水工建筑物重力坝设计计算书样本
重力坝计算书

MOW3 = -111.9×5.376 = -601.6 KN·m ∑MOW = 6986.7 KN·m ② 静水压力(水平力) P1 = γH12 /2 = 9.81×(1105.67-1090)2 /2 = -1204.4 KN P2 =γH22 /2 =9.81×(1095.18-1090)2 /2 = 131.6 KN (←) ∑P = -1072.8 KN (→) P1 作用点至 O 点的力臂为: (1105.67-1090)/3 = 5.223m P2 作用点至 O 点的力臂为: (1095.18-1090)/3 = 1.727 m 静水压力对 O 点的弯矩(顺时针为“-” ,逆时针为“+” ) : MOP1 = 1204.4×5.223 = -6290.6 KN·m MOP2 = 131.6×1.727 = 227.3 KN·m ∑MOP = -6063.3 KN·m ③ 扬压力 扬压力示意图请见下图: (→)
由确定坝顶超高计算时已知如下数据:单位:m
平均波长 Lm 波高 h1% 7.644 0.83
坝前水深 H 15.5
波浪中心线至计算水位的高度 hZ
0.283
使波浪破碎的临界水深计算如下:
H cr Lm Lm 2h1% ln 4 Lm 2h1%
将数据代入上式中得到:
H cr 7.644 7.644 2 0.83 ln 1.013 4 7.644 2 0.83
单位: KN、 KN· m
正常使用极限状态 持久状态 1868.6准值
均采用荷载设计值
⑵.由规范 8.结构计算基本规定中可知大坝坝体抗滑稳定和坝基岩 体进行强度和抗滑稳定计算属于 1)承载能力极限状态,在计算时, 其作用和材料性能均应以设计值代入。基本组合,以正常蓄水位对 应的上、下游水位代入,偶然组合以校核洪水位时上、下游水位代 入。 而坝体上、下游面混凝土拉应力验算属于 2)正常使用极限状 态,其各设计状态及各分项系数 = 1.0,即采用标准值输入计算。 此时结构功能限值 C = 0。 荷载各项标准值和设计值请见附表 1。 ① 坝体混凝土与基岩接触面抗滑稳定极限状态 a、基本组合时,取持久状态对应的设计状况系数ψ=1.0,结构系数 γd1=1.2,结构重要性系数γ0 =0.9。 基本组合的极限状态设计表达式
重力坝设计计算书

水利水电工程专业专项设计说明书水工建筑物课程设计题目:重力坝设计(西山水利枢纽)班级:水电1141姓名韩磊指导教师:**长春工程学院水利与环境工程学院水工教研室2013 年3月3日目录1 挡水坝段 (1)1.1 剖面轮廓及尺寸 (1)1.1.1 坝顶高程的确定 (1)1.2 坝体稳定应力分析 (4)1.2.1 挡水坝段荷载计算 (4)1.2.2 稳定验算 (18)1.2.3 坝基面应力计算 (19)1.2.4 坝体内部应力的计算 (25)2 溢流坝段 (34)2.1 孔口尺寸和泄流能力 (34)2.1.1 确定孔口尺寸和孔口数量 (34)2.1.1.2溢流坝最大高度和坡度的拟定。
(35)2.1.2 泄洪能力的验算 (35)2.2 检修门槽空蚀性能验算 (37)2.2.1校核洪水位时堰顶压力验算 (37)2.2.2 平板门门槽空蚀验算 (37)2.3 溢流坝曲面设计 (37)2.3.1 上游前缘段计算 (37)2.3.2顶部曲线段 (38)2.3.3 中间直线段 (38)2.3.4 反弧段 (38)2.3.5 桥面布置 (39)2.4 堰面水深的校和计算 (40)2.4.1堰面水深计算 (40)2.4.2 直线段水深计算 (41)2.4.3 反弧段水深计算 (41)2.4.4 渗气后水深计算 (42)2.5 消力池的计算 (42)2.5.1判断消能方式 (42)2.5.2 判断是否要修消力池 (42)2.5.3 消力池尺寸的计算 (43)2.5.4 基本组合(2) (44)2.6 溢流坝算段的稳定、应力计 (48)2.6.1 荷载计算 (48)2.6.2 稳定验算 (52)2.6.3 坝基面应力计算 (53)2.6.4 坝体内部应力的计算 (54)3、设计参考资料 (55)谢辞 (55)1 挡水坝段1.1 剖面轮廓及尺寸1.1.1 坝顶高程的确定由于设计洪水位低于正常洪水位,故取正常洪水位和校核洪水位作为控制情况。
重力坝工程量计算书

