灰色差分预测模型及应用
灰色预测法GM(1,1)理论及应用
灰色预测法GM(1,1)理论及应用一、概念1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。
灰色系统是介于白色系统和黑色系统之间的一种系统。
灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。
2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
二、灰色预测的类型1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
i. 设()()()()()()()()(){},,, (00000)123X X X X X n = 是所要预测的某项指标的原始数据,计算数列的级比()()()(),,,,()00123X t t t n X t λ-==。
如果绝大部分的级比都落在可容覆盖区间(,)2211n n ee-++内,则可以建立GM(1,1)模型且可以进行灰色预测。
灰色预测模型及其应用
x(0) {x(0) (1), x(0) (2), , x(0) (N ) } {6, 3, 8, 10, 7}
4.2 灰色系统的模型
对数据累加
x(1) (1) x(0) (1) 6, x(1) (2) x(0) (1) x(0) (2) 6 3 9, x(1) (3) x(0) (1) x(0) (2) x(0) (3) 6 3+8 17, x(1) (4) x(0) (1) x(0) (2) x(0) (3) x(0) (4) 6 3+8+10 27, x(1) (5) x(0) (1) x(0) (2) x(0) (3) x(0) (4) x(0) (5)
第四章 灰色预测模型及其应用
灰色预测模型(Gray Forecast Model)是通过少量 的、不完全的信息,建立数学模型并做出预测的 一种预测方法.当我们应用运筹学的思想方法解决 实际问题,制定发展战略和政策、进行重大问题 的决策时,都必须对未来进行科学的预测. 预测是 根据客观事物的过去和现在的发展规律,借助于 科学的方法对其未来的发展趋势和状况进行描述 和分析,并形成科学的假设和判断.
(5)系统预测. 通过对系统行为特征指标建立一组相互关联的灰 色预测模型,预测系统中众多变量间的相互协调关系的变化。
灰色预测模型及其应用
第七章 灰色预测模型及其应用
灰色预测模型(Gray Forecast Model)是通过少量 的、不完全的信息,建立数学模型并做出预测的 一种预测方法.当我们应用运筹学的思想方法解决 实际问题,制定发展战略和政策、进行重大问题 的决策时,都必须对未来进行科学的预测. 预测 是根据客观事物的过去和现在的发展规律,借助 于科学的方法对其未来的发展趋势和状况进行描 述和分析,并形成科学的假设和判断.
或称相减生成,它是指后前两个数据之差,如上例中
7.2 灰色系统的模型
x(1) (5) x(1) (5) x(1) (4) 34 27 7, x(1) (4) x(1) (4) x(1) (3) 27 17 10, x(1) (3) x(1) (3) x(1) (2) 17 9 8, x(1) (2) x(1) (2) x(1) (1) 9 6 3, x(1) (1) x(1) (1) x(1) (0) 6 0 6. 归纳上面的式子得到如下结果:一次后减 x(1) (i) x(1) (i) x(1) (i 1) x(0) (i)
dx (1) + ax (1) = u dt
(7.1) (7.2) (7.3)
7.2 灰色系统的模型
其中是常数,称为发展灰数;称为内生控制灰数,是对
系统的常定输入.此方程满足初始条件
的解为
当t t0时x(1) x(1) (t0 )
(7.3)’
x(1) (t)
x(1)
(t0
)
u a
7.3 销售额预测
(2)建立矩阵:B, y
t
涉及到累加列 x(1)
灰色预测模型
灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测模型的研究及应用
灰色预测模型的研究及应用
灰色预测模型是一种用于预测问题的数学模型,广泛应用于各个领域。
它在1982年由中国科学家GM灰所提出,因此得名为“灰色预测模型”。
灰色预测模型基于灰色系统理论,它假设事物的发展具有一定的规律性和趋势性,但也存在不确定性的因素。
它通过对已知数据的分析和处理,来预测未来的发展趋势。
灰色预测模型的核心思想是将已知数据序列分解为两个部分:灰色部分和白色部分。
灰色部分是由数据的数量级和函数形式决定的,因此可以用来预测未来的趋势。
白色部分则是由不确定的随机因素引起的,往往被视为噪声,不具备预测能力。
灰色预测模型有多种形式,其中最常用的是GM(1,1)模型。
该模型通过建立一阶线性微分方程来描述数据的变化趋势,然后利用指数累减生成灰色模型。
基于灰色模型,可以进一步进行累加、累减、累乘等操作,来实现更复杂的预测。
灰色预测模型在各个领域都有广泛的应用。
其中最典型的应用是经济预测领域,包括国民经济、金融市场等。
此外,它还可以应用于工业生产、环境保护、农业发展、医疗卫生等方面的预测。
灰色预测模型的优点是简单易懂、计算量小、适用范围广。
它可以对数据的趋势进行较为准确的预测,尤其适用于数据量较小或者不完整的情况下。
