,为控制信号传输提供路径。

阀门连接用于将执行体与阀门连接起来。

3.位置计量器:用于获得执行体的位置反馈信号,测量并转换执行体位置信息,并通过信号传输管道传送回信号源。

4.气源压力控制部分:主要包括气压调节器、手动自锁装置、安全阀、压力开关等。

气压调节器用于调节气源压力,确保执行体能够获得稳定的气源能量;手动自锁装置用于手动锁定执行体的位置;安全阀和压力开关用于保护气动阀门定位器的安全运行。

总之,气动阀门定位器的工作原理和结构十分复杂,需要依靠各类组件和部件的协同配合,控制好阀门的位置,有力地维护工业系统的正常运转。

几种阀门定位器工作原理的介绍

几种阀门定位器工作原理的介绍

几种阀门定位器工作原理的介绍阀门定位器是一种用于控制阀门开度的设备,可以将阀门位置准确控制在目标位置上。

常见的阀门定位器主要包括气动式、电动式和液压式,以下将分别介绍它们的工作原理。

1.气动式阀门定位器:气动式阀门定位器采用气源作为动力源来控制阀门的开闭。

其工作原理如下:-当操作员设定阀门的目标开度时,定位器内部的气动执行器会受到控制信号,使得气动执行器的活塞产生运动。

-活塞的运动将通过连杆转换成阀门的旋转或推移运动,以使阀门达到预设的开度。

-当阀门的开度达到指定值时,定位器会发送反馈信号给控制系统,以便进行进一步的控制或监测。

2.电动式阀门定位器:电动式阀门定位器通过电源供电来控制阀门的开闭。

其工作原理如下:-当操作员设定阀门的目标开度时,定位器内部的电动执行器会接收到控制信号,并将电能转换为机械运动。

-电动执行器的运动将通过传动装置传递给阀门,从而使阀门达到预设的开度。

-当阀门的开度达到指定值时,定位器会发送反馈信号给控制系统,并停止电动执行器的运动。

3.液压式阀门定位器:液压式阀门定位器将液体作为动力源,以实现对阀门开度的控制。

其工作原理如下:-当操作员设定阀门的目标开度时,定位器中的液动执行器会受到控制信号,使得液动执行器的活塞产生运动。

-活塞的运动将通过液压传动装置传递给阀门,从而使阀门达到预设的开度。

-当阀门的开度达到指定值时,定位器会发送反馈信号给控制系统,并停止液动执行器的运动。

总结:阀门定位器的工作原理主要包括气动式、电动式和液压式三种。

气动式阀门定位器通过气源控制阀门的开合;电动式阀门定位器则通过电能驱动阀门运动;液压式阀门定位器则通过液压系统来实现阀门的控制。

不同类型的阀门定位器适用于不同的工况和应用场景,选择适合的阀门定位器对于阀门的安全操作和控制效果至关重要。

阀门定位器的工作原理与结构

阀门定位器的工作原理与结构

阀门定位器的工作原理与结构1.控制部分:控制部分是阀门定位器的核心部分,它由控制电路、信号输入输出接口和控制程序组成。

控制电路接收来自外部的控制信号,通过控制程序进行处理,并输出控制信号给执行机构,从而实现对阀门的准确定位。

2.传感器部分:传感器部分用于检测阀门的开关位置,并将实时的位置信号传输给控制部分。

常见的传感器有位移传感器、压力传感器和角度传感器等。

位移传感器是最常用的一种,它可通过测量阀门螺杆转动的线性位移来确定阀门的开关位置。

3.执行机构部分:执行机构部分用于控制阀门的开关操作。

它一般由电机或气动执行器组成。

电机执行机构通常用于大型阀门,通过电源提供动力,并通过传动装置将电机的旋转运动转化为阀门的线性运动。

气动执行机构则主要用于小型阀门,通过气源提供动力,并通过气动元件将气源的压力转化为阀门的开关动作。

除了以上三个主要部分外,阀门定位器还包括一些附属装置,如阀门位置指示器、手动操作装置和阀门定位器控制器等。

1.接收控制信号:2.检测阀门开关位置:定位器的传感器部分会检测阀门的开关位置,并将实时的位置信号传输给控制部分。

传感器可以通过位移、压力或角度等方式来检测阀门的开关状态。

3.控制执行机构:控制部分根据接收到的开关位置信号,通过控制程序进行处理,并输出相应的控制信号给执行机构部分。

执行机构根据控制信号控制阀门的开启或关闭,以实现准确的阀门定位。

4.输出反馈信号:总结:阀门定位器通过控制部分、传感器部分和执行机构部分的协同工作,实现了对阀门开关位置的准确定位。

它在工业管道系统中的阀门控制中起着重要的作用,可以确保阀门在开关操作中的准确性和可靠性,并提升工业管道系统的自动化程度。

阀门定位器工作原理

阀门定位器工作原理

阀门定位器工作原理阀门定位器是一种用于控制阀门位置的装置,它可以帮助阀门实现自动化控制,提高工作效率,降低人工成本。

那么,阀门定位器是如何工作的呢?接下来,我们将详细介绍阀门定位器的工作原理。

1. 传感器检测阀门位置。

阀门定位器的工作原理首先依赖于传感器的检测。

传感器可以实时监测阀门的位置,将位置信息传输给控制系统。

传感器通常采用霍尔传感器或者编码器,能够准确地感知阀门的开度和闭合情况。

2. 控制系统接收信号。

传感器传输的阀门位置信号会被控制系统接收并处理。

控制系统根据传感器反馈的位置信息,通过内部的算法和逻辑判断,确定阀门的当前状态,并根据设定的参数进行相应的控制。

3. 电动执行器调节阀门位置。

一旦控制系统确定了阀门的当前状态,它会通过信号输出给电动执行器,电动执行器根据接收到的信号,通过驱动装置调节阀门的位置。

电动执行器通常采用电动螺杆或者电动阀门执行器,能够精确地控制阀门的开合程度。

4. 反馈信号闭环控制。

阀门定位器的工作原理中,还包括了反馈信号的闭环控制。

一旦电动执行器调节完阀门的位置,它会再次通过传感器获取阀门的实际位置,并将实际位置信息反馈给控制系统。

控制系统会将实际位置与目标位置进行比对,进行闭环控制,确保阀门达到预期的位置要求。

通过以上的工作原理介绍,我们可以清晰地了解到阀门定位器是如何工作的。