重力坝坝体工程量计算非溢流坝段1#:右岸断面1混凝土面积为17.5㎡,土方开挖为24.38㎡;断面2混凝土面积为128.71㎡,土方开挖为120.69㎡;断面3混凝土面积为128.71㎡,土方开挖为27.12㎡。
断面1与断面2距离为12.26m,断面2与断面3距离为8m则坝段1#混凝土方量为(17.5+128.71)/2*12.26+128.71*8=1925.947 m³土方开挖量为(24.38+120.69)/2*12.26+(120.69+27.12)/2*8=1480.519 m³非溢流坝段2#:右岸断面3混凝土面积为128.71㎡,土方开挖为27.12㎡;断面4混凝土面积为365.09㎡,土方开挖为163.88㎡;断面5混凝土面积为365.09㎡,土方开挖为120.69㎡。
断面3与断面4距离为14m,断面4与断面5距离为8m则坝段2#混凝土方量为(128.71+365.09)/2*14+365.09*8=6377.32 m³土方开挖量为(27.12+163.88)/2*14+(163.88+120.69)/2*8=2475.28 m³非溢流坝段3#:右岸断面5混凝土面积为365.09㎡,土方开挖为120.69㎡;断面6混凝土面积为982.6㎡,土方开挖为605.06㎡;断面7混凝土面积为982.6㎡,土方开挖为248.77㎡。
断面5与断面6距离为14m,断面6与断面7距离为8m则坝段3#混凝土方量为(982.6+365.09)/2*14+982.6*8=17294.63 m³土方开挖量为(120.69+605.06)/2*14+(605.06+248.77)/2*8=8495.57 m³非溢流坝段4#:右岸断面7混凝土面积为982.6㎡,土方开挖为248.77㎡,断面8混凝土面积为2380.91㎡,土方开挖为616.29㎡;断面9混凝土面积为2380.91㎡,砂砾石开挖为907.56㎡;。
水工建筑物重力坝设计计算书

一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m安全超高按Ⅲ级建筑物取值h c=0.3m=2h l+ h0+ h c=0.98+0.30+0.3=1.58m 坝顶高出水库静水位的高度△h校②设计洪水位情况下:波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m=2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h设③两种情况下的坝顶高程分别如下:校核洪水位时:225.3+1.58=226.9m设计洪水位时:224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。
(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。
(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。
(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。
重力坝坝顶超高计算书标准格式

重力坝坝顶超高计算书标准格式混凝土重力坝坝顶超高计算书标准格式工程设计分院坝工室2006.3.核定:审查:校核:编写:——水电站工程(或水库工程、水利枢纽工程)混凝土重力坝坝顶高程计算书1 计算说明1.1 适用范围(设计阶段)本计算书仅适用于工程设计阶段的(坝型)坝顶超高/高程计算。
1.2 工程概况工程位于省市(县)的江(河)上。
该工程是以为主,兼顾、、等综合利用的水利水电枢纽工程。
本工程规划设计阶段(或预可行性研究阶段,可行性研究阶段/初步设计阶段,招标设计阶段)设计报告已于年月经审查通过。
水库总库容×108m3,有效库容×108m3,死库容×108m3;灌溉面积亩;水电站装机容量MW,多年平均发电量×108 kW·h,保证出力MW。
选定坝址为,选定坝型为。
根据《水电枢纽工程等级划分及设计安全标准》DL5180—2003,工程等别为等型工程,拦河坝为级永久水工建筑物。
(因拦河大坝坝高已超过其规定的高度,拦河坝应提高级,按级建筑物设计。
)1.3 计算目的和要求通过混凝土重力坝坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位高差的计算,以确定防浪墙顶高程和大坝高度,为坝体断面设计及坝体工程量计算提供可靠的依据。
1.4 计算原则和方法1.4.1 计算原则(1)坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位的高差,包括最大浪高、波浪中心线至水库静水位的高度和安全超高。
(2)确定的坝顶高程不得低于水库正常蓄水位及设计洪水位。
(3)坝顶高程的确定尚需考虑枢纽中其他建筑物(如船闸坝顶桥下通航净空) 对坝顶高程的要求。
1.4.2 计算方法因选定坝型为(混凝土重力坝),防浪墙顶在水库静水位以上的高差按《混凝土重力坝设计规范》DL 5108-1999式(11.1.1)计算,即:∆h=h1%+h z+h c式中,∆h—防浪墙顶至水库静水位的高差,m;h1%—浪高,m;h z−波浪中心线至水库静水位的高度,m;h c−安全超高,m。
水工建筑物重力坝毕业设计模板