缺点是对数据的要求较高,数据的采
样点要均匀分布,并且在建立模型时需要进行一些参数的选择,可能存在主观性和不确定性。
总之,灰色预测模型是一种有效的预测方法,具有广泛的应用前景。
在实际应用中,需要对具体问题进行合理的建模和参数选择,以提高预测的准确性。
灰色预测模型理论及其应用
灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。
一、灰色系统及灰色预测的概念1.1灰色系统灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
1.2灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。
《灰色预测法》的应用[1]1
灰色预测法第一节灰色系统一、灰色预测的概念灰色预测是就灰色系统所作的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体含义是:如果某一系统的全部信息已知为白色系统,全部信息末知为黑箱系统,部分信息已知、部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测,可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有本知或非确定信息的系统进行预测,就是对在一定范围内变化的,与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律。
灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测一般有四种类型。
1.数列预测。
对某现象随时间的顺延而发生的变化所作的预测定义为数列预测。
例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平,另一个是这一水平所发生的时间。
2.灾变预测。
对发生灾害或异常突变事件可能发生的时间预测称为灾变预测。
例如对地震时间的预测。
3.系统预测。
对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。
例如市场中代用商品、相互关联商品销售量互相制约的预测。
4.拓扑预测。
将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。
二、系统功能模拟与灰色分析(一)系统模拟所谓系统模拟是指通过系统模型间接地模拟真实系统的过程。
系统模型建立起来后,在人为控制的条件下,通过改变特定参数,观察和研究模型的情况,以预测系统在真实环境下的特征、规律、作用、效率等。
这是组建系统的必经过程,也是研究系统的重要手段。
根据系统模型和系统真实情况相似关系的特点,一通常把模拟分为物理模拟与数学模拟两大类。
物理模拟是以系统模型和真实系统之间物理相似或几何相似为基础的一种模拟方法。
灰色理论与灰色预测模型研究与应用
灰色理论与灰色预测模型研究与应用灰色理论是一种基于不完全信息的数学方法,由中国科学家陈纳德于1982年提出。
它主要用于解决样本数据有限、不完整、不确定的问题,适用于各种领域的预测和决策。
灰色预测模型是灰色理论的核心内容之一,通过对数据序列进行建模和预测,可以在一定程度上弥补数据不完整性带来的问题。
灰色理论的核心思想是通过构建灰色模型,对数据进行预测和分析。
灰色模型是一种基于时间序列的预测模型,它主要包括GM(1,1)模型和GM(2,1)模型。
GM(1,1)模型适用于一阶动态系统,通过建立灰微分方程和灰累加方程,可以对数据进行预测和分析。
GM(2,1)模型是GM(1,1)模型的扩展,适用于二阶动态系统,通过引入二次累加生成序列,可以提高预测的准确性。
灰色预测模型的应用非常广泛,可以用于经济、环境、医疗、交通等领域的预测和决策。
以经济领域为例,灰色预测模型可以用于宏观经济指标的预测,如国内生产总值、物价指数等。
通过对历史数据的分析和建模,可以预测未来一段时间内的经济走势,为政府和企业的决策提供参考。
在环境领域,灰色预测模型可以用于空气质量、水质监测等方面的预测和评估。
通过对历史数据的分析,可以预测未来一段时间内的环境状况,为环境保护和治理提供科学依据。
灰色预测模型的优势在于能够处理数据不完整、不确定的问题。
在实际应用中,往往会遇到数据缺失、数据质量差等问题,传统的预测模型很难处理这些问题。
而灰色预测模型通过对数据序列的分析和建模,可以在一定程度上弥补数据不完整性带来的问题,提高预测的准确性。
此外,灰色预测模型还具有模型简单、计算快速等特点,适用于大规模数据的处理和分析。
然而,灰色预测模型也存在一些不足之处。
首先,灰色预测模型对数据的要求较高,需要满足一定的前提条件,如数据序列的稳定性、线性关系等。
如果数据不满足这些条件,就无法进行有效的预测和分析。
其次,灰色预测模型对参数的选择较为敏感,不同的参数选择可能会导致不同的预测结果。
灰色预测模型理论及其应用
灰色预测模型理论及其应用Document number【980KGB-6898YT-769T8CB-246UT-18GG08】灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。