它通过传感器检测阀门位置,控制系统接收信号并进行处理,电动执行器调节阀门位置,最终实现了阀门的自动化控制。

阀门定位器的工作原理简单清晰,但实现了阀门的精准控制,为工业生产提供了便利和效率。

浅谈阀门定位器的工作原理和使用

浅谈阀门定位器的工作原理和使用

浅谈阀门定位器的工作原理和使用阀门定位器是一种用于定位和控制阀门开闭状态的仪器设备。

其工作原理基于电磁感应和信号传输,主要用于自动化控制系统中的阀门定位和反馈。

阀门定位器通常由阀门定位器本体、感应器、运动传动装置和控制电路等组成。

工作原理:1.电磁感应:阀门定位器通过感应器和阀门杆进行电磁耦合,当电磁线圈通电时,产生的磁场会作用在阀门杆上,从而感应出阀门的位置信息。

2.信号传输:感应器接收到阀门位置信息后,将其转换为电信号,通过传输装置传送给控制电路。

3.控制电路:控制电路接收到阀门位置信号后,根据设定的控制策略,控制运动传动装置的动作,以达到准确的阀门定位。

使用方法:1.安装:根据阀门定位器的型号和实际情况,将阀门定位器固定安装在阀门和执行机构上,使其与阀门杆连接并保持良好的电磁耦合。

2.连接:将阀门定位器与控制电路连接,确保信号的传输和控制的安全可靠。

3.校准:根据实际需求和操作手册,对阀门定位器进行校准,确保其准确反映阀门的开闭状态。

4.调试:通过控制电路对运动传动装置进行调试,使其具备良好的控制性能和定位精度。

5.操作:根据控制策略和工艺要求,对阀门定位器进行自动或手动控制,实现对阀门的定位控制和反馈。

阀门定位器的使用有以下几个主要优点和应用领域:1.提高自动化程度:阀门定位器能够将阀门的开闭状态实时反馈给控制系统,实现远程操控和智能化控制,提高生产自动化程度。

2.改善准确性:阀门定位器采用电磁感应和信号传输,具有较高的定位精度和稳定性,能够实现精确的阀门开闭控制。

3.提高安全性:阀门定位器能够监测和报告阀门的实时位置信息,当阀门异常或操作不当时,能够及时警报并采取相应的控制措施,提高系统的安全性和可靠性。

4.减少人为操作:阀门定位器能够自动定位和控制阀门的开闭状态,减少了人为操作的干预,降低了人为错误和事故的发生概率。

5.广泛应用领域:阀门定位器适用于各种工业领域,如化工、石油、电力、冶金、水处理等,特别适用于高压、高温、腐蚀性介质和危险环境下的阀门定位控制。

阀门定位器工作原理

阀门定位器工作原理

阀门定位器工作原理
阀门定位器是一种用于定位阀门的装置,它能够准确地找到和确定阀门的位置。

它的工作原理主要通过以下步骤:
1. 传感器检测:阀门定位器内置了传感器,可以检测阀门的位置信息。

传感器通常是通过测量阀门杆的移动来确定位置的,可以是基于机械原理或者电子原理。

2. 数据采集:传感器将检测到的位置信息转化为电信号,并通过内部的数据采集装置进行采集和处理。

数据采集装置负责将传感器采集到的位置数据进行转换和处理,使其适合后续的处理和控制。

3. 信号处理:采集到的位置数据通过信号处理器进行处理和分析。

信号处理器会对采集到的数据进行滤波、放大、校准等处理,以保证位置数据的精确性和可靠性。

4. 状态显示:经过信号处理后,阀门定位器会将阀门的位置信息以数字或者模拟的方式显示出来。

这样操作人员就可以直观地看到阀门的位置状态,便于操作和维护。

5. 控制指令:根据阀门的位置信息,阀门定位器可以产生控制信号,用于控制阀门的开闭。

这个控制信号一般会发送给阀门控制系统,由其来控制阀门的动作。

综上所述,阀门定位器通过传感器检测阀门的位置,采集、处理和显示位置信息,并生成相应的控制信号,实现对阀门位置
的准确定位和控制。

这使得操作人员可以方便地监测和控制阀门的状态,提高了阀门的运行效率和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阀门定位器的工作原理与结构(很详细的介绍)
-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
阀门定位器的工作原理与结构
阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。

它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。

随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。

阀门定位器(图1)
阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。

当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。

在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。

智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。

控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。


制电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。

驱动电路用于PWM电流滤波后的功率放大。

喷嘴挡板、喷嘴以及相应组件构成了I/P 转换器,实现电气转换。

调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。

反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。

智能阀门定位器结构图(图2)。

相关文档
最新文档