水工建筑物重力坝毕业设计模板××水力发电枢纽工程重力坝设计一、前言1、流域概况及枢纽任务××是罗江上的一条南北向大支流,河流全长295公里,流域面积850平方公里。
流域形状略呈菱形,上下游狭窄,中游宽大,河道坡陡流急,具有暴涨暴落的特性。
本枢纽工程以发电为主,兼顾防洪、灌溉,对航运和木材筏运也适当加以解决。
水库总库容22.6亿立方米,装机容量24.8万千瓦,灌溉上游农田130万亩,确保减免昌州市(福州市)及附近50万亩农田和南江县(南平县)的洪灾。
2、经水文、水利调洪演算确定:死水位200.15m;发电正常水位215.5m,相应下游水位163.88m;设计洪水位216.22m,相应下游水位169.02m,通过河床式溢洪道下泄流量5327.70m3/s;校核洪水位217.14m,相应下游水位169.52m,通过河床式溢洪道下泄流量6120.37 m3/s;泥沙淤积高程174.6m,淤沙干容重14.1KN/m3(浮容重=8.71 KN/m3),孔隙率n=0.45内摩擦角为φ=15o;电站进水口底板高程为186.20m(坝式进水口)。
3、气象资料相应洪水季节50年重现期最大风速的多年平均值为17.3m/s,相应设计洪水位时吹程2.54km,相应校核洪水位时吹程2.66km。
4、地质勘测资料坝址处河床地面高程为146.10m,河床可利用基岩高程为140m,坝与基岩之间摩擦系数为0.7,基岩允许抗压强度为6.3Mpa ,坝基渗透系数(扬压力折减系数或剩余水头系数)α1α2可分别取0.25,0.34。
5、建筑材料有关数据5.1 龄期为90天,强度等级C15标号的混凝土允许抗压强度为4.3Mpa。
5.2 砂石料有3个主要料场:5.2.1 房村料场位于坝上游右岸22公里处,与公路边小山丘相连,附近河岸地形开阔,可供加工堆存之用,分布呈长方形,长1350m,宽234m,表土层3~4m,露出水面0~7m。
水工建筑物重力坝设计计算书

一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m安全超高按Ⅲ级建筑物取值h c=0.3m坝顶高出水库静水位的高度△h=2h l+ h0+ h c=0.98+0.30+0.3=1.58m校②设计洪水位情况下:波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m=2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h设③两种情况下的坝顶高程分别如下:校核洪水位时:225.3+1.58=226.9m设计洪水位时:224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。
(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。
(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。
(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。
重力坝具体布置计算溢流荷载项目设计书

重力坝具体布置计算溢流荷载项目设计书1 基本资料及枢纽布置1.1 基本资料1.1.1 地形地质地形情况见附图。
河床高程325m。
约有2—3m复盖层,岩石为磷状灰岩,较完整,节理不发育,风化层厚l~2m,无特殊不利地质构造。
1.1.2 水文本枢纽属中型水库三等工程。
永久性重要建筑物为三级,按规范要求,采用50年一遇洪水设计,500年一遇洪水校核。
经水文水利计算,有关数据如下表多年平均最大风速15m/s;水库吹程D=2.5公里;混凝土重度24kN/m3;淤沙浮重度9.5KN/m3;内摩擦角120度;地震波计烈度6度;基岩允许抗压强度3×103kpa;混凝土与基岩之间抗剪断参数f’=0.9;c’=700kpa;岩石冲坑系数a=1.31.1.4 本枢纽选用混凝土重力坝由非溢流重力坝段和溢流坝段组成。
1.2 枢纽布置1.2.1 坝址和坝型选择坝址、坝型的选择是水利枢纽布置的重要内容,二者相互联系。
不同的坝址可选择不同的坝型。
本设计中河谷宽阔,地址条件好,所以选择为重力坝。
1.2.1.1 地质条件地质条件是坝址、坝型选择的重要条件,重力坝需建在岩基上,其重力坝枢纽布置关键因素是地质条件,所以在考虑地质条件时应注意,断层破碎带、软弱夹层,垂直水流的陡倾斜角断层,应尽量避开岩溶地区查明潜伏溶洞、暗河、溶沟和沟槽等对建筑物的影响,应对不利影响作出研究和论证。
1.2.1.2 地形条件不同的坝对地形的要求也不一样,在山谷地区布置水利枢纽时,应尽量少高边坡开挖,坝址选在河谷段,坝轴线断减小坝体工程量,但对泄水和发电不利。
在坝址选择时,要注意坝址位置是否对取水防沙及漂木有利。
1.2.1.3 建筑材料坝址附近有足够数量符合要求的建筑材料。
采用混凝土时,要求可作骨料用的沙卵石或碎石料厂。
1.2.1.4 施工要求要便于施工导流,坝址附近应有开阔的地形,便于布置施工场地,应从长远利益出发,正确对待施工条件问题。
1.2.1.5 综合效益对不同的坝址要综合考虑防洪、灌溉、发电、航运、旅游等部门的经济效益对环境的影响。
水利水电建筑工程重力坝设计书

