电磁感应教案
电磁感应定律教案:理解电磁感应产生的电动势
电磁感应定律教案:理解电磁感应产生的电动势一、教学目标1、了解电磁感应的基本原理,掌握电磁感应定律的表述和应用;2、掌握电磁感应产生电动势的条件及其量的计算方法;3、深入理解电磁感应定律的实验基础和应用,培养动手实践能力和创新思维能力。
二、教学重点1、电磁感应和电磁感应定律的概念和本质;2、电磁感应定律的表述和计算方法;3、电磁感应的实验基础和应用。
三、教学难点电磁感应产生电动势的本质及其实验表现形式。
四、教学内容及教学方式1、电磁感应的基本原理通过实验了解磁通量、磁通量变化率、导体在磁场中受力等基本现象,引导学生理解磁场与电场的本质联系,从而构建起基于麦克斯韦方程的统一电磁理论体系。
教学方式:理论讲解与实验演示相结合。
2、电磁感应定律阐述法拉第电磁感应定律的表述:电动势的大小与导体内外磁通量的变化率成正比,与导体所围面积的大小和方向无关。
从比例系数的角度引入引入磁感应强度这一重要物理量,进而推广到一般形式的法拉第电磁感应定律。
教学方式:理论讲解及演练。
3、电磁感应产生电动势的计算方法通过具体例题引导学生把握电磁感应定律的应用方法,尤其是计算导体中各处点的电动势的方法,强调要注重把电动势的符号与导体的运动方向结合起来分析,以保证正确地处理电动势的捷变向问题。
教学方式:理论讲解及例题演练。
4、电磁感应实验的基础和应用根据学生学习的需要及实际情况,选取适当的电磁感应实验,如华氏电磁感应实验、自感、互感、变压器等实验,实现对电磁感应原理的实验性认识和理解,开拓学生的实验思考能力和探究兴趣。
教学方式:分组实验及实验报告分析。
五、教学评价1、学生实验操作的准确度和实验报告的质量;2、学生对电磁感应原理的理解程度;3、学生在应用电磁感应定律解决实际问题的能力;六、教学反思电磁感应定律具有较强的图形直观性,在讲解时很容易引导学生掌握其基本规律和特征,但难点在于把握电磁感应与电动势的本质联系,并把它们与磁场、电场、电路等多个概念和实验现象整合起来,建立起电磁理论的完整框架和体系。
小学自然科学教育:电磁感应实验教案
小学自然科学教育:电磁感应实验教案一、实验目的通过本次实验,学生能够了解电磁感应的基本概念和工作原理,进一步掌握电磁学与电学之间的关系,并探究电磁感应的应用。
二、实验材料· 一根铁棒· 一卷漆包线· 一只铜管· 一只电池· 一只灯泡· 一只开关· 一只钳子三、实验步骤1.将铁棒插入铜管内部,用钳子夹住铁棒一端,不要让铁棒和铜管直接接触。
2.用漆包线固定电池和开关,将电池正负极分别与开关两端接通。
3.将一端的铁棒和开关的一个接点相连,另一个接点与灯泡相连。
4.当开关处于开启状态时,灯泡不亮。
当开关关闭时,灯泡闪烁。
四、实验原理电磁感应是指当磁场线通过某些物质时,会在该物质内部产生电流,并且这种产生电流的现象被称为电磁感应现象。
在电磁感应实验中,以铁棒和铜管相互摩擦形成磁场,将铁棒快速插入铜管中,实现了磁场与电场之间的相互作用,从而产生了电磁感应现象。
五、实验结果分析电磁感应是电气技术的基础,广泛应用于发电机、变压器等电气设备中。
本实验中,通过铁棒和铜管的摩擦,产生了磁场以及电磁感应现象。
当铁棒插入铜管中时,由于磁场的存在,电流不断在铜管内部产生和消失。
由此可以探究电磁感应的应用,比如将铜管中的电流用来驱动灯泡等电器工作。
六、实验注意事项1.涉及电气设备,请勿私自开启,以免发生电击等事故。
2.试验材料请严格按照实验材料清单购买,若需更换部件,请选择具有较高品质保证的材料。
3.学生在进行实验时应集中精力,保持注意力。
4.实验前需要向学生讲解实验流程和注意事项,以保证实验的安全性。
七、总结本次实验通过铁棒与铜管之间的摩擦产生磁场以及电磁感应现象,探究了电磁学与电学之间的关系,并且让学生进一步掌握了电磁感应的应用。
电磁感应与电气技术的出现是紧密联系的,是电气技术发展的基础。
通过本次实验,可以让学生更好的理解电气技术在现代社会中的重要地位。
高二物理教案:电磁感应现象优秀5篇
高二物理教案:电磁感应现象优秀5篇第一篇:电磁感应的基本原理及应用简介本篇教案将介绍电磁感应的基本原理,以及电动势和法拉第定律的应用。
目标•了解电磁感应的基本概念和原理•掌握电动势和法拉第定律的应用•探索电磁感应现象在实际生活中的应用教学步骤1.引入:通过一个实际生活中的例子引发学生对电磁感应的兴趣。
2.介绍电磁感应的基本概念和原理:包括磁感线、磁通量和电磁感应等。
3.解释电动势和法拉第定律的概念和公式。
4.进行实验:通过自制简单的电磁感应装置来观察电磁感应现象。
5.分析实验结果:让学生观察并解释实验中的现象,引导他们理解电磁感应的原理和应用。
6.探索电磁感应现象在实际生活中的应用:例如发电机、变压器等。
7.总结:回顾本节课的内容,巩固学生对电磁感应的理解。
拓展活动1.观察实验室中的电磁感应装置,了解更复杂的电磁感应应用。
2.组织学生小组讨论电磁感应的其他应用,例如磁悬浮列车、感应加热等。
第二篇:法拉第电磁感应定律的实验验证简介本篇教案将通过实验验证法拉第电磁感应定律,并理解其背后的科学原理。
目标•了解法拉第电磁感应定律的内容和公式•进行实验验证法拉第电磁感应定律•探究法拉第电磁感应定律的应用教学步骤1.引入:通过一个简单的问题引发学生对电磁感应现象的思考。
2.介绍法拉第电磁感应定律的内容和公式。
3.进行实验:使用一个磁铁和线圈组成的简单电磁感应装置,观察并记录实验结果。
4.分析实验结果:让学生观察并解释实验中的现象,验证法拉第电磁感应定律。
5.探究法拉第电磁感应定律的应用:例如感应电动机、电磁铁等。
6.总结:回顾本节课的内容,巩固学生对法拉第电磁感应定律的理解。
拓展活动1.观察实际应用中的电磁感应装置,例如发电机、电动车等。
2.进行更复杂的实验,探究不同参数对电磁感应的影响。
第三篇:迈克尔逊-莫雷干涉仪的原理和应用简介本篇教案将介绍迈克尔逊-莫雷干涉仪的原理和应用,帮助学生理解干涉现象和光的波动性。
高中物理电磁感应教案
高中物理电磁感应教案课题:电磁感应教学目标:1. 了解电磁感应的基本概念2. 掌握电磁感应定律的应用3. 能够应用电磁感应原理解决相关问题教学内容:1. 电磁感应的基本概念2. 法拉第电磁感应定律3. 感应电流的方向教学重点:1. 电磁感应的概念和定律2. 感应电流的方向判断教学难点:1. 掌握电磁感应定律的应用2. 判断感应电流的方向教学准备:1. 教科书、课件2. 示波器、电磁感应实验装置3. 实验用的线圈、磁铁、导线等材料教学过程:一、导入(5分钟)教师引导学生回顾之前学过的电磁学知识,引出电磁感应的概念。
二、讲解电磁感应(15分钟)1. 介绍电磁感应的基本概念和法拉第电磁感应定律2. 解释感应电流的产生原理三、实验演示(15分钟)教师向学生展示使用实验装置进行电磁感应实验的过程,引导学生观察实验现象并分析原因。
四、练习与讨论(20分钟)1. 学生进行相关练习,巩固概念和定律2. 学生在小组讨论中解决电磁感应问题五、总结(5分钟)教师带领学生总结本节课的重点内容,强调电磁感应在生活中的应用和意义。
六、作业(5分钟)布置相关作业,巩固学生对电磁感应的理解和运用能力。
板书设计:电磁感应- 法拉第电磁感应定律- 感应电流的方向教学反思:在教学中,要注重引导学生探究和实践,培养学生动手动脑的能力。