一、灰色系统及灰色预测的概念灰色系统灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
基于灰色关联分析的市场预测模型构建与应用
基于灰色关联分析的市场预测模型构建与应用随着市场竞争的日趋激烈,企业如何准确预测市场变化、抓住机遇成为了一个重要的课题。
传统的市场预测方法往往过于简化,无法精确反映市场的复杂性和变化性。
而基于灰色关联分析的市场预测模型则具备了处理不确定性和非线性问题的能力,被广泛应用于各行业的市场预测中。
灰色关联分析的基本思想是寻找两个或多个时间序列之间的关联度,并以此来构建预测模型。
与传统的统计模型相比,灰色关联分析不依赖于大量的历史数据,可以降低数据要求,并减少对数据分布假设的依赖。
因此,它可以更好地处理少量样本的预测问题,对市场变化进行精确的预测。
在市场预测中,灰色关联分析主要包括了四个步骤:数据归一化、灰色关联度计算、灰色关联度排序和建立预测模型。
首先,数据归一化是指将原始数据转化为无量纲化的数据,以便进行比较和计算。
通常采用的方法包括极差归一化、标准差归一化等。
接下来是灰色关联度的计算。
通过灰色关联度计算,可以得到各个时间序列之间的关联度。
基于信息熵理论,灰色关联度分析可以衡量不同时间序列之间的相似性,进而反映它们之间的联系程度。
然后是灰色关联度的排序。
在计算得到各个时间序列之间的关联度后,可以将它们排序,找出最相关的时间序列。
通过排序可以发现时间序列之间存在的关联性,为后续的预测建模提供依据。
最后,建立预测模型。
通过分析和研究相关性高的时间序列,可以构建出相应的预测模型。
预测模型可以是线性模型,也可以是非线性模型,根据具体情况选择合适的建模方法。
利用预测模型,可以对未来的市场变化进行预测,为企业的战略决策提供依据。
基于灰色关联分析的市场预测模型在实际应用中取得了一定的成果。
以电子商务行业为例,通过对用户历史消费数据的灰色关联分析,可以对用户未来的购买行为进行预测,从而个性化推荐商品,提高销售额。
在金融领域,灰色关联分析也被应用于股票市场的预测,为投资者提供参考。
然而,基于灰色关联分析的市场预测模型也存在一些挑战和限制。
灰色预测模型
就可得原始序列 x (0) 的拟合值 xˆ(0) (k 1);当k N时,
可得原始序列 x (0) 预报值.
3.精度检验
(1)残差检验:分别计算
7.2 灰色系统的模型
7.2 灰色系统的模型
(3)预测精度等级对照表,见表7.1.
dx (1) ax (1) u dt
(7.1) (7.2) (7.3)
7.2 灰色系统的模型
其中是常数,称为发展灰数;称为内生控制灰数,是对
系统的常定输入.此方程满足初始条件
的解为
当t t0时x(1) x(1) (t0 )
(7.3)’
x(1)
(t)
x
(1)
(t0 )
u a
ea(t t0 )
x (0)(3) ax (1)(3) u, ..............................
x (0)(N ) ax (1)(N ) u.
7.2 灰色系统的模型
把ax(1) (i) 项移到右边,并写成向量的数量积形式
x(0) (2)
[
x(1)
(2),
1]
a u
x
(
0)
(3)
灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色系统 所做的预测.目前常用的一些预测方法(如回归分 析等),需要较大的样本.若样本较小,常造成较 大误差,使预测目标失效.灰色预测模型所需建模 信息少,运算方便,建模精度高,在各种预测领 域都有着广泛的应用,是处理小样本预测问题的 有效工具.
Operational Research
第七章 灰色预测模型及其应用
灰色预测建模原理及应用
灰色预测建模原理及应用灰色预测建模是一种基于灰色系统理论的预测方法,它通过对已知数据进行灰色处理,利用数学模型进行预测分析,能够在数据不完全、信息不充分的情况下进行较为准确的预测,并被广泛应用于经济、环境、管理、工程等领域。
灰色预测的基本原理是通过对原始数据序列进行灰色处理,从而实现数据序列的规律性显现和可预测性增强。
灰色预测建模的基本步骤如下:1.序列建模:对原始数据序列进行建模,确定其特征方程。
主要有一阶、二阶、灰度关联度模型和灰色GM(1,1)模型等。
2.模型参数估计:根据确定的特征方程,通过最小二乘法等方法对模型参数进行估计,得到模型的数值解。
3.模型检验:对已建立的模型进行检验,判断模型的适用性及精度。
一般通过残差检验、相关系数检验等方法来评估模型。
4.预测和累加生成:通过模型预测得到待预测期的结果,并将预测结果与原始数据进行累加生成,得到预测序列。
灰色预测建模的特点是:省数据量、灰度信息充分、模型简单、适用性广泛。
应用方面,灰色预测建模主要有以下几个方面:1.经济方面:灰色预测可以用于经济指标预测,如GDP、消费指数、物价指数等。
通过对这些指标进行预测分析,可以指导政府采取相应的宏观调控政策。
2.环境方面:灰色预测可以应用于环境数据的预测,如空气质量指数、水质指标等。
通过对环境数据的预测,可以做到提前预警,并采取相应的控制措施,保护环境质量。
3.管理方面:灰色预测可以用于企业管理,如销售预测、库存预测、供应链管理等。
通过对企业数据进行预测,可以合理安排生产、销售和供应,提高企业的经济效益和竞争力。
4.工程方面:灰色预测可以应用于工程项目的进度和成本预测,如道路建设、房地产开发等。
