灰色预测模型及应用论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰色系统理论的研究

摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计

算式具有唯一性和规范性[]4

。通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,

并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。

关键词:灰色预测模型;灰关联度;灰色系统理论

灰色系统理论的研究

GM(1,1)预测与关联度的拓展

1、引言

模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。黑箱模型:信息缺乏,暗,混沌。白箱模型:信息完全,明朗,纯净。灰箱模型:信息不完全,若明若暗,多种成分。

1.1、研究背景

1.1.1、国内研究现状

灰色系统理论在我国提出至今已有二十几年的历史,它的应用引起了人们的广泛兴趣,不论是我国粮食发展决策中总产量预测模型,还是对湖北2000年宏观经济的发展趋势的量化分析,抑或是河南人民胜利渠的最佳灌溉决策,还是武汉汉阳火车对火车装车吨位的预测等,无一不是灰色预测系统理论杰出的硕果。

1.1.2、国外研究现状

灰色系统理论在国际上也产生了很大的影响,IBM公司要求将灰色系统软件加入其为全球服务的管理软件库。目前英国、美国、德国、日本、澳大利亚、加拿大、奥地利、俄罗斯等国家、地区及国际组织有许多学者从事灰色系统的研究和应用。

国内外84所高校开设了灰色系统课程,数百名博士、硕士研究生运用灰色系统的思想方法开展学科研究,撰写学位论文。国际、国内200多种学术期刊发表灰色系统论文,许多会议把灰色系统列为讨论专题,SCI、EI、ISTP、SA、MR、MA等纷纷检索我国灰色论著。

1.2、研究意义

邓聚龙教授提出灰色系统有着重要的意义:

(1) 是系统思维和系统思想在方法论上的具体体现;

(2) 是科学方法论上的重大进展, 具有原创性的科学意义和深远的学术影响,是对系统科学的新贡献。

2、灰色系统及灰色预测的概念

2.1、灰色系统理论发展概况

2.1.1、灰色系统理论的提出

著名学者邓聚龙教授于20世纪70年代末、80年代初提出。

2.1.2、灰色系统理论的研究对象

灰色系统产生于控制理论的研究中。若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。

区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。

2.1.3、灰色系统理论的应用范围

在工程技术、社会、经济、农业、生态、环境等各种系统中经常会遇到信息不完全的情况。比如:农业方面,农田耕作面积往往因许多非农业的因素而改变,因此很难准确计算农田产量、产值,这是缺乏耕地面积信息;生物防治方面,害虫与天敌间的关系即使是明确的,但天敌与饵料、害虫与害虫间的许多关系却不明确,这是缺乏生物间的关联信息;一项土建工程,尽管材料、设备、施工计划、图纸是齐备的,可是还很难估计施工进度与质量,这是缺乏劳动力及技术水平的信息;一般社会经济系统,除了输出的时间数据列(比如产值、产量、总收入、总支出等)外,其输入数据列不明确或者缺乏,因而难以建立确定的完整的模型,这是缺乏系统信息;工程系统是客观实体,有明确的“内”、“外”关系(即系统内部与系统外部,或系统本体与系统环境),可以较清楚地明确输入与输出,因此可以较方便地分析输入对输出的影响,可是社会、经济系统是抽象的对象,没有明确的“内”、“外”关系,不是客观实体,因此就难以分析输入(投入)对输出(产出)的影响,这是缺乏“模型信息”(即用什么模型,用什么量进行观测控制等信息)。信息不完全的情况归纳起来有:元素(参数)信息不完全;结构信息不完全;关系信息(特指“内”、“外”关系)不完全;运行的行为信息不完全。

一个商店可看作是一个系统,在人员、资金、损耗、销售信息完全明确的情况下,可算出该店的盈利大小、库存多少,可以判断商店的销售态势、资金的周转速度等,这样的系统是白色系统。

遥远的某个星球,也可以看作一个系统,虽然知道其存在,但体积多大,质量多少,距离地球多远,这些信息完全不知道,这样的系统是黑色系统。

人体是一个系统,人体的一些外部参数(如身高、体温、脉搏等)是已知的,而其他一些参数,如人体的穴位有多少,穴位的生物、化学、物理性能,生物的信息传递等尚未知道透彻,这样的系统是灰色系统。

显然,黑色、灰色、白色都是一种相对的概念。世界上没有绝对的白色系统,因为任何系统总有未确知的部分,也没有绝对的黑色系统,因为既然一无所知,也就无所谓该系统的存在了。

2.1.4、三种不确定性系统研究方法的比较分析

表1

2.2、灰色系统的特点

灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。

(1)用灰色数学来处理不确定量,使之量化。

在数学发展史上,最早研究的是确定型的微分方程,即在拉普拉斯决定论框架内的数学。他认为一旦有了描写事物的微分方程及初值,就能确知事物任何时候的运动。随后发展了概率论与数理统计,用随机变量和随机过程来研究事物的状态和运动。模糊数学则研究没有清晰界限的事物,如儿童和少年之间没有确定的年龄界限加以截然划分等,它通过隶属函数来使模糊概念量化,因此能用模糊数学来描述如语言、不精确推理以及若干人文科学。灰色系统理论则认为不确定量是灰数,用灰色数学来处理不确定量,同样能使不确定量予以量化。

1,2,3

不确定量量化(用确定量的方法研究)

1、概率论与数理统计;

2、模糊数学;

3、灰色数学(灰色系统理论)

(2)充分利用已知信息寻求系统的运动规律。

研究灰色系统的关键是如何使灰色系统白化、模型化、优化。

灰色系统视不确定量为灰色量。提出了灰色系统建模的具体数学方法,它能利用时间序列来确定微分方程的参数。灰色预测不是把观测到的数据序列视为一个随机过程,而是看作随时间变化的灰色量或灰色过程,通过累加生成和累减生成逐步使灰色量白化,从而建立相应于微分方程解的模型并做出预报。这样,对某些大系统和长期预测问题,就可以发挥作用。

(3)灰色系统理论能处理贫信息系统。

灰色预测模型只要求较短的观测资料即可,这和时间序列分析,多元分析等概率统计模型要求较长资料很不一样。因此,对于某些只有少量观测数据的项目来说,灰色预测是一种有用的工具。

2.3、常见灰色系统模型

GM(1,1)模型

GM(1,N)模型

GM(0,N)模型

GM(2,1)模型

Verhulst模型

目前,最常用、研究最多的是GM(1,1)模型。

相关文档
最新文档