针对电磁感应这一概念性较强的内容,可以通过实验演示、讨论与练习等多种教学方法来提高学生的学习兴趣和参与度,加深对知识的理解和掌握。
同时,要着重指导学生在解决问题时注重思考和逻辑推理,培养解决问题的能力。
电磁感应教学设计【优秀5篇】
电磁感应教学设计【优秀5篇】作为一名教职工,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
教案应当怎么写呢?下面是我辛苦为大家带来的电磁感应教学设计【优秀5篇】,盼望可以启发、关心到大家。
电磁感应篇一(一)教学目的1.知道现象及其产生的条件。
2.知道感应电流的方向与哪些因素有关。
3.培育同学观看试验的力量和从试验事实中归纳、概括物理概念与规律的力量。
(二)教具蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。
(三)教学过程1.由试验引入新课重做奥斯特试验,请同学们观看后回答:此试验称为什么试验?它揭示了一个什么现象?(奥斯特试验。
说明电流四周能产生磁场)进一步启发引入新课:奥斯特试验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不行以反过来进行逆向思考:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计试验,进行探究讨论。
2.进行新课(1)通过试验讨论现象板书:〈一、试验目的:探究磁能否生电,怎样使磁生电。
〉提问:依据试验目的,本试验应选择哪些试验器材?为什么?师生争论认同:依据讨论的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;掌握电路必需有开关。
老师展现以上试验器材,留意让同学弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。
进一步提问:如何做试验?其步骤又怎样呢?我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观看是否产生电流。
那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对试验有没有影响?下面我们依次对这几种状况逐一进行试验,探究在什么条件下导体在磁场中产生电流。
用小黑板或幻灯出示观看演示试验的记录表格。
老师按试验步骤进行演示,同学认真观看,每完成一个试验步骤后,请同学将观看结果填写在上面表格里。
试验完毕,提出下列问题让同学思索:上述试验说明磁能生电吗?(能)在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时)为什么导体在磁场中左右、斜着运动时能产生感应电流呢?(师生争论分析:左右、斜着运动时切割磁感线。
电磁感应现象教案
电磁感应现象教案教案:电磁感应现象【教学目标】1.知识目标:了解电磁感应的概念,掌握法拉第电磁感应定律的内容。
2.能力目标:能够运用法拉第电磁感应定律解决相关问题。
3.情感目标:培养学生的实践操作能力和科学探究精神,增强学生对物理知识的兴趣与热情。
【教学重点】1.理解电磁感应的概念和原理。
2.掌握法拉第电磁感应定律的表达和运用。
【教学难点】1.理解电磁感应的物理原理。
2.运用法拉第电磁感应定律解决问题。
【教学过程】一、导入(5分钟)1.引入:学生举例说明电磁感应的现象。
例如,当手机靠近扬声器时会发出噪音;当车速超过电子眼的设定速度时,电子眼会发出警报。
2.老师再举一些例如电动车充电、发电机发电的实例,引出电磁感应的概念。
二、学习与讲解(20分钟)1.讲解电磁感应的概念和原理:通过变化磁通量产生感应电动势的现象称为电磁感应。
引导学生理解磁感线、磁通量和磁通量变化的概念。
2.示意图法引入法拉第电磁感应定律:在磁通量变化时,感应电动势的大小与磁通量变化率成正比。
介绍法拉第电磁感应定律的表达式:ε=-ΔΦ/Δt。
3.通过示例演示法拉第电磁感应定律的应用,例如,当磁场中的电导线快速移动时,通过该电导线所围成的面积会发生变化,从而引发感应电动势。
三、实验操作(30分钟)1.小组实验:选取两个小组进行实验操作,以验证法拉第电磁感应定律。
实验材料包括一个线圈、一个永磁铁和一个挤压发电机。
2.实验步骤:a.小组A通过在挤压发电机中运动永磁铁的方式改变磁场强度。
b.小组B通过改变线圈的面积来改变磁通量。
3.实验记录:记录两个小组实验的结果,并通过法拉第电磁感应定律计算感应电动势的大小。
四、讨论与总结(15分钟)1.学生交流实验结果,与小组成员一起讨论感应电动势的大小与何种因素有关。
2.引导学生总结出法拉第电磁感应定律的基本内容。
3.提问:电磁感应的应用有哪些?4.学生展示自己的实验报告,并得出实验结论。
五、拓展延伸(10分钟)1.提醒学生注意电磁感应在生活中的应用,例如变压器、感应电炉等。
电磁感应现象及其在生活中的应用教案
电磁感应现象及其在生活中的应用教案一.教学目标1.了解电磁感应现象及其相关概念;2.能够理解法拉第电磁感应定律的含义;3.能够识别电磁感应现象在生活中的应用;4.能够设计和实验电磁感应相应的实验;5.能够通过讨论、分析和总结,深入理解电磁感应现象及其应用。
二.教学内容1.电磁感应的概念和原理电磁感应现象是指当磁场的变化引起一定的电势和电流时,称为电磁感应现象。
这是电磁学中最基本的一种现象。
电磁感应的前提条件:(1)磁场强度的变化:只有磁场强度有变化,电磁感应现象才会发生。
(2)磁场与导体之间存在相对运动:必须存在磁场与导体之间的相对运动,才可以产生电磁感应现象。
2.法拉第电磁感应定律最早证实了电磁感应现象的是英国物理学家迈克尔·法拉第。
法拉第电磁感应定律是从实验中总结出来的规律,它表明,磁通量的变化率就是感应电动势的大小,即:① 磁通量的变化率与感应电动势的大小成正比;② 磁通量的变化率与磁通量的变化时间的乘积成正比;③ 磁通量变化率的方向总是使其自身产生一个感应电动势的方向。
这个定律通常表示为 V = -NdΦ/dt,其中V表示感应电动势的大小,N表示线圈的匝数,Φ表示线圈周围的磁通量,dΦ/dt表示磁通量的变化率。
3.电磁感应现象的应用电磁感应现象在生活中有许多应用,以下是常见的几个应用:(1)发电机发电机是使用电磁感应现象将机械能转化为电能的一种设备。
通过旋转线圈在磁场中产生变化的磁通量,从而在导线中感应出电动势,最后输出电能。
发电机被广泛应用于人类生产生活中,为各种电器设备供电。
(2)电动机电动机与发电机恰恰相反,它们使用电能将机械能转化为旋转动能。
电动机根据法拉第电磁感应定律的原理工作。
当导体在磁场中运动时,将会感应出电动势。
如果导体形成了一个线圈,该线圈可以旋转,由于旋转所造成的磁通量发生变化,从而也产生电动势。
(3)电磁铁电磁铁由磁芯和线圈组成。
当通电时,线圈中流过电流。
电磁感应实验教案及演示
电磁感应实验教案及演示电磁感应实验是物理学中非常基础的实验之一,它是指在一个磁场中通过导体运动产生电流,或者通过变化的磁场感应出电动势的过程,这个过程是电机、变压器、电机等电气设备的基础原理。
我们可以通过电磁感应实验更深入地了解电磁现象,掌握电磁感应规律,加深实验操作技巧等。
因此,编写一份详细的电磁感应实验教案,并进行演示,将会对学生的物理学习有很大的助益。
一、实验目的1.了解电磁感应规律,掌握法拉第电磁感应定律。