水利水电建筑工程重力坝设计书供应条件1)主要建筑材料供应本电站施工对外交通运输以公路运输为主。
工程区附近天然建材储量丰富,质量也满足本工程需要。
主要建筑材料钢材从成都采购,综合运距为356km,木材、油料、炸药由松潘县供应,综合运距为109km,水泥由拉法基水泥厂供应,综合运距为270km。
2)施工机械修配工程施工机械设备与汽车修理可依托松潘县地方机械修理厂承担,工地只设机修站和汽车保养站。
3)施工供电和施工供水本工程施工由当地地方电网供电。
热务沟及工程区内水质良好,施工生产、生活用水可抽取热务沟水或就近截取支沟水。
4)施工队伍及施工设备和物质采购工程建设期间所需的临时工,生产物资等可在松潘县招募和采购。
省内水电专业施工队伍众多,可实行招投标选择施工队伍。
取水建筑物~重力坝位于岷江一级支流小姓沟与其一级支流泗拉柯沟交汇处下游约90m左右处的小姓沟上。
小姓沟由NW向SE流经坝区,谷底宽为110~150m。
右岸为10~20°的缓坡,左岸为30~45°的斜坡和峻坡。
燕云电站取水口地形图1.3工程地质河床右岸为10~20°的缓坡,根据坝轴线坝ZK4、坝ZK5钻探资料揭示,上部为1.00~1.85m左右的崩坡积层(QCoL+dl4)亚粘土夹块碎石;下部为中生界三迭系西康群中统杂谷脑下段(T2z1)岩层:灰色钙质石英细砂岩(或绿灰色凝灰质砂岩)与少量深灰色粉砂质板岩及灰黑色透镜状~薄层状结晶灰岩的不等厚间互层。
先将上部的崩坡积层(QCoL+dl4)亚粘土夹块碎石和局部不稳定坡体彻底清除,再将坝坝基础置于中生界三迭系西康群中统杂谷脑下段(T2z1)岩层上,其承载能力满足坝坝对地基的要求。
建议将坝肩崁入基岩3~5m,坝肩强卸荷岩体呈强透水状态,应加强防渗处理措施,防止沿坝肩接头渗漏,并对边坡和坝肩作好抗冲刷处理措施和护岸工程处理措施。
河床左岸为30~45°的斜坡和峻坡,根据坝轴线坝ZK1、坝ZK2钻探资料揭示,上部为2.50~3.60m左右的崩坡积层(QCoL+dl4)亚粘土夹块碎石;下部为中生界三迭系西康群中统杂谷脑下段(T2z1)岩层:灰色钙质石英细砂岩(或绿灰色凝灰质砂岩)与少量深灰色粉砂质板岩及灰黑色透镜状~薄层状结晶灰岩的不等厚间互层。
(完整版)重力坝设计计算书

水工建筑物课程设计设计名称:混凝土重力坝设计学院:土木工程学院专业:水利水电工程专业年级: 2012学号:**********学生姓名:**指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.橫缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.橫缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。
大坝校核洪水为500年一遇,坝体级别为4级。
2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。
(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。
水工建筑物重力坝设计计算书