通过对工程数据进行预测分析,可以及时发现问题,并采取相应的措施,保证项目的顺利进行。
总的来说,灰色预测建模是一种有效的预测方法,能够在数据不完全、信息不充分的情况下进行较为准确的预测,广泛应用于经济、环境、管理、工程等领域,对各行各业的发展和决策都具有重要作用。
灰色预测模型的优化及其应用
偏残差灰色预测模型的优化
1 2 3
偏残差灰色预测模型的基本原理
通过对原始数据序列的偏残差进行修正,提高灰 色预测模型的精度。
优化方法一
考虑非等间距序列:在偏残差灰色预测模型中考 虑非等间距序列的影响,可以更准确地反映原始 数据的变化规律。
优化方法二
引入非线性函数:在偏残差灰色预测模型中引入 非线性函数,可以更准确地描述原始数据序列的 变化规律。
05
结论
研究成果总结
灰色预测模型在处理具有不完整、不确定信息的问题上具有优势,能够克服数据量 小、信息不完全等限制。
通过引入优化方法,灰色预测模型在预测精度、稳定性和泛化性能等方面都得到了 显著提升。
灰色预测模型在多个领域具有广泛的应用价值,如经济、环境、医学等,为相关领 域的科学研究提供了新的思路和方法。
灰色神经网络预测模型的优化
01
灰色神经网络预测模型的基本原理
利用神经网络的自学习能力,对灰色预测模型进行优化。
02
优化方法一
选择合适的网络结构:根据历史数据选择合适的网络结构,可以提高灰
色神经网络预测模型的泛化能力。
03
优化方法二
采用集成学习算法:将多个灰色神经网络模型的预测结果进行集成,可
以提高预测精度。
灰色预测模型与其他模型的组合研究
01
02
03
集成学习
将灰色预测模型与其他预 测模型进行集成,通过集 结多个模型的优点,提高 预测精度。
混合模型
将灰色预测模型与其他模 型进行混合,以充分利用 各种模型的优势,提高预 测性能。
多模型融合
将多个灰色预测模型进行 融合,通过综合多个模型 的预测结果,提高预测精 度。
基于大数据和人工智能的灰色预测模型研究
(完整版)灰色预测模型
我们说X (1)是X (0)的AGO序列,并记为
当且仅当
X (1) AGO X (0)
X (1) x(1) 1, x(1) 2,L , x(1) n
k
并满足 x(1) (k) x(0) (m) (k 1, 2,L , n) m1
例1 摆动序列为:X (0) 1, 2, 1.5, 3
3、灰数及其运算
只知道大概范围而不知道其确切值的数称为灰 数,通常记为:“”。
例如: 1. 头发的多少才算是秃子。应该是个区间范
围。模糊 2.多少层的楼房算高楼,中高楼,低楼。 3.多么重才算胖子?。
灰数的种类:
a、仅有下界的灰数。 有下界无上界的灰数记为: ∈[a, ∞] b、仅有上界的灰数。 有上界无下界的灰数记为: ∈[-∞ ,b] c、区间灰数 既有上界又有下界的灰数: ∈ [a, b] d、连续灰数与离散灰数 在某一区间内取有限个值的灰数称为离散灰 数,取值连续地充满某一区间的灰数称为连续 灰数。
这表明
IAGO X (1) IAGO(பைடு நூலகம்AGO X (0) ) X (0)
3. 均值生成算子(MEAN)
定义 它是将AGO序列中前后相邻两数取平均数, 以获得生成序列。令X (1)为X (0)的AGO序列
X (1) x(1) 1, x(1) 2,L , x(1) n
称Z (1)为X (1) 的MEAN序列,并记为
定义 它是对AGO生成序列中相邻数据依次累 减,又称累减生成。令X (0)为原序列
X (0) x(0) 1, x(0) 2,L , x(0) n
称Y是 X (0)的IAGO序列,并记为
当且仅当
Y IAGO X (0)
Y y(1), y(2),L , y(n)
预测方法——灰色预测模型
预测⽅法——灰⾊预测模型灰⾊预测模型主要特点是模型使⽤的不是原始数据序列,⽽是⽣成的数据序列,核⼼体系为灰⾊模型(GM),即对原始数据作做累加⽣成(累减⽣成,加权邻值⽣成)得到近似指数规律再进⾏建模。
优点:不需要很多数据;将⽆规律原始数据进⾏⽣成得到规律性较强的⽣成序列。
缺点:只适⽤于中短期预测,只适合指数增长的预测。
GM(1,1)预测模型GM(1,1)模型是⼀阶微分⽅程,且只含⼀个变量。
1. 模型预测⽅法2. 模型预测步骤1. 数据检验与处理为保证建模⽅法可⾏,需要对已知数据做必要的检验处理。
设原始数据列为x(0)=(x0(1),x0(2),….x0(n)),计算数列的级⽐λ(k)=x(0)(k−1)x(0)(k),k=2,3,...,n如果所有的级⽐都落在可容覆盖区间X=(e−2n+1,e2n+1)内,则数列可以建⽴GM(1,1)模型且可以进⾏灰⾊预测。
否则,对数据做适当的变换处理,如平移变换:y(0)(k)=x(0)(k)+c,k=1,2,...,n取c使得数据列的级⽐都落在可容覆盖内。
2. 建⽴模型根据1中⽅程的解,进⼀步推断出预测值ˆx(1)(k+1)=(x(0)(1)−ba)e−ak+ba,k=1,2,...,n−13. 检验预测值1. 残差检验ε(k)=x(0)(k)−ˆx(0)(k)x(0)(k),k=1,2,...,n如果对所有的|ε(k)|<0.1|ε(k)|<0.1,则认为到达较⾼的要求;否则,若对所有的|ε(k)|<0.2|ε(k)|<0.2,则认为达到⼀般要求。