2.学习利用电磁感应现象构造电气设备的基本原理。
3.加深实验操作技巧,提高实验水平。
二、实验器材铝筒、磁铁、直流电源、导线、万用表、瞬变电流测量器、小电灯泡等。
三、实验原理电磁感应定律是物理学上的一个重要定律,它规定了导体中感应电动势的大小与导体运动的速度、磁场强度和导体长度的关系。
其数学表达式为:ε=Bvl,其中ε为感应电动势,B为磁场强度,v为导体的速度,l为导体的长度。
四、实验步骤1.将铝筒垂直固定在电流滑动导轨上,磁铁的北极和铝筒上下方向垂直。
2.接通直流电源,在两条铝条之间形成一定电流。
3.离开电流滑动导轨,使铝筒在重力作用下下滑,观察小灯泡是否亮起或瞬变电流测量器的瞬变电流大小。
4.改变铝筒下滑速度,记录小灯泡亮起时间或瞬变电流测量器的瞬变电流大小。
5.分析实验数据,观察电磁感应现象的规律,并与理论公式进行比较。
五、实验注意事项1.铝筒轻轻地下滑,以避免磨损和过早损坏铝筒。
2.操作时注意安全,避免电击和电磁辐射。
3.保持实验器材清洁和整洁,以避免误差。
4.记录实验数据时,应注意精确性和准确性。
六、实验效果分析通过该实验,学生可以更深入地了解电磁现象,掌握电磁感应规律,加深实验操作技巧等。
设备调试和实验数据分析过程,可以锻炼学生的动手操作能力和实验开展过程中出现问题时解决问题的能力。
同时,通过对实验数据进行分析,学生可以进一步理解和应用电磁感应现象的规律,从而更好地掌握对电气设备构造和电气工程设计的理论和技能。
磁感应定律教案:揭示电磁感应的规律
磁感应定律教案:揭示电磁感应的规律揭示电磁感应的规律一、教学目标:1.了解电磁感应的基本规律和磁感应定律的内容。
2.掌握用贯排法计算磁场强度、磁通量和电动势的方法。
3.学会应用磁感应定律解决实际问题。
二、教学内容:1.电磁感应的基本规律:当磁场的磁通量发生变化时,环路内就会产生感应电动势。
2.磁感应定律的内容:当一个导体切割磁感线或磁场强度变化时,环路内就会产生感应电动势,其大小与磁通量变化率成正比,与导体形状和磁场方向有关,方向遵循右手定则。
三、学法指导:1.讲授结合演示,使学生对磁场中的磁力线、磁感应强度、磁通量有直观的认识。
2.通过实验,让学生亲自操作,观察磁感应定律的实验现象,进一步理解磁感应定律的内容和规律。
3.定期组织小测验和考试,检验学生的掌握程度和巩固效果。
四、教学方法:1.演示法:通过演示实验,使学生观察磁场中的磁力线和磁感应强度分布,了解磁感应定律的内容和规律。
2.实验法:通过实验,让学生亲手操作,观察磁感应定律的现象,提高学生的实验能力和科学探究能力。
3.讲授法:对磁感应定律的相关知识进行详细的讲解,引导学生深入理解和掌握。
五、教学步骤:1.引入:用实验的方法引出电磁感应的现象,让学生了解电磁感应的基本规律。
2.知识讲解:1)磁感应定律的内容和规律2)贯排法计算磁场强度、磁通量和电动势的方法3. 实验演示:演示实验,让学生亲自操作,观察磁感应定律的实验现象,加深对其规律的理解。
4. 实验操作:学生分组进行实验操作,观察和总结磁感应定律的规律。
5. 实验报告:学生撰写实验报告,总结实验结果和规律,加深对磁应定律的理解和掌握。
6. 综合应用:让学生应用磁感应定律解决实际问题,培养学生的实际应用能力。
七、教学评价:1.能够简单地解释电磁感应的基本规律。
2.能够正确地应用磁感应定律计算磁场强度、磁通量和感应电动势等相关物理量。
3.能够独立地进行实验操作,观察和总结磁感应定律的规律。
电磁感应现象教案公开课用
电磁感应现象教案公开课一、教学目标1.了解电磁感应现象的基本概念和原理;2.掌握电磁感应现象的方程式和计算方法;3.能够应用电磁感应现象解决实际问题;4.培养学生的动手实践能力和科学思维;5.培养学生的合作交流能力和创新意识。
二、教学内容1. 电磁感应概念介绍•电磁感应的基本概念和历史;•电磁感应的重要性和应用领域。
2. 法拉第电磁感应定律•法拉第电磁感应定律的表述和实验验证过程;•法拉第电磁感应定律的数学表达式和意义。
3. 动生电动势和感生电动势•动生电动势的定义和计算方法;•感生电动势的定义和计算方法;•动生电动势和感生电动势的区别和联系。
4. 涡电流和自感现象•涡电流的定义和特点;•自感现象的原理和应用。
三、教学过程第一步:导入引入1.引发学生对电磁感应的兴趣,引出问题:“当磁铁靠近线圈时,会发生什么变化?”2.学生以小组形式探讨问题,让每个小组介绍自己的观点。
第二步:概念介绍1.通过讲解、示意图和实物实验,介绍电磁感应的基本概念和历史。
2.引导学生思考电磁感应的重要性和应用领域。
第三步:法拉第电磁感应定律1.演示法拉第电磁感应定律的实验,引导学生观察实验现象。
2.讲解法拉第电磁感应定律的表述和实验验证过程。
3.引导学生推导法拉第电磁感应定律的数学表达式。
第四步:动生电动势和感生电动势1.通过实验和计算例题,让学生掌握动生电动势的定义和计算方法。
2.通过实验和计算例题,让学生掌握感生电动势的定义和计算方法。
3.引导学生比较动生电动势和感生电动势的区别和联系。
第五步:涡电流和自感现象1.演示涡电流的实验,让学生观察实验现象。
2.讲解涡电流的定义和特点。
3.讲解自感现象的原理和应用。
第六步:实践活动1.分组让学生进行小实验,观察和记录不同条件下的电磁感应现象。
2.学生根据实验结果,归纳电磁感应规律。
第七步:评价反思1.引导学生思考电磁感应现象的应用领域和意义。
2.学生展示实验结果和。
四、教学评价与反馈1.教师随堂评价学生的表现,包括参与度、实验操作和答题情况。
物理电磁感应教案
物理电磁感应教案物理电磁感应教案作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,借助教案可以有效提升自己的教学能力。
那么问题来了,教案应该怎么写?以下是小编整理的物理电磁感应教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
物理电磁感应教案1一、教学任务分析电磁感应现象是在初中学过的电磁现象和高中学过的电场、磁场的基础上,进一步学习电与磁的关系,也为后面学习电磁波打下基础。
以实验创设情景,通过对问题的讨论,引入学习电磁感应现象,通过学生实验探究,找出产生感应电流的条件。
用现代技术手段“DIS 实验”来测定微弱的地磁场磁通量变化产生的感应电流,使学生感受现代技术的重要作用。
通过“历史回眸”,介绍法拉第发现电磁感应现象的过程,领略科学家的献身精神,懂得学习、继承、创新是科学发展的动力。
在探究感应电流产生的条件时,使学生感受猜想、假设、实验、比较、归纳等科学方法,经历提出问题→猜想假设→设计方案→实验验证的科学探究过程;在学习法拉第发现电磁感应现象的过程时,体验科学家在探究真理过程中的献身精神。
二、教学目标1.知识与技能(1)知道电磁感应现象及其产生的条件。
(2)理解产生感应电流的条件。
(3)学会用感应电流产生的条件解释简单的实际问题。
2.过程与方法通过有关电磁感应的探究实验,感受猜想、假设、实验、比较、归纳等科学方法在得出感应电流产生的条件中的重要作用。
3.情感、态度价值观(1)通过观察和动手操作实验,体验乐于科学探究的情感。
(2)通过介绍法拉第发现电磁感应现象的过程,领略科学家在探究真理过程中的献身精神。
三、教学重点与难点重点和难点:感应电流的产生条件。