.一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l5/4D1/3×5/4× 1/3=0.98m=0.0166V=0.0166 18 4波浪长度2L l× l0.8×0.8=10.4 (2h )=10.4 0.98=10.23m波浪中心线到静水面的高度h0π l2/ 2L l ×2=(2h)=3.14 0.98 /10.23=0.30m 安全超高按Ⅲ级建筑物取值h c=0.3m坝顶高出水库静水位的高度△h=2h l0c校②设计洪水位情况下:波浪高度2h l5/4D1/3×5/41/3=0.0166(1.5V)=0.0166 (1.5×18) ×4=1.62m 波浪长度2L l× l0.8×0.8=10.4 (2h )=10.4 1.62=15.3m波浪中心线到静水面的高度h0π l2/ 2L l ×2=(2h)=3.14 1.62 /15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m坝顶高出水库静水位的高度△h=2h l0c设③两种情况下的坝顶高程分别如下:校核洪水位时: 225.3+1.58=226.9m设计洪水位时: 224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按 227.00m 设计,则坝高 227.00-174.5=52.5m。
(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取 8 米。
(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的 0.7~ 0.9 倍,挡水坝段和厂房坝段均采用1:0.7。
(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于 1/3~2/3 坝高处,以便利用上游坝面水重增加坝体的稳定。
重力坝计算稿(excel)

2.1 基本资料⑴ 水库⑵泥沙⑶ 计算2.2 非溢2.3 荷载计算 符号规定:竖⑴ 坝体自重G1 计算公式:2 非溢流坝实用剖面沿建基面稳定及应力计算()⎥⎦⎤⎢⎣⎡++=2211121hbhbbHGcγ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛---+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛--=2122111113122132221212bbbBhbbBhbbbBbHMcGγ⑵ 上游水平向水 计算公式:坝体自重G 1计算成果表坝体自重G 1对坝基截面形心轴的力矩M G1计算成果表23121h P w γ=33161h Mw P γ-= 式中: h 3——上游面作⑶ 上游竖直向水 计算公式:⑷ 下游水平向水 计算公式: 式中: h 4——下游面作⑸ 下游竖直向水 计算公式:上游竖直向水压力G 2及其对坝基截面形心轴的力矩M G2下游水平向水压力P 2及其对坝基截面形心轴的力矩M P2上游水平向水压力P 1及其对坝基截面形心轴的力矩M P1221312h h b Gw-=γ()()⎥⎦⎤⎢⎣⎡---=131312223232h h h h b B G M G 24221h P w γ-=34261h M w P γ=242321h m G w γ=⎪⎭⎫⎝⎛--=4233312h m B G M G⑹ 上游水平向淤 计算公式:⑺ 上游水平向浪 计算公式:上游水平向浪压力P wk 及其对坝基截面形心轴的力矩M Pwk上游水平向淤沙压力P sk 及其对坝基截面形心轴的力矩M Psk下游竖直向水压力G 3及其对坝基截面形心轴的力矩M G3s sk Psk h P M 31-=()z m w wk h h L P +=%141γ()%13%13%132312h h L h L L h h h h h L P M z m m m z z m wkPwk +⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡-++⎪⎭⎫ ⎝⎛++-=⎪⎭⎫ ⎝⎛-︒=245tan 2122s s sb sk h P ϕγ⑻ 扬压力U① 当坝基设有防渗 计算公式:② 当坝基设有下游S 2和L 2计算成果表扬压力U及其对坝基截面形心轴的力矩M US 1和L 1计算成果表()21S S U w+-=γ()2211L S L S M w U +-=γ()()[]211431lh h S αα-++=()()[]()()[]αααα-++-++-=1131221243431h h h h l B L ()()[]22432αα-+-=h h l B S ()()[]()[]αααα-+-+---=233243432h h h h l B l BL 计算公式:U和M U 计算成果表S 1和L 1计算成果表S 2和L 2计算成果表()[]2142311h h l S αα++=()[]()[]423142311132212h h h h l B L αααα++++-=()22423112h h l S αα+=()()42314231122332h h h h l l BL αααα++--=2423l h Sα=2/2/213l l l B L ---=()()2121244l l l B h S ---+=α()()()2221413212αα++---+-=l l l B B L ()4321S S S S U w +++-=γ()44332211L S L S L S L S M w U +++-=γ⑼ 上游竖向淤沙 计算公式:2.4 坝基面抗滑稳⑴ 按坝基设有防①按抗剪断强度公 计算公式: 式中: ∑W——作用于 ∑P——作用于 A——坝基接触抗滑稳定安全系数K ´计算成果表∑W计算成果表∑P计算成果表上游竖向淤沙压力G 4及其对坝基截面形心轴的力矩M G4∑∑'+'='PAc W f K ()2614h h b G s sb+=γ()()⎪⎪⎭⎫⎝⎛++-=66144322h h h h b B G M s s G强度公式 计算公式:⑵ 按坝基设有下①按抗剪断强度公② 按抗剪强度公式抗滑稳定安全系数K计算成果表抗滑稳定安全系数K ´计算成果表∑W计算成果表∑P计算成果表抗滑稳定安全系数K计算成果表∑∑=PWf K截面垂直 坝基截面的垂 式中: σy ——坝踵、 ∑W——作用于 ∑M——作用于 A——坝段或1m x——坝基面上 J——坝段或1m L 坝长——坝段长 B——坝基截面 坝踵水平正应 坝趾水平正应 坝踵主应力σ 坝趾主应力σ⑴ 按坝基设有防∑W、∑M汇总表Jx M AW y∑∑±=σ123B L J 坝长=()()21m P P P P uy u u uu ux σσ----=()()22m P P P P du d ydudx +'-+-'=σσ⎪⎭⎫ ⎝⎛-+=+=245tan 231s s sb w skh h h P P P ϕγγ3h P w uu γ=4h P w γ='4h P w du γ=()()uuu y uP P m m --+=212111σσ()()dud y dP P m m -'-+=222211σσ坝踵、坝址的垂直正应力计算成果表上游坝面水压力强度P1、淤沙压力强度P skh和扬压力强度P u u计算表下游坝面水压力强度P´和扬压力强度P u d计算表上游坝面水平正应力σx u和主应力σ1u计算成果表下游坝面水平正应力σx d和主应力σ1d计算成果表应力计算成果汇总表⑵ 按坝基设有下∑W、∑M汇总表坝踵、坝址的垂直正应力计算成果表上游坝面水压力强度P1、淤沙压力强度P skh和扬压力强度P u u计算表下游坝面水压力强度P´和扬压力强度P u d计算表上游坝面水平正应力σx u和主应力σ1u计算成果表下游坝面水平正应力σx d和主应力σ1d计算成果表少 爷 编制 重力坝稳定及应力计算表格。
重力坝计算说明书参考