2. 级⽐偏差值检验ρ(k)=1−1−0.5a1+0.5aλ(k)如果对所有的|ρ(k)|<0.1,则认为达到较⾼的要求;否则,若对于所有的|ρ(k)|<0.2,则认为达到⼀般要求。
4. 预测预报根据问题需要给出预测预报。
3. py实现import numpy as npimport pandas as pddata=[71.1,72.4,72.4,72.1,71.4,72.0,71.6] # 数据来源len=len(data) # 数据量# 数据检验lambdas=[]for i in range(1,len):lambdas.append(data[i-1]/data[i])X_Min=np.e**(-2/(len+1))X_Max=np.e**(2/(len+1))l_min,l_max=min(lambdas),max(lambdas)if l_min<X_Min or l_max> X_Max:print("该组数据为通过数据检验,不能建⽴GM模型!")else:print("改组数据通过检验")# 建⽴GM(1,1)模型data_1=[] # 累加数列z_1=[]data_1.append(data[0])for i in range(1,len):data_1.append(data[i]+data_1[i-1])z_1.append(-0.5*(data_1[i]+data_1[i-1]))B=np.array(z_1).reshape(len-1,1)one=np.ones(len-1)B=np.c_[B,one]Y=np.array(data[1:]).reshape(len-1,1)a,b=np.dot(np.dot(np.linalg.inv(np.dot(B.T,B)),B.T),Y)print('a='+str(a))print('b='+str(b))## 数据预测data_1_prd=[]data_1_prd.append(data[0])data_prd=[] # 预测datadata_prd.append(data[0])for i in range(1,len):data_1_prd.append((data[0]-b/a)*np.e**(-a*i)+b/a)data_prd.append(data_1_prd[i]-data_1_prd[i-1])# 模型检验## 残差检验e=[]for i in range(len):e.append((data[i]-data_prd[i])/data[i])e_max=max(e)if e_max<0.1:print("数据预测达到较⾼要求!")elif e_max<0.2:print("数据预测达到⼀般要求!")# 输出预测数据for i in range(len):print(data_prd[i])灰⾊Verhulst预测模型主要⽤于描述具有饱和状体的过程,即S型过程,常⽤于⼈⼝预测,⽣物⽣长,繁殖预测及产品经济寿命预测等。
灰色预测模型及应用论文
灰色系统理论的研究GM(1,1)预测与关联度的拓展摘要:科学地预测尚未发生的事物是预测的根本目的和任务。
无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。
在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。
本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。
通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。
另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。
关键词:灰色预测模型;灰关联度;灰色系统理论The Research of Grey System TheoryGM(1,1) prediction and the expansion of correlationxueshenping Instructor: tangshaofangAbstract:Science has not yet occurred to predict the fundamental thing is to predict the purpose and mission. Whether individuals or organizations, in developing future-oriented strategy and planning process, the forecasts are essential and important aspect, which is an important prerequisite for scientific decision-making. Among the many prediction methods, the gray prediction model has been well received since its inception attention of many scholars, it does not require much sample modeling, does not require a better distribution of the sample was calculated, and