四、教学资源1、器材(1)演示实验:①电源、导线、小磁针、投影仪。
②10米左右长的电线、导线、小磁针、投影仪。
(2)学生实验:①条形磁铁、灵敏电流计、线圈。
②灵敏电流计、原线圈、副线圈、电键、滑动变阻器、导线若干。
③DIS实验:微电流传感器、数据采集器、环形实验线圈。
高二物理教案 法拉第电磁感应定律9篇
高二物理教案法拉第电磁感应定律9篇法拉第电磁感应定律 1教学目标知识目标1、知道决定感应电动势大小的因素;2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能对“磁通量的变化量”、“磁通量的变化率”进行区别;3、理解法拉第电磁感应定律的内容和数学表达式;4、会用法拉第电磁感应定律解答有关问题;5、会计算导线切割磁感线时感应电动势的大小;能力目标1、通过学生实验,培养学生的动手能力和探究能力.情感目标1、培养学生对实际问题的分析与推理能力。
培养学生的辨证唯物注意世界观,尤其在分析问题时,注意把握主要矛盾.教学建议教材分析理解和应用法拉第电磁感应定律,教学中应该使学生注意以下几个问题:⑴要严格区分磁通量、磁通量的变化、磁通量的变化率这三个概念.⑵求磁通量的变化量一般有三种情况:当回路面积不变的时候,;当磁感应强度不变的时候,;当回路面积和磁感应强度都不变,而他们的相对位置发生变化(如转动)的时候,(是回路面积在与垂直方向上的投影).⑶ E是时间内的平均电动势,一般不等于初态和末态感应电动势瞬时值的平均值,即:⑷注意课本中给出的法拉第电磁感应定律公式中的磁通量变化率取绝对值,感应电动势也取绝对值,它表示的是感应电动势的大小,不涉及方向.⑸公式表示导体运动切割磁感线产生的感应电动势的大小,是一个重要的公式.要使学生知道它是法拉第电磁感应定律的一个特殊形式,当导体做切割磁感线的运动时,使用比较方便.使用它计算时要注意B、L、v这三个量的方向必须是互相垂直的,遇到不垂直的情况,应取垂直分量.建议在具体教学中,教师帮助学生形成知识系统,以便加深对已经学过的概念和原理的理解,有助于理解和掌握新学的概念和原理.在法拉第电磁感应定律的教学中,有以下几个内容与前面的知识有联系,希望教师在教学中加以注意:⑴由“恒定电流”知识知道,闭合电路中要维持持续电流,其中必有电动势的存在;在电磁感应现象中,闭合电路中有感应电流也必然要存在对应的感应电动势,由此引出确定感应电动势的大小问题.⑵电磁感应现象中产生的感应电动势,为人们研制新的电源提供了可能,当它作为电源向外供电的时候,我们应当把它与外电路做为一个闭合回路来研究,这和直流电路没有分别;⑶用能量守恒和转化来研究问题是中学物理的一个重要的方法.化学电源中的电动势表征的是把化学能转化为电能的本领,感应电动势表征的是把机械能转化为电能的本领.教法建议法拉第电磁感应定律的重点是研究决定感应电动势大小的因素是什么,这一知识点无法从前面的知识得出,因此做好实验,从实验中分析归纳出法拉第电磁感应定律的内容,是学好这部分知识的关键;由于上一节学习产生感应电流的条件时,就使学生明确了穿过闭合电路的磁通量变化与否,决定了感应电流的有无,因此,本节实验的重点是使学生观察感应电流的大小与什么因素有关.对于程度比较好的学校,建议将实验改为学生分组完成,学生自己进行探究,教师加以引导分析.关于感应电动势的几点教学建议本节教材讲述了感应电动势的概念,通过对实验的定性分析,得出感应电动势的大小跟哪些因素有关系,最后给出了计算感应电动势大小的公式:,但没有讲述法拉第电磁感应定律.在讲授这节教材时,要注意概念、定律的建立过程,使学生知其所以然,防止学生死记几条干巴巴的结论.(1)感应电动势概念的建立:如何搞好物理概念的教学,这是一个很值得研究的课题.对此,各人虽有不同主张,但都很注意在抓好概念的引入、理解和应用这些环节上下功夫.在感应电动势概念的教学中,也应注意这几个环节.①引入感应电动势的概念时,教材利用前面几章学过的电动势、闭合电路欧姆定律等知识来分析产生感应电流的电路,得出既然闭合电路里有感应电流,那么这个电路中必然有电动势.在电磁感应现象中,产生的电动势叫感应电动势.教学实践表明,这样引入学生较易接受.②比较概念之间的内在联系,是一种使学生深刻理解概念本质的好方法.由感应电流过渡到感应电动势,对学生来说是从具体到抽象,从现象到本质的认识深化过程.为了让学生认识感应电流与感应电动势的区别和联系,教师可以用大型电流表和电压表演示电路在接通与断开条件下的回路电流与路端电压,让学生看到回路断开时,没有感应电流,但路端电压(即感应电动势)仍存在.而电路中出现感应电流,是要以电路闭合与电动势的同时存在为前提条件.从而说明感应电动势的有无,完全决定于穿过回路的磁通量的变化,与回路的通断,回路的组成情况等无关.而电路中的感应电流存在,只是在闭合电路中有感应电动势存在的必然结果.对纯电阻电路,感应电流强度与感应电动势的数量关系满足 .教师通过上述演示和分析对比,使学生了解到,电磁感应现象中感应电动势比感应电流更能反映电磁感应现象的本质.③让学生把初学的概念在实际问题中加以应用,对巩固和深化概念很有效.教师可以教材中产生感应电流的二个实验,即图1、图2为例,让学生找一找,电路中哪部分导体产生了感应电动势,起到了电源的作用(在图1中是AB导体、图2中是线圈B).(3)感应电动势的大小:可利用课本图4-1和图4-2的实验装置,演示在闭合电路内磁通量变化快慢不同的情况下,产生的感应电流大小不同,从而分析出感应电动势的大小跟穿过闭合电路的磁通量改变快慢有关.然后直接指出:理论和实践证明,导体在匀强磁场中作切割磁感线运动时,在B、l、v互相垂直的情况下,产生的感应电动势的大小可用公式来计算,即感应电动势的大小跟磁感应强度、导体长度、导体运动速度成正比.在演示中要注意说明:①磁铁相对线圈运动的快慢不同时或导体切割磁感线的快慢不同时,磁通量变化的快慢不同.②由于产生感应电流的闭合回路情况没有变化,所以感应电流大小的变化反映了感应电动势大小的变化.由于必修课中不讲法拉第电磁感应定律,公式不能从理论推导出来,为了便于学生接受和理解与B、l、v的正比关系,可以采用下述教法.利用图2来分析与B、l、v的关系.图中abcd为放在匀强磁场中的矩形线框,线框平面跟磁感线垂直,让线框中长为l的可滑动导体ab,以速度v向右运动,单位时间内运动到 .由图可以看出,lv是导体在单位时间内扫过的面积大小,Blv是单位时间内导体切割磁感线的条数,即单位时间内磁通量的变化.由此可见,当B、l、v 各量越大时,单位时间内穿过闭合回路的磁通量变化越大,或者说磁通量变化得越快,这时产生的感应电动势就越大.公式反映了感应电动势跟B、l、v成正比.讲完决定感应电动势大小的规律之后,可让学生通过练习来掌握规律.除了做节后的例题之外,还可把课本中练习二(1)题和习题(5)题在课堂上讨论,必要时可再适当补充一些基础练习.法拉第电磁感应定律的教学设计方案引入部分示例:复习提问:1:要使闭合电路中有电流必须具备什么条件?(引导学生回答:这个电路中必须有电源,因为电流是由电源的电动势引起的)2:如果电路不是闭合的,电路中没有电流,电源的电动势是否还存在呢?(引导学生回答:电动势反映了电源提供电能本领的物理量,电路不闭合电源电动势依然存在)引入新课:在电磁感应现象里,既然闭合电路里有感应电流,那么这个电路中也必定有电动势,在电磁感应现象里产生的电动势叫做感应电动势,产生感应电动势的那部分导体就相当于电源.1:引导学生找出下图中相当于电源的那部分导体?法拉第电磁感应定律 2教学目标知识目标1、知道决定感应电动势大小的因素;2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能对“磁通量的变化量”、“磁通量的变化率”进行区别;3、理解的内容和数学表达式;4、会用解答有关问题;5、会计算导线切割磁感线时感应电动势的大小;能力目标1、通过学生实验,培养学生的动手能力和探究能力.情感目标1、培养学生对实际问题的分析与推理能力。