目录第一章调洪演算..................................................................................................................错误!未定义书签。
第二章非溢流坝设计计算 .. (1)2.1坝高的计算 (1)2.2坝挡水坝段的稳定及应力分析 (2)第三章溢流坝设计计算 (9)3.1堰面曲线 (9)3.2中部直线段设计 (10)3.3下游消能设计 (10)3.4水力校核 (12)3.5WES堰面水面线计算 (14)第四章放空坝段设计计算 (17)4.1放空计算 (17)4.2下游消能防冲计算 (18)4.3水力校核 (19)4.4水面线计算 (21)第五章电站坝段设计计算 (23)5.1基本尺寸拟订 (23)第六章施工导流计算 (26)6.1河床束窄度 (26)6.2一期围堰计算 (26)6.2二期围堰高程的确定 (27)附录一经济剖面选择输入及输出数据 (30)附录二坝体的稳定应力计算输入输出数据 (35)附录三调洪演算源程序及输入数据 (46)第二章 非溢流坝设计计算1第二章 非溢流坝设计计算2.1 坝高的计算坝顶高出静水面Δh=2h 1+h 0+h c 2h 1——波浪高度校核时,V=16m/s 2h 1=0.0166×V 5/4×D 1/3=0.0166×165/4×0.51/3=0.42m 设计时,V=24m/s 2h 1=0.0166×V 5/4×D 1/3=0.0166×245/4×0.51/3=0.70mh0——波浪中心线高出静水位高度 校核时,2L 1=10.4×(2h 1)0.8=10.4×0.420.8=5.21mm L h 11.024h 1210==π设计时,2L 1=10.4×(2h 1)0.8=10.4×0.700.8=7.81mm L h 20.024h 1210==πh c ——安全超高,等知:校核时,h c =0.3m ;设计时,h c =0.4m 。
重力坝毕业设计计算书

参考文献 .................................................. - 44 -
精品资料
_______ቤተ መጻሕፍቲ ባይዱ______________________________________________________________________________________________________
1.1 建筑物级别 .........................................................- 1 1.2 设计洪水的计算 .....................................................- 1 -
重力坝计算书