has strong adaptability less , gray model widely used in various fields and has made brilliant achievements. This paper is derived GM (1,1) model,the other on the gray correlation was further improved, so that the improved formula is unique and normative. University by giving examples of the incidence of infectious diseases, establishing the GM (1,1) prediction model and predict the incidence of infectious diseases in 1993. In addition to the high incidence of infectious diseases, dysentery, hepatitis, malaria, made the three diseases, correlation analysis, found that dysentery is most closely with the infectious disease, and hepatitis, malaria and infectious diseases, the closeness of the order of hearing.Key words:Grey prediction model ; Grey relational grade;Grey system theory目录1、引言 (1)1.1、研究背景 (1)111.2、研究意义 (2)2、灰色系统及灰色预测的概念 (2)2.1、灰色系统理论发展概况 (2)22232.2、灰色系统的特点 (4)2.3、常见灰色系统模型 (5)2.4、灰色预测 (6)2.5、基本概念 (7)7778883、简单的灰色预测——GM(1,1)预测 (9)3.1、GM(1,1)预测模型的基本原理 (9)3.2、GM(1,1)模型检验 (12)1 2 1 3 1 3 3.3、GM(1,1)残差模型 (14)3.4、GM(1,N)模型 (15)3.5、灰色系统建模的基本思路 (16)4、灰色关联度分析 (16)4.1、灰色关联分析理论及方法 (16)4.2、灰色关联技术的应用 (17)4.3、灰色关联度计算式及改进 (18)5、传染病的问题 (20)5.1、传染病发病率的的预测 (21)5.2、三种传染病的关联分析 (22)6、小结 (23)参考文献: (24)附录 (25)灰色系统理论的研究GM(1,1)预测与关联度的拓展1、引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。
数学建模-灰色预测模型(讲解
(3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生 在一年内某个特定的时区或季节的灾变预测。
(4)拓扑预测,将原始数据作曲线,在曲线上按定值寻找该定 值发生的所有时点,并以该定值为框架构成时点数列,然后建立模 型预测该定值所发生的时点。
一、灰色系统的定义和特点
1. 灰色系统的定义
灰色系统是黑箱概念的一种推广。我们把既含有已知信 息又含有未知信息的系统称为灰色系统.作为两个极端, 我们将称信息完全未确定的系统为黑色系统; 称信息完全确定的系统为白色系统. 区别白色系统与黑色系统的重要标志是系统各因素之间是 否具有确定的关系。
1灰色系统的定义和特点
1 灰色系统的定义和特点 2 灰色系统的模型 3 Sars 疫情 4 销售额预测 5 城市道路交通事故次数的灰色预测 6 城市火灾发生次数的灰色预测 7灾变与异常值预测
1 灰色系统的定义和特点
灰色系统的定义和特点
灰色系统理论是由华中理工大学邓聚龙教授于 1982年提出并加以发展的。二十几年来,引起了不 少国内外学者的关注,得到了长足的发展。目前, 在我国已经成为社会、经济、科学技术在等诸多领 域进行预测、决策、评估、规划控制、系统分析与 建模的重要方法之一。特别是它对时间序列短、统 计数据少、信息不完全系统的分析与建模,具有独 特的功效,因此得到了广泛的应用.在这里我们将简 要地介绍灰色建模与预测的方法.
灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色系统 所做的预测.目前常用的一些预测方法(如回归分 析等),需要较大的样本.若样本较小,常造成较 大误差,使预测目标失效.灰色预测模型所需建模 信息少,运算方便,建模精度高,在各种预测领 域都有着广泛的应用,是处理小样本预测问题的 有效工具.
差分方程灰色DEGM(2,1)模型的优化及应用
DOI: 10.13546/ki.tjyjc.2020.13.012(理论探讨1差分方程灰色DEGM(2,1)模型的优化及应用曹邦兴(广州大学松田学院,广州511370)摘要:传统灰色G M(2,1)模型从差分方程到微分方程的跨越,缺乏充分的科学基础,也会因两种结构间的 转换带来额外误差。