电磁感应实验教案了解电磁感应的原理与应用
电磁感应实验教案了解电磁感应的原理与应用电磁感应实验教案:了解电磁感应的原理与应用一、实验目的通过进行电磁感应实验,学习和了解电磁感应的基本原理和应用。
二、实验器材1. 导线圈2. 纸夹3. 铁芯4. 磁铁5. 电源6. 灯泡三、实验原理电磁感应是指当导体中的磁场发生变化时,会在导体中产生感应电动势。
根据法拉第电磁感应定律,导体中的感应电动势与磁感应强度的变化率成正比。
通过实验,我们可以观察和验证这一定律,并探索电磁感应的应用。
四、实验步骤1. 将导线圈绕在纸夹上,使其呈螺旋形状。
2. 将导线圈的两端分别连接到灯泡的两个触点上。
3. 将磁铁靠近导线圈,快速移动磁铁,观察灯泡的亮起情况。
五、实验结果在实验中,当磁铁靠近或远离导线圈,或导线圈与磁铁之间的相对运动时,灯泡会发光。
当磁铁与导线圈静止不动时,灯泡不亮。
六、实验分析与讨论1. 根据实验结果,我们可以得出结论:当导线圈与磁铁发生相对运动时,会在导线圈中产生感应电动势,从而使灯泡发光。
这就是电磁感应的基本原理。
2. 实验中,导线圈的螺旋形状增加了导线圈与磁铁之间的接触面积,使得感应电动势更容易产生。
同时,为了增强磁场,可以在导线圈中加入铁芯。
3. 实验表明,电磁感应可以通过磁场的变化来实现,这在现实生活中有广泛的应用。
例如,感应电动势可以用来实现发电、变压器工作原理等。
4. 在实际应用中,可以通过改变磁铁的磁场强度、导线圈的匝数等参数来调整感应电动势的大小。
七、实验总结通过本实验,我们了解了电磁感应的基本原理和应用。
电磁感应作为一项重要的物理现象,广泛应用于发电、电磁感应传感器等领域。
通过进一步的学习和实践,我们可以深入探索电磁感应的更多应用和工程实践。
高中数学电磁感应教案
高中数学电磁感应教案
教学目标:
1. 了解电磁感应的基本概念和原理;
2. 掌握法拉第电磁感应定律的应用;
3. 能够分析和解决相关电磁感应问题;
4. 培养学生动手实验和思维探索的能力。
教学内容:
1. 电磁感应的概念和原理;
2. 法拉第电磁感应定律;
3. 电磁感应的应用;
4. 电磁感应实验。
教学过程:
一、导入(5分钟)
教师可通过展示一个电磁感应现象的视频或图片来引入课题,让学生了解电磁感应的基本概念。
二、讲解(15分钟)
1. 介绍电磁感应的定义和原理;
2. 解释法拉第电磁感应定律;
3. 举例说明电磁感应的应用。
三、实验(30分钟)
教师组织学生进行电磁感应实验,让学生亲自动手操纵实验仪器,观察现象,记录数据并分析结果,从而加深对电磁感应的理解。
四、练习(10分钟)
教师出一些相关的练习题让学生巩固所学知识,并引导学生探讨解题方法和技巧。
五、讨论(10分钟)
教师和学生共同讨论电磁感应的局限性和存在的问题,鼓励学生提出自己的看法和想法。
六、总结(5分钟)
教师帮助学生总结本节课的重要内容和要点,强调学习的重点和难点,并鼓励学生继续深入学习。
七、作业(5分钟)
布置电磁感应相关的作业,鼓励学生在课后巩固所学知识,提高学习效果。
教学反思:
本节课通过实验引导学生亲自动手操作,使学生更加深入地理解和掌握电磁感应的知识,培养了学生的动手实践和思维探索能力。
在后续教学中,可继续拓展和延伸电磁感应的应用领域,激发学生的学习兴趣。
电磁感应现象及应用教案
电磁感应现象及应用教案一、教学目标1、掌握法拉第电磁感应定律,了解电磁感应现象;2、了解电磁感应应用,如变压器;3、理解发电机、电动机等基本原理。
二、教学内容1、电磁感应现象;2、法拉第电磁感应定律;3、电磁感应应用;4、发电机、电动机等基本原理。
三、教学方法1、讲授法;2、示范法;3、互动讨论法;4、实验法。
四、教学步骤1、电磁感应现象的引入用磁铁接近一个线圈时候,你是否发现线圈中会产生电流?这是一种什么现象?请同学们进行讨论。
2、法拉第电磁感应定律请同学们进行实验,用磁铁接近一个线圈时观察电流大小与磁感应强度、线圈匝数、磁铁距离等因素之间的关系,并结合法拉第电磁感应定律进行教学说明。
3、电磁感应应用摆放一对变压器,观察两个线圈之间的感应现象,并解释变压器的工作原理。
4、发电机和电动机的基本原理对于这一部分,可以进行图像展示、视频播放等形式让同学们进行学习。
五、教学案例案例1:电动铃实验目的:以电动铃为例,帮助学生了解电磁感应的机理。
实验器材:电源、电线、铜线、U型铁核、永磁体、电铃、磁铁。
实验步骤:1、把电源连接到一个导线上,用另一个导线连接铜线;2、把铜线绕在一个U型铁核上,并把核和永磁体固定在一起;3、固定电铃,用铜线连接它的两个端口;4、加电后,铜线中将出现电流,并产生磁场,使铜线绕在铁核上的两个线圈中的电流方向相反,导致它们互相相斥。
电铃则开始摆动,发出响声。
案例2:汽车发电机的原理在汽车行驶过程中,发动机轴带动发电机转动,转子内的线圈通过磁场线形成感应电流,经整流器输出给汽车电器系统供电。
案例3:电动机的原理电动机是利用电能转换成机械能的设备。
当电流通过电动机内的线圈时,产生磁场力,磁场力和转子偏转角度的正余弦函数关系产生力矩,使转子启动并运转。
法拉第电磁感应定律教案:了解电磁感应在现实生活中的应用
法拉第电磁感应定律教案:了解电磁感应在现实生活中的应用第一章:电磁感应简介1.1 电磁感应的发现1.2 电磁感应的定义1.3 电磁感应的原理1.4 电磁感应的符号表示第二章:法拉第电磁感应定律2.1 法拉第电磁感应定律的表述2.2 法拉第电磁感应定律的证明2.3 法拉第电磁感应定律的应用2.4 法拉第电磁感应定律的局限性第三章:电磁感应的实验观察3.1 电磁感应实验装置3.2 电磁感应实验步骤3.3 电磁感应实验现象3.4 电磁感应实验的解释第四章:电磁感应的应用实例4.1 发电机4.2 变压器4.3 电磁感应制动器4.4 电磁感应传感器第五章:电磁感应在现实生活中的应用5.1 电力系统5.2 交通运输5.3 电子设备5.4 科学研究第六章:电磁感应的数学表达6.1 感应电动势的数学表达式6.2 感应电流的数学表达式6.3 法拉第电磁感应定律的数学形式6.4 楞次定律与电磁感应第七章:电磁感应的频率响应7.1 频率与电磁感应的关系7.2 电磁感应的共振现象7.3 频率响应的应用实例7.4 频率响应在工程中的应用第八章:电磁感应的的能量转换8.1 电磁感应与能量转换8.2 发电机的能量转换原理8.3 变压器的能量转换原理8.4 电磁感应与能量效率第九章:电磁感应的安全与防护9.1 电磁感应的辐射与危害9.2 电磁感应的防护措施9.3 电磁感应的安全标准9.4 电磁感应的安全教育与培训第十章:电磁感应的未来发展趋势10.1 电磁感应技术的创新10.2 电磁感应在新能源领域的应用10.3 电磁感应技术的环保意义10.4 电磁感应技术的未来挑战与机遇第十一章:电磁感应在电子技术中的应用11.1 