1.1堤顶及防浪墙顶高程确定
1.1.1堤顶高程计算公式
本工程设计洪水标准为30年一遇,校核洪水标准为300年一遇,坝顶高程应大于坝前水位+坝顶超高。而坝顶超高=累计频率1%的波高+风壅高度+安全加高
(1.1)
1.1.2安全加高
本工程堤防级别为4级,设计洪水时,安全加高应为0.40m,校核洪水时,安全加高应为0.30m。
下游水位218.00m,下游水深218.00-210.50=7.50m
水平向:
一区:
三区:
垂直向:
二区:
四区:
表1.10正常使用工况下静水压力汇总表
分区
水平力(kN)
垂直力(kN)
力臂(m)
力矩(kN m)
一区
4562.88
10.17
-46404.49
二区
684.43
12.88
8815.46
三区
-275.91
1.82
1.76
1.70
1.66
1.52
1.45
1.34
1.00
0.4
2.01
1.78
1.68
1.64
1.60
1.56
1.44
1.39
1.30
1.01
0.5
1.80
1.63
1.56
1.62
1.49
1.46
1.37
1.33
1.25
1.01
1.1.4坝顶超高的计算
表1.3超高值Δh 的计算的基本数据
设计洪水位
9643.65
三区
-593.51
3.67
2178.18
(完整版)重力坝设计计算书

(完整版)重力坝设计计算书水工建筑物课程设计设计名称:混凝土重力坝设计学院:土木工程学院专业:水利水电工程专业年级: 2012学号:1208070176学生姓名:杨林指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.橫缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.橫缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。
大坝校核洪水为500年一遇,坝体级别为4级。
2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。
(1).相关资料(2). 计算h l 根据官厅公式计算:当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。
重力坝计算稿(excel)

重⼒坝计算稿(excel)2.1 基本资料⑴⽔库⽔位⑵泥沙⑶计算基本参数2.2 ⾮溢流坝断⾯尺⼨拟定2.3 荷载计算符号规定:竖向作⽤⼒以向下为“+”、⽔平向作⽤⼒以指向下游为“+”、弯矩以逆时针为“+”。
⑴坝体⾃重G1(↓)及其对坝基截⾯形⼼轴的⼒矩M G1(逆时针)计算公式:2 ⾮溢流坝实⽤剖⾯沿建基⾯稳定及应⼒计算()?++=2211121hbhbbHGcγ---+?-+?--= 2 1 2 2 1 1 1 12 13 2 2 2 1 2 1 2 b b b B h b b B h b b b B bH M c G γ⑵上游⽔平向⽔压⼒P 1(→)及其对坝基截⾯形⼼轴的⼒矩M P1(顺时针)计算公式:坝体⾃重G 1计算成果表坝体⾃重G 1对坝基截⾯形⼼轴的⼒矩M G1计算成果表23121h P w γ=33161h Mw P γ-=式中:h 3——上游⾯作⽤⽔头上游⽔平向⽔压⼒P 1及其对坝基截⾯形⼼轴的⼒矩M P1 23121h P w γ=242321h m G w γ=--=4233312h m B G M G⑹上游⽔平向淤沙压⼒P sk (→)及其对坝基截⾯形⼼轴的⼒矩M psk (顺时针)计算公式:⑺上游⽔平向浪压⼒P wk (→)及其对坝基截⾯形⼼轴的⼒矩M pwk (顺时针)计算公式:上游⽔平向浪压⼒P wk 及其对坝基截⾯形⼼轴的⼒矩M Pwk上游⽔平向淤沙压⼒P sk 及其对坝基截⾯形⼼轴的⼒矩M Psk下游竖直向⽔压⼒G 3及其对坝基截⾯形⼼轴的⼒矩M G3s sk Psk h P M 31-=()z m w wk h h L P +=%141γ()%13%13%132312h h L h L L h h h h h L P M z m m m z z m wkPwk +?---++??? ??++-=??? ?-=245tan 2122s s sb sk h P γ⑻扬压⼒U(↑)及其对坝基截⾯形⼼轴的⼒矩M U (顺时针)①当坝基设有防渗帷幕和排⽔孔,⽽未设下游副排⽔孔和抽排系统时按如下图形及公式计算扬压⼒。
宁村水库重力坝初步设计水工建筑物计算