文章引入差分方程D E G M(2,1)模型,该模型的定义、参数估计、拟合值生成,全部使用差分 方程完成,避免了 G M(2,1)模型的转换问题。
为解决初始值数据对拟合精度的不利影响,采用一种反向修正方 法,给D E G M(2,1)模型的两个迭代初始值各增加一个修正参数,通过修正参数来反向抵消初始值带来的偏差。
结果表明,改进后的D E G M(2,1)模型,单个数据的最大相对误差和整体数据的平均绝对误差,都明显小于传统G M(2,1)模型。
关键词:差分方程;灰色D E G M(2,1)模型;初始值;拟合精度;反向修正中图分类号:〇29文献标识码:A文章编号:1002-6487(2020)13-0057-04〇引言灰色G M(2,1)模型作为灰色预测理论的基本模型之 一,已经获得十分广泛的应用'研究人员也对其进行了大 量的改进、扩展124。
但关于灰色G M(2,1)模型的争论一直 存在,争议的焦点在于模型由差分方程定义、参数估计也 依赖差分方程实现,但时间响应序列、拟合值等却是依靠 连续的二阶微分方程来求解,从差分方程到微分方程的跨 越,缺乏充分的科学基础,也会因两种结构间的转换带来额 外误差。
本文引人差分方程D E G M(2,1)模型,该模型的定 义、参数估计、拟合值生成,全部使用差分方程完成,避免了G M(2,1)模型的转换问题。
此外,G M(2,1)模型的初始值 条件是原始数据序列中最早也就是“最旧”的数据信息,以此为基础建立的模型,拟合精度会过多地依赖于初始值条 件,初始值的微小变动就可能引起预测值的很大变化,对拟 合精度造成不利影响|61,故本文考虑采用一种反向修正方 法,给D E G M(2,1)模型的两个迭代初始值各增加一个修正 参数,通过修正参数反向抵消初始值带来的预测偏差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鄣l2 = Σ2(-1){△x(1)(k)-[c0+c1x(1)(k)]}=0 鄣c0 k = 1 鄣l2 = Σ-2(x(1)(k)){△x(1)(k)-[c0+c1x(1)(k)]}=0 鄣c1 k = 1
鄣 n-1 鄣 鄣 鄣 鄣 k = 1 鄣 鄣 鄣 n-1 鄣 鄣 鄣 鄣 k = 1 鄣
的误差达到最小时的 c0,c1 的取值 , 因此使 l2=
k = 1
Σε2 (k)=Σ
k = 1
{△x(1)(k)-[c0+c1x(1)(k)]}2
取 最 小 值 , 其 中 x (1)(1)=x (0)(1) 为 初 始 值 , 由 Lagrange 数 乘 法 , 对上式令
鄣 鄣 鄣 鄣 鄣 鄣 鄣 鄣 鄣 鄣 鄣 鄣 鄣
2
即 e ≈1+c1, 则 上 述 两 种 模 型 形 式 近 似 相 同 , 所 以 向 后 差 分 模 型 也 成 立 , 可 以 预 测 未 来 k+1 时 刻 的 值 , 误 差 的 大 小 与 c1 有 关 , 尤 其 在 |c1| 越 小 , 预 测 模 型 的 精 度 越 高 , 两 种 模 型 可以互相替代 。
残差
相对误差 %
2 3 4 5
3.278 3.337 3.390 3.6791
0.0412 -0.0185 -0.0923 0.0652
1.26 0.55 2.72 1.77
赞 (0) (k) ,△k = |ε(k)| 可 算 出 平 均 相 对 误 差 其 中 ε (k)=x (0) (k)-x (0) x (k) △= 1 4
对数列 x 应用上述模型 , 首先选用 1-6 个数据建模 , 其 它 的 数 据 用 来 检 验 预 测 值 。 由 MATLAB 语 言 及 程 序 可 求 得 一致的 。
4
结论 GM(1,1) 模型的机理是通过对原始数据列的累加生成 , 使
赞 1=0.1362,c 赞 0=0.7007 代 入 模 型 可 得 模 拟 和 预 测 值 , 再 作 还 原 c
c1
3.2
舰船纵摇运动预报 针对一个 船 舶 纵 摇 角 度 数 据 (125-136 秒 ) 的 数 列 , 给 出
向后差分模型 , 由于纵摇角度序列又有周期振荡的性质 , 先 对其进行处理后才可应用灰色模型进行建模 。 已知数据
x1(0)=(-1.3369,-1.2518,-1.1145,-0.9461,-0.7622,-0.74480.6725,-0.4739,-0.1728,0.2217,0.4990,0.8074)
Y1= 1 (2.874+6.152+ … +12.897)=7.8485 4 B=
1,7.845 3.4210 赞 =(B B) B 由最小二乘法得 ,A Q= ≈ ≈ ≈ ≈ 7.845,75.5042 27.3749
T -1 T
Q=(3.1246,0.0378)T 赞 0,c 赞 1 代入 x 赞 (1)(k+1)=(x(1)(1)+ c 0 )(1+c 赞 1)k- c 0 将c 赞1 c 赞1 c 赞 (1)(k+1)=85.5354(1.0378)k-82.6614 得x
n-1
n-1
n-1 (0)
Σx Σx
(k+1)=(n-1)c0-c1Σx(1)(k)
k = 1 n-1 n-1
1 1.1
差分灰色系统
差分模型 设原始数列 x(0)(i)={x(0)(1),x(0)(2), … ,x(0)(n)} , 对 x(0)(i) 进行一次
i
即
(1)
(k)x(0)(k+1)=c0Σx(1)(k)+c1Σ[x(1)(k)]2