变压器在电子设备中的应用11.2 电感器在电路中的作用11.3 振荡器中的电磁感应原理11.4 电磁感应技术在滤波器中的应用第十二章:电磁感应在电力系统中的应用12.1 发电机的工作原理及应用12.2 变压器在电力传输中的作用12.3 电磁感应在上海铁磁共振现象及其应用12.4 电磁感应在电力系统中的损耗与效率第十三章:电磁感应在交通运输领域的应用13.1 电磁感应在电机驱动中的应用13.2 磁悬浮列车与电磁感应13.3 电磁感应在电动车充电技术中的应用13.4 电磁感应在轨道交通信号系统中的应用第十四章:电磁感应在科学研究中的拓展应用14.1 电磁感应在生物医学领域的应用14.2 电磁感应在材料科学中的应用14.3 电磁感应在地球物理勘探中的应用14.4 电磁感应在宇宙射线研究中的应用第十五章:电磁感应的综合实例分析与创新实践15.1 电磁感应技术在智能家居中的应用15.2 电磁感应在环境监测领域的应用15.3 电磁感应技术的创新案例分析15.4 电磁感应技术在学生创新实践项目中的应用重点和难点解析重点:1. 电磁感应的定义、原理及符号表示。
(完整版)电磁感应教案
(二)新课教授(12分钟)图一图二图三一、电磁感应现象(实验演示)实验:如(图一)所示,将条形磁铁插入和拔出螺旋管。
现象:灵敏电流计指针发生偏转。
说明:线圈回路中产生电流。
(经典回顾)1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种利用上述方法产生电流的现象定名为“电磁感应现象”。
产生的电流称为“感应电流”。
(情景联想)法拉第如何萌发出探索“电磁感应现象“这一想法?(历史回顾)奥斯特发现电流的磁效应现象:电流的周围存在磁场,电能生磁。
思考:磁能否产生电?(情景置疑)除了上述方法外,是否还有其他方法也可以产生电流?(自主拓展)在把握现象要素的基础上,自主设计能产生电流的装置。
(自主活动)活动要求:利用课桌上的实验器材,使线圈回路中产生电流.活动器材:导线,金属棒,有铁芯的线圈A,空心线圈B,检流计,滑动变阻器,电键,电源等。
自主活动:……活动指导:……活动交流:……记录1:能使检流计发生偏转的方法.方法1:利用闭合电路中的导体(与检流计相连)在磁场中运动。
(图二)方法2:将副线圈插入原线圈中,闭合电键时,检流计的指针发生偏转。
(图三)方法3:增大(或减小)滑动变阻器阻值时,检流计的指针发生偏转(图三)图四方法4:改变线圈形状,检流计的指针发生偏转。
(图四)方法5:…………交流质疑:通过以上实验,能不能概括出,只要满足怎样的条件即会出现检流计指针发生偏转的现象。
(初步归纳)1、磁场与线圈相对运动。
2、改变磁场的大小.3、改变线圈的面积。
(现象质疑)磁场与线圈相对运动的实质是什么?分析方法:用比较分析的思维方法对实验现象的本质要素进行提炼。
现象解释:相对运动的实质是改变进入线圈的磁场大小。
(进一步归纳)1、改变磁场大小,可以产生电磁感应现象。
2、改变线圈面积,可以产生电磁感应现象。
(深入分析)将自然探索引申到控制变量法。
(完整表述)1、在线圈不变的情况下,改变磁场的大小可以产生电磁感应现象.2、在磁场不变的情况下,改变线圈的面积可以产生电磁感应现象. (深入探究)动画模拟动画1:线圈中磁场发生变化,产生感应电流.动画2:线圈的面积发生变化,产生感应电流。
高中物理电磁感应(教案)
高中物理电磁感应(教案)第一章:电磁感应概述1.1 电磁感应的定义解释电磁感应现象,即导体在磁场中运动或磁场变化时,导体中产生电动势的现象。
强调法拉第电磁感应定律,描述电动势与磁通量的变化率之间的关系。
1.2 感应电动势的产生条件介绍感应电动势产生的两个必要条件:导体必须在磁场中运动或磁场变化,导体必须是闭合回路。
通过示例说明这两个条件的重要性。
第二章:楞次定律2.1 楞次定律的定义解释楞次定律,即感应电动势的方向总是使得其产生的电流的磁效应抵消原磁场的变化。
强调楞次定律的内容,包括感应电动势的方向和大小。
2.2 楞次定律的应用介绍楞次定律在实际问题中的应用,如电磁阻尼、电流表的工作原理等。
通过示例问题说明楞次定律的运用方法。
第三章:法拉第电磁感应定律3.1 法拉第电磁感应定律的定义解释法拉第电磁感应定律,即感应电动势的大小与磁通量的变化率成正比,与导体的长度、磁场强度和导体与磁场的相对运动速度无关。
强调法拉第电磁感应定律的数学表达式和物理意义。
3.2 法拉第电磁感应定律的应用介绍法拉第电磁感应定律在实际问题中的应用,如发电机、变压器等。
通过示例问题说明法拉第电磁感应定律的运用方法。
第四章:电磁感应的实验研究4.1 实验一:电磁感应现象的观察设计实验步骤,让学生观察导体在磁场中运动时产生的电动势。
引导学生通过实验结果验证电磁感应现象。
4.2 实验二:楞次定律的验证设计实验步骤,让学生验证楞次定律,即感应电动势的方向总是使得其产生的电流的磁效应抵消原磁场的变化。
引导学生通过实验结果验证楞次定律。
第五章:电磁感应的应用5.1 发电机的工作原理解释发电机的工作原理,即通过电磁感应现象将机械能转化为电能。
强调发电机的重要性和应用领域。
5.2 变压器的工作原理解释变压器的工作原理,即通过电磁感应现象改变交流电的电压和电流。
强调变压器的重要性和应用领域。
第六章:自感与互感6.1 自感的概念介绍自感现象,即电流变化时在同一电路中产生电动势的现象。
电磁感应教案示例
电磁感应教案示例一、教学目标1.了解电磁感应的基本原理和相关知识。
2.掌握电磁感应现象的实验方法和步骤。
3.培养学生对电磁感应现象的观察能力和实验能力。
二、教学内容1.电磁感应的基本概念和原理。
2.电磁感应现象的实验验证。
3.电磁感应在生活中的应用。
三、教学方法1.讲授法:通过讲解电磁感应的概念和原理,让学生了解电磁感应的基本知识。
2.实验教学法:通过实验验证电磁感应的存在和原理,让学生亲身体验电磁感应现象。
3.讨论和交流法:通过课堂讨论,让学生充分表达自己的看法和观点,促进学生互相交流和探讨。
四、教学过程1.导入环节通过展示一些与电磁感应相关的图片和视频,引导学生思考电磁感应在生活中的应用,激发学生的兴趣。
2.讲授环节1)电磁感应的概念和原理电磁感应是指导体内部的电子在磁场中发生移动而产生电势,从而在导体两端形成电流的现象。
电磁感应是电动势的一种表现形式。
二者的关系可以用法拉第电磁感应定律来描述,即磁通量变化时,会在电路中引起感应电动势。
2)电磁感应实验的步骤和方法首先,利用实验器材搭建电路,使电路中包含磁铁、导线等物体,然后改变磁场的强度和方向,观察是否发生了感应电动势现象。
3.实验环节通过实验验证电磁感应的存在和原理,让学生亲身体验电磁感应现象。
4.总结环节通过总结和讨论,使学生对电磁感应的概念和原理更加清晰,同时,强化学生的实验能力和观察能力。
五、教学评价本节课主要采用讲授法、实验教学法和讨论和交流法相结合的方式,使学生能够全面了解电磁感应的相关知识和实验方法,同时增强学生实验能力和观察能力。
通过课堂互动和讨论,学生能够更加深入地掌握电磁感应的问题,提高学生的理解能力和实验能力。
六、教学反思本节课使用了多种教学方法,让学生能够在多方面了解电磁感应的相关内容。
在教学过程中,我注意到学生的实践能力和展示能力还需进一步培养。
在今后的教学中,我将更加注重实践环节的设计,通过更多的实践训练,提高学生的实践能力和展示能力。