《水工建筑物》课程设计计算书——宁村水库重力坝初步设计班级:水利水电工程091学生:王朝阳指导教师:张小飞、段秋华完成时间:广西大学土木建筑工程学院目录一、工程等级的确定 (3)(一)原理 (3)(二)计算过程 (3)二、孔口尺寸拟定及设计洪水位、校核洪水位的确定 (3)(一)堰顶高程的拟定 (3)(二)堰顶溢流前沿宽度的拟定 (3)(三)设计洪水位、校核洪水位的计算········································· (4)三、挡水坝设计 (4)(一)坝顶高程的确定 (4)(二)建基面高程的确定 (5)(三)坝顶宽度的确定 (5)(四)上下游坝坡坡率及起坡点位置的确定 (5)(五)坝面优化 (5)(六)坝体强度稳定承载力极限状态设计······································ (5)(七)坝体上游面拉应力的正常使用极限状态设计 (5)(八)坝体应力分析 (5)四、溢流坝设计 (5)(一)溢流坝断面设计 (5)(二)消能防冲设计 (8)(三)导墙设计 (9)(四)坝体强度稳定极限状态设计 (10)(五)坝体正常使用极限状态合计 (10)五、大坝剖面优化和应力稳定分析 (10)六、工程量与开挖量计算 (11)七、附表 (11)(一)附表一:挡水坝电算方案 (11)(二)附表二:溢流坝电算方案 (18)宁村水库重力坝初步设计计算书一、工程等级的确定(一)原理:拟定泄水建筑物,进行调洪计算,求得校核洪水位,再根据附图1(宁村水库水位~库容关系曲线)查得水库总库容,最终根据规范《水利水电工程等级划分及洪水标准》SL252-2000确定工程等级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、非溢流坝设计
( 一) 、初步拟定坝型的轮廓尺寸
(1)坝顶高程的确定
①校核洪水位情况下:
波浪高度 2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m
波浪长度 2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m
波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m
安全超高按Ⅲ级建筑物取值 h c=0.3m
坝顶高出水库静水位的高度△h校=2h l+ h0+ h c=0.98+0.30+0.3=1.58m ②设计洪水位情况下:
波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m
波浪长度 2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m
波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m
安全超高按Ⅲ级建筑物取值 h c=0.4m
坝顶高出水库静水位的高度△h设=2h l+ h0+ h c=1.62+0.54+0.4=2.56m ③两种情况下的坝顶高程分别如下:
校核洪水位时: 225.3+1.58=226.9m
设计洪水位时: 224.0+2.56=226.56m
坝顶高程选两种情况最大值226.9 m, 可按227.00m设计, 则坝高227.00-174.5=52.5m。
(2)坝顶宽度的确定
本工程按人行行道要求并设置有发电进水口, 布置闸门设备, 应适当加宽以满足闸门设备的布置, 运行和工作交通要求, 故取8米。
(3)坝坡的确定
考虑到利用部分水重增加稳定, 根据工程经验, 上游坡采用1: 0.2, 下游坡按坝底宽度约为坝高的0.7~0.9倍, 挡水坝段和厂房坝段均采用1: 0.7。
(4)上下游折坡点高程的确定
理论分析和工程实验证明, 混凝土重力坝上游面可做成折坡, 折坡点一般位于1/3~2/3坝高处, 以便利用上游坝面水重增加坝体的稳定。
根据坝高确定为52.5m, 则1/3H=1/3×52.5=17.5m, 折坡点高程=174.5+17.5=192m; 2/3H=2/3×52.5=35m, 折坡点高程=174.5+35=209.5m, 因此折坡点高程适合位于192m~209.5m之间, 则取折坡点高程为203.00m。
挡水坝段和厂房坝段的下游折坡点在统一高程216.5m处。
(5)坝底宽度的确定
由几何关系可得坝底宽度为T=( 203-174.5) ×0.2+8+(216.5-174.5) ×0.7=43.1m
(6)廊道的确定
坝内设有基础灌浆排水廊道, 距上游坝面6.1m, 廊道底距基岩面4m, 尺寸
2.5×
3.0m( 宽×高) 。
(7)非溢流坝段纵剖面示意图
( 二) 、基本组合荷载计算及稳定分析
由上述非溢流剖面设计计算得知校核洪水位情况下的波浪三要数:
波浪中心线到静水面的高度h0=0.3m
波浪高度2h l=0.98m
波浪长2L l=10.23m
因为gD/v2=9.81×4000/182=121.11m ,在20~250m之间
因此波高应安转换为累计频率1%时的波高: 2h l( 1%) =0.98×1.24=1.22m 。
又因为半个波长L l=10.23/2=5.12<H( 坝前水深H=50.8m) ,
因此浪压力P l按深水波计算。
式中: 其中灌浆处及排水处扬压力折减系数取α=0.25
水重度Υ=9.81KN/m3
混泥土等级强度C10
混泥土重度24KN/m3
坝前淤沙浮容重0.95T/m3=9.5KN/ m3
水下淤沙内摩擦角Φ=18°。
( 1) 正常洪水位情况
正常洪水位情况下荷载计算示意图正常洪水位情况下的荷载计算过程见附表1。