先做初始化处理 , 即
3 3.1
应用实例模拟分析
算例
x(0)(k)=x1(0)(k)+M,M=max |x1(0)(k)| 得到
k
统计与决策 2009 年第 1 期 ( 总第 277 期 )
161
知 识 丛 林
x =(0.6631 ,0.8218 ,0.913 ,1.0151 ,1.1282 ,1.2538 ,1.3935 , 1.5488 ,1.7213 ,1.9130 ,2.1262 ,2.3630)
X ,Y 鄣 鄣 Y ,X
x(1)(k+1)=(1+c1)x(1)(k)+c0
整理得 x(1)(k+1)+ c0 =(1+c1)(x(1)(k)+ c0 )
赞 =Q , 由 最 小 二 乘 法 得 A 赞 =(BTB) -1BTQ , 代 人 方 程 的 解 可 BA c1
求得时间响应函数
c1
可以解出差分方程的通解为
知 识 丛 林
灰色差分预测模型及应用
孙李红 a,沈继红 b
( 哈尔滨工程大学 a. 自动化学院 ;b. 理学院 , 哈尔滨 150001)
摘 要 : 为了解决舰船纵摇运动灰色预测问题 , 文章通过对灰色系统理论建模机理的分析 , 从离
散的角度出发 , 建立了光滑性数据序列的差分模型 , 并与其原 GM(1,1) 模型进行比较 , 最后用指数序 列验证了差分模型预测的有效性 , 精度较高 , 该模型同样具有较好的实用性与有效性 。 研究结果表明 可以将文章的模型作为原模型的近似形式加以利用 。 关键词 :GM(1,1) 模型 ; 差分 ; 灰色预测 ; 离散 中图分类号 :O231 文献标识码 :A 文章编号 :1002-6487 (2009 )01-0160-03
△x =[c0+c1x (t)]△t
散形化式为
(1)
(1)
(2 )
Σx
(0)
(k+1)
Σx
(1)
(k+1)x(1)(k)
对 (2 ) 式 取 向 后 差 △x (1)(k)=x (1)(k+1)-x (1)(k) 则 方 程 (1 ) 的 离
赞 =[c 赞 0,c 赞 1]T 令A
Q=[q0,q1]T B=
模型参数的确定方法不同 在原始 GM(1,1) 模型及向后差分模型的参数确定中都 使 用最小 二 乘 方 法 , 在 GM(1,1) 模 型 中 需 要 使 用 x(1)(k) 的 紧 邻 均 值生成序列 , 而向后差分模型只需原始序列及其一阶累加生 成序列即可 , 从而减小误差 。
赞 (0) 模拟数据 x 3.2368 3.3555 3.4823 3.6139
赞 (1) 式 (4 ) 为 向 后 差 分 GM(1,1) 模 型 , 该 模 型 相 应 计 算 值 {x (k)} 累减生成还原得到原始数据的相应拟合值 。 即 赞 (0)(k+1)=x 赞 (1)(k+1)-x 赞 (1)(k) k=0,1, … ,n-1 x 1.2 1.2.1
性质 设 x(0)(k) 为非负准光滑序列 , 则由 x(1)(k+1)=(1+c1)x(1)(k)+ 证明 :∵x(1)(k+1)=(1+c1)x(1)(k)+c0
c0 给出的 x(1)(k) 在 k≥2 时具有白指数律 赞 (1)(k+1)-x 赞 (1)(k) x =c(c≠1) (1) (1) 赞 赞 x (k)-x (k-1)
赞 (1)=(2.8704,6.1072,9.4627,12.9450,16.5589) x
还原求出 x(0)的模拟值 , 由
(5)
c0 给出的 x(1)(k) 具有准指数律 。 ∴c0=x(1)(k+1)-(1+c1)x(1)(k)=x(0)(k+1)-c1x(1)(k)
(1) (1) (k)+c0 = (1+c1)x σ(1)(k+1)= x (k+1) x(1)(k) x(1)(k) (0) (1) 1x (k) =(1+c1)+ x (k+1)-c x(1)(k) (0) =1+ x (k+1) =1+ρ(k) x(1)(k)
0 1
其中 X0= 1
n-1
n-1
Σ1=1
k = 1 n-1
dt
X1= 1 n-1 q0= 1 n-1
n-1
Σ[x
k = 1 n-1 k = 1
(1)
(k)]2
Y1= 1 n-1 q1= 1 n-1
0 1 1 1
Σx
k = 1 n-1 k = 1
(1)
(k)
令 △t=t+1-t , 方 程 (1 ) 可 表 示 为 如 下 差 分 方 程 格 式 :
赞 (0)(k+1)x 赞 (1)(k+1)-x 赞 (1)(k) x 赞 (0)=(2.8704,3,2368,3.3555,3.4823,3.6139) 检验误差由 表 1 x
给出Байду номын сангаас。
表1 实际数据及模拟值比较 序号 实际数据 x(0)
赞 (1)(k) 的表达式 (3) 代入 (5) 式恒为 1+c1, 具有白指数律 。 将x 2 2.1 向后差分模型与原始 GM(1,1)模型
平均相对误差为 △= 1
5
赞 (1)(k+1)=(x(1)(1)+ c0 )(1+c1)k- c0 而差分模型响应函数为 x c1 c1
在 |c1| 很小时 , e =1+c1+ c1 =1+c1+o(c1)
c1 2
4
k = 2
Σ△ =1.6025%,精度和平均相对
k
误 差 接 近 一 致 ,所 以 说 当 模 型 中 的 发 展 系 数 较 小 时 ,可 以 用 差分模型代替 GM(1,1) 模型进行模拟预测 。