电磁感应现象实验教案
电磁感应现象实验教案一、教学目标1. 让学生了解电磁感应现象的定义和基本原理。
2. 培养学生进行实验操作和观察能力,培养学生的实验兴趣。
3. 引导学生运用科学思维分析实验现象,提高学生的科学素养。
二、教学内容1. 电磁感应现象的定义和基本原理。
2. 电磁感应实验的操作步骤和注意事项。
3. 电磁感应现象的应用。
三、教学重点与难点1. 教学重点:电磁感应现象的基本原理,电磁感应实验的操作步骤。
2. 教学难点:电磁感应现象的内在联系和应用。
四、教学方法1. 采用问题驱动法,引导学生思考电磁感应现象的产生原因。
2. 运用实验教学法,让学生亲身体验电磁感应现象。
五、教学准备1. 实验器材:蹄形磁铁、线圈、电流表、导线、开关等。
2. 教学工具:PPT、黑板、粉笔等。
六、教学过程1. 导入:通过复习电磁铁的相关知识,引导学生思考电磁感应现象。
2. 新课导入:介绍电磁感应现象的定义和基本原理。
3. 实验演示:进行电磁感应实验,让学生观察实验现象。
4. 学生实验:分组进行电磁感应实验,引导学生动手操作,观察实验现象。
七、课堂小结1. 回顾本节课所学内容,让学生掌握电磁感应现象的基本原理。
2. 强调电磁感应实验的操作步骤和注意事项。
八、作业布置1. 完成实验报告:记录实验过程、实验现象和结论。
2. 预习下一节课内容:电磁感应现象的应用。
九、课后反思2. 关注学生在实验过程中的表现,及时给予指导和鼓励。
十、教学评价1. 学生实验操作的正确性和实验报告的完整性。
2. 学生对电磁感应现象的理解程度和运用能力。
3. 学生对电磁感应实验的兴趣和参与度。
六、实验探索与分析1. 引导学生进行实验探索,让学生自主发现电磁感应现象中的规律。
2. 分析实验结果,引导学生理解电磁感应现象的本质。
3. 通过对实验数据的处理和分析,帮助学生建立电磁感应现象的定量关系。
七、电磁感应现象的应用1. 介绍电磁感应现象在生活中的应用,如发电机、变压器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应·磁场、电磁感应阶段复习课·教案教学目标1.在物理知识方面要求.1)通过复习掌握本单元中的电磁现象.①电流周围存在磁场;②磁场对电流(运动电荷)的作用;③电磁感应.(2)通过复习理解以上电磁规律的物理含义.2.结合本单元的复习,教给学生归纳、总结知识的能力.3.在复习巩固的基础上,进一步培养学生综合运用知识的能力;提高学生高度概括、灵活运用的能力.二、重点、难点分析1.重点是对基本概念(如磁通量Ф、磁通量变化量ΔФ、磁通量变化率ΔФ/Δt)的加深理解;磁场对电流(运动电荷)的作用和对法拉第电磁感应定律的理解和运用.2.难点是法拉第电磁感应定律的综合运用和楞次定律的运用.三、教具投影片.四、主要教学过程(一)电磁现象基本设计思想:师生讨论、归纳总结出电磁现象.提问:在磁场、电磁感应中,我们学习了哪些电磁现象?学生回忆:联想后可能回答:1.电流(运动电荷)周围存在磁场;2.磁场对电流(运动电荷)存在力的作用;3.电磁感应.根据学生回答,列成表格形式,进一步提问这些现象的规律以及应用等内容.然后,逐项填入相应位置,从而整理成系统化知识内容.打出投影片.(二)应注意的几个问题1.磁通量、磁通量的变化量及磁通量的变化率.(1)磁通量Ф=BS⊥(S⊥是S在垂直于B的平面上的投影),可以用穿过面的磁感线数表示。
(2)磁通量的变化量ΔФ=Ф2-Ф1.磁通量变化包括:磁感应强度B变化,面积S变化,S与B的夹角变化.(3)磁通量的变化率ΔФ/Δt,表示磁通量变化的快慢.注意:在闭合电路中是否产生感生电动势,不是取决于有无磁通量,而是取决于有无磁通量的变化.感生电动势的大小不是取决于磁通量的变化量而是取决于磁通量的变化率.ε=ΔФ/Δt.Ф、ΔФ、ΔФ/Δt的物理意义不同.2.导体在磁场中运动产生电动势的情况.(1)平动.在图1A.、B.中,两个导体产生感生电动势的数学表达式相同即ε=BLv.(2)转动.①直导体绕固定轴.如图2所示,导线OMN在与磁场方向垂直的平面内,以角速度ω在匀强磁场中沿逆时针方向绕O点匀速转动,磁感应强度为B,方向垂直指向纸里,MN的电动势多大?由于MN上各点的切割速度不等,应当用MN上各点的平均速度也就是MN中点的速度进行计算.设OM=r1,ON=r2,则②矩形线圈绕固定轴.如图3所示,边长分别为L1、L2的矩形线围绕OO′轴在匀强磁场中以角速度ω匀速转动,磁感应强度为B,方向与纸面平行向左,求感生电动势.如果从图中所示位置开始计时,感生电动势为当t=0时,线圈平面与磁场平行,磁通量Ф最小,Фmin=0,感生电动势ε最大.εmax=BSω.Фmax=BL1L2=BS.感生电动势ε最小.εmin=0.(三)解决磁场和电磁感应问题的基本思路与方法1.基本思路.(1)研究磁场中的力学问题,仍按力学中的方法分析,在分析力时要考虑到磁场力.这对于研究导体受力、运动电荷受力问题特别重要.要记住洛仑兹力的性质:洛仑兹力永远与v垂直,永远不做功.(2)研究电磁现象,应根据电流周围产生磁场,电流在磁场中受力的规律,闭合电路中磁通量变化产生感生电流,对问题全面加以分析解决.在这当中,还要重视物理状态的确定与过程的分析.这一点对于存在着几种能量互相转化的物理问题非常重要.2.典型问题分析.例1 投影片.甲、乙两个完全相同的带电粒子,以相同的动能在匀强磁场中运动.甲从B1区域运动到B2区域,且B2>B1;乙在匀强磁场中做匀速圆周运动,且在Δt时间内,该磁场的磁感应强度从B1增大为B2,如图4所示.则当磁场为B2时,甲、乙二粒子动能的变化情况为[ ].A.都保持不变B.甲不变,乙增大C.甲不变,乙减小D.甲增大,乙不变E.甲减小,乙不变首先组织学生分析讨论,同学可能提出各种各样解答,这时教师应及时归纳、引导.由于本题所提供的两种情境,都是B2>B1,研究的也是同一种粒子的运动.对此,可能有人根据“洛仑兹力”不做功,而断定答案“A”正确.其实,正确答案应该是“B”.这是因为:甲粒子从B1区域进入B2区域,唯一变化的是,根据f=qvB,粒子受到的洛仑兹力发生了变化.由于洛仑兹力不做功,故v大小不变,因而由R=mv/Bq,知其回转半径发生了变化,其动能不会发生变化.乙粒子则不然,由于磁场从B1变化到B2,根据麦克斯韦电磁场理论,变化的磁场将产生电场,结合楞次定律可知,电场力方向与粒子运动方向一致,电场力对运动电荷做正功,因而乙粒子的动能将增大.例2 如图5,在匀强电场和匀强磁场共存的区域内,电场的场强为E,方向竖直向下,磁场的磁感应强度为B,方向垂直纸面向里.一质量为m的带电质点,沿场区内的一竖直圆周匀速运动,则可判知该带电质点[ ].B.沿圆周顺时针运动带电质点在电场力F、重力G和洛仑兹力f作用下沿竖直圆周匀速运动,由产生匀速圆周运动的条件分析判知,只有电场力F与重力G相平衡;仅由洛仑兹力f提供向心力,f的方向始终与质点速度v的方向垂直,f的大小Bqv保持不变,才能实现带电质点沿竖直圆周做匀速圆周运动.根据这一分析:从电场力应与重力相平衡可判知,带电质点受到电场力的方向应竖直向上,与重力方向相反,为此质点应带负电.再由电场力的大小应与从应由洛仑兹力提供向心力可判知,带电质点受到的洛仑兹力应沿半径指向圆心,为此由左手定则可知,带电质点沿圆周顺时针运动,再由洛仑兹力公式和向心力公式有BqRω=mRω2,从中可求出带电质点电质点的运动速率.综上可知,选项A、B、C正确.例3 投影片.如图6所示,在真空中同时存在着匀强电场(方向竖直向上)和匀强磁场(方向垂直指向纸外),有甲、乙两个带电颗粒,甲带正电,电量大小为q1,恰好平衡静止于A点;乙也带正电,电量大小为q2,正在过A点的竖直平面内做半径为r1的匀速圆周运动.运动中乙和甲发生碰撞并粘在一起,试分析它们以后的运动.先给出一定时间,让同学分析思考.提出各种可能方案.有同学会提出:条件不够,无法讨论.可以指出,没有给出的条件可以假定.如假定甲的质量为m1,乙的质量为m2,电场强度为E,磁感应强度为B.碰撞前乙的速度为v1,碰撞后共同的速度为v2.提问:碰撞前甲、乙各受几个力.它们之间有什么关系?引导回答:甲不动,它受到重力m1g,电场力q1E,这两个力平衡.乙受到三个力,重力m2g,电场力q2E,洛仑兹力q2v1B.因为乙做匀速圆周运动,它所受的重力和电场力也必须平衡.使乙做匀速圆周运动的力是洛仑兹力.进一步提问:碰撞后,甲和乙粘在一起,它们受几个力,这些力之间有什么关系.引导回答:受到三个力.总重力(m1+m2)g,总电场力(q1+q2)E和洛仑兹力(q1+q2)v2B.总重力与总电场力仍旧平衡,所以甲和乙仍在洛仑兹力的作用下做匀速圆周运动.甲、乙碰撞时满足动量守恒定律.然后让同学列出方程求解.碰撞前,乙应满足:碰撞时,根据动量守恒.m2v1=(m1+m2)v2,②碰撞后,甲乙应满足由①式、②式、③式解得通过这题的分析,使学生感到在条件不够时,可以自己先做一些假定,按物理过程的先后顺序加以分析求解.与区别.通过实例来进一步说明两者意义上的异同.例4 将边长为l、总匝数为N的正方形闭合导线框,以速度v匀速地推入匀强磁场B中,并以v继续在磁场中匀速运动,如图7所示.试回答:(1)导线框在匀速进入磁场的过程中,感生电动势为多大?(2)导线框在匀强磁场中继续以速度v运动时,感生电动势多大?分析与解;(1)线框进入“磁场过程中的感生电动势,可应用两个公式计算,结果一样:(2)但当线框在磁场中匀速运动时,根据导体做切割磁感线运动而产生感生电动势的规律,应有ε=Blv;得ε=0.这两种结果究竟哪一个正确呢?判断的依据只有一个,就是任何电动势都应当是即任何电动势都等于非静力移动单位电荷所做的功.只要W非≠0,就有ε≠0.当导线框进入磁场过程中,机械能通过洛仑兹力作用(导体做切割磁感线运动时,其内部自由电子即受洛仑兹力作用而向导体的一端移动,形成电势差)而转换为电荷的电势能.这一电势能在导线框进入磁场后,只要线框继续运动,它就一直存在,因此,导线框在磁场中运动时的感生电动势应为ε=Blv.零.这是由于导线框在磁场中做切割磁感线运动时,其左右两边都产生相等的感生电动势.这样,从电路中任一点出发,绕行电路一周重新返回那一点时,其感生电动势之和为零.归纳本题,然后提出电磁感应过程常常伴随其它形式能量的转化.投影片.如图8 所示,两金属杆ab和cd长均为l,电阻均为R,质量分别为M和m,M>m.用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧.两金属杆都处在水平位置.整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为Ba.若金属杆ab正好匀速向下运动,求运动的速度.首先让同学认真看一下本题.然后让三个同学到黑板上做此题,其余在原位做题.教师巡回检查,启发指导.最后,可将有代表性的方法归纳.解法(一):设磁场方向垂直纸面向里.分别选取ab、cd为研究对象.设ab向下、ca向上匀速运动速度大小为v,它们均切割磁感线,将都产生感应电动势,据电磁感应定律,应有:ab产生感应电动势,ε1=Blv.cd产生感应电动势,ε2=Blv.据右手定则,回路中电流方向由a→b→d→c,电流大小据闭合电路欧姆定律应为:据左手定则,ab受安培力向上,cd受安培力向下,大小均为:ab匀速向下时平衡条件为:T+F安=Mg.③cd匀速向上时平衡条件为:T=F安+mg.④式中T代表导线对金属杆的拉力.由③④得:2F安=(M-m)g.解法(二):把ab、cd柔软导线视为一个整体作为研究对象,因为M>m,所以整体动力为(M-m)g.ab向下、cd向上运动时,穿过闭合回路的磁通量减小,据电磁感应定律产生感应电流.据楞次定律知,I 感的磁场要阻碍原磁场的磁通量变化,即阻碍ab向下,cd向上运动,即F安为阻力.整体受的动力与安培解法(三):把整个回路视为一整体作研究对象.因其速度大小不变,故动能不变.ab向下、cd向上运动过程中,因Mg>mg,系统的重力势能减少,将转化为回路的电能.据能量转化守恒定律,重力的机械功率(单位时间系统减少的重力势能)要等于电功率(单位时间转化回路的电说明:由以上三种思路解法可看出,由于这道力电磁综合题,属多对象问题,可取用“隔离法”研究解决,如解法(一);也可如解法(二)、(三)那样取用“整体法”研究解决.特别是由能量观点出发的解法(三),明显简便.对于有灵活解题思路问题,能选用简捷思路,必然要求对所学知识有全面、深刻、融会贯通的认识掌握,并须较高的思维能力.由于本题未明确磁场方向,前面解题设为进纸面,若设为出纸面,据右手定则,判定I感,方向将是相反方向,但用左手定则判定F安方向仍对ab、cd的运动属阻力.故两种磁场方向,解题结果一样.投影片.如图9所示,金属棒a从高h处以速度v0沿光滑弧形平行金属轨道下滑,进入轨道的水平部分以后,在自上而下的强磁场中运动,磁感应强度为B,在轨道的水平部分原来静止地放着另一根金属棒b,已知ma∶mb=5∶4,试问:(1)当a棒进入磁场后做什么运动?b棒做什么运动?(2)如果两棒始终没有相碰,求a和b的最大速度.(3)在整个过程中,回路中消耗的电能是多少?由于本题涉及知识面较宽,运动过程相对来讲,也较复杂.因此,应采取逐步分析法.给学生一定的思考问题的时间,必要时做启发.引导学生分析:(1)a棒进入磁场后切割磁感线产生感生电动势和感生电流.提问:这一感生电动势和电流是不是稳定的.答:当a棒上有电流通过时,将受到阻碍运动的安培力,a棒将做减速运动,所以感生电动势和感生电流都不是稳定的.讨论a、b运动特点,启发提问,然后总结.a棒做加速度减小的减速运动.b棒上有电流通过时,将受到向右的安培力,b棒将向右加速运动.由于感生电流不断减小,所以安培力也减小,所以b棒做加速度减小的加速运动.进一步提问:最后a、b做什么运动?启发回答:当a、b速度相同时,感生电流为零.安培力为零,a、b将做匀速运动.最后总结出,a、b各做什么运动以及如何求a、b的最大速度?师生共同完成:a进入水平轨道时是做减速运动,所以进入时的速度最大,根据机械能守恒:由①解得b棒是做加速运动,所以当它达到匀速时速度最大.因为受力不断改变,所以不好用牛顿第二定律,但作为a、b这个整体,合外力始终为零,符合动量守恒定律,所以(ma+mb)v′=mava.最后提问:能否用I2Rt计算回路中消耗的电能?应当如何求?师生合作,解答:因为感生电流I不断改变,时间t也不好求,所以无法用I2Rt计算.根据总的能量守恒,消耗的电能应等于机械能的减少,所以(四)课堂小结并布置作业把解决磁场和电磁感应问题的基本方法,自己整理一下.将例题的条件变一变,再进行分析.争取做到举一反三,触类旁通.五、教学说明由于本节内容较多,建议两课时完成.教师可结合实际灵活安排.。