九年级数学基础训练12
九年级数学《一元二次方程》基础训练
一元二次方程概念基础知识作业1. ( 1)x+5=0,x= __________ .(2)____________________10x+3=8,x= ______________ .1(3)6x ----- =1,x= __________ .22. 一元二次方程的一般形式是3. 将方程—5x1 2+仁6x化为一般形式为16. 若关于x的方程(a2-1)x2 (a-1)x 3 = 0 是一元二次方程,则a= ;若关于x的方程2 2(a -1)x,(a-1)x,3=0是一元一次方程,则a= 。
17. 某商品成本价为300元,两次降价后现价为160元,若每次降价的百分率相同,设为x, 则方程为 __________ .18. 下列方程化为一般形式后,常数项为零的方程是( )A. 5x-3=2x2B. 3x(x-1)=2(x 2) -4C. (3x-1)(2x 4) =1D. (X 3)(x 2) - -619. 若关于x的方程ax2 -3x • 3二0是一元次方程,则( )A. a 〔B. a =〔C a 二丁D. a - C20. 如果方程ax2+5=(x+2)(x —1)是关于x 的一元二次方程,则a __________.21. 关于x 的方程(m—4)x 4. 将方程(X+1)2=2X化成一般形式为5. 方程2X2=— 8化成一般形式后,一次项系数为______________ ,常数项为6 .方程2x2 3^3的二次项是一次项是,常数项是。
7. 已知两个数之和为6,乘积等于5,若设其中一个数为x ,可得方程为8. 下列方程中,不是一元二次方程的是( )2 2 /~A. 2x +7=0B.2x +2 3x+1=0C.5x2+ ^+4=0D.3x 2+(1+X) .2+1=0x9. 方程x2—2(3x —2)+(X+1)=0的一般形式是( )A. x2—5x+5=0B.x2+5x+5=02 2C.x +5x—5=0D.x +5=010. 一元二次方程7x2—2x=0的二次项、一次项、常数项依次是( )A. 7X2,2X,0B.7x 2, —2x,无常数项C.7X2,0,2XD.7X2,—2x,011. 方程x2— 3 =( 3 —.. 2 )x 化为一般形式,它的各项系数之和可能是( )A. 2B. —2C.、2 - .3D. 1.2 -2.312. 某校办工厂利润两年内由5万元增长到9万元,设每年利润的平均增长率为x,可以列方程得( )2A. 5(1+x)=9B.5(1+x) =9C.5(1+x)+5(1+x) 2=9D.5+5(1+x)+5(1+x) 2=92+(m+4)x+2m+3=0 当m ________ 时,是一元二次方程,当m ________ ,是一元一次方程.能力方法作业13. 方程(x • 3)( x 4)=5化成一般形式 14. 方程 5(x 2— ... 2 x+1)= — 3 .. 2 x+2 的一般形式是 __________ 其二次项是 ____________ ,一次项是 ________ 常数项是 ______________ .1 2 115. 若 ab 工0 ,则—x 2+—x=0的常数项是a b22. 若关于 x 的方程(ax+b) (d — cx)=m(ac工0)的二次项系数是 ac ,则常数项为 ( )A. mB. — bdC.bd — mD. — (bd — m)23. 若关于x 的方程a(x — 1)2=2x 2— 2是 一元二次方程,则a 的值是( )A. 2B. — 2C.0D.不等于 224. 若x=1是方程ax 2+bx+c=0的解,则 ( )A.a+b+c=1B.a — b+c=0C. a+b+c=0D.a — b — c=0 25. 关于x 2= — 2的说法,正确的是()A. 由于x 2>0,故x 2不可能等于一2, 因此这不是一个方程B. x 2= — 2是一个方程,但它没有一 次项,因此不是一元二次方程C. x 2=— 2是一个一元二次方程D. x 2= — 2是一个一元二次方程,但不能 解26. 学校要把校园内一块长50米,宽40 社的长方形空地进行绿化,计划中间种花,四周留出宽度相同的地种草坪,且3花坛面积占整个绿地面积的-,求草坪10的宽度。
九年级下册数学基础训练答案人教版2022
九年级下册数学基础训练答案人教版2022一、选择题(本题包括15小题,每小题5分,共75分。
每小题只有1个选项符合题意)1. 一元二次方程2x2-3x-4=0的二次项系数是() [单选题] *A. 2(正确答案)B. -3C. 4D. -42.抛物线y=2x2,y=﹣2x2,共有的性质是() [单选题] *A.开口向下B.对称轴是y轴(正确答案)C.都有最高点D.y随x的增大而增大3.方程x2-2x-3=0经过配方法化为(x+a)2=b的形式,正确的是() [单选题] *A.(正确答案)B.C.D.4.下列说法中,正确的是() [单选题] *A.不可能事件发生的概率为0(正确答案)B.随机事件发生的概率为0.5C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次5.方程的解是() [单选题] *A.2B.3C.-1,2D.-1,3(正确答案)6.在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为() [单选题] *A.B.(正确答案)C.D.7.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是() [单选题] *A.(正确答案)B.C.D.8.下列方程中,没有实数根的方程是() [单选题] *A.B.(正确答案)C.D.(k属于任意实数)9.把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为() [单选题] *A.1,﹣3,2B.1,7,﹣10C.1,﹣5,12D.1,﹣3,10(正确答案)10.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这张卡片上的数字恰好小于3的概率是() [单选题] *A.B.(正确答案)C.D.11.抛物线的顶点坐标是() [单选题] *A.B.(正确答案)C.D.12.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得() [单选题] *A.B.(正确答案)C.D.13.抛物线y=2(x﹣3)2+1的顶点坐标是() [单选题] *A.(3,1)(正确答案)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)14.对于二次函数y=- x2+2,当x为x1和x2时,对应的函数值分别为y1和y2,若x1>x2>0,则y1与y2的大小关系是( ) [单选题] *A.B.(正确答案)CD.无法比较15在同一直角坐标系中,一次函数 y=ax+k 和二次函数 y=ax2+k的图象大致为() [单选题] *A.B.C.D.(正确答案)二、填空题(本题包括5小题,每小题5分,共25分)16.(2分)当k≠时,方程kx2-x=2+3x2是关于的一元二次方程. [填空题] *_________________________________(答案:3)17.(2分)不透明袋子中装有10个球,其中有2个红球、3个绿球和5个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.(小数表示) [填空题] *_________________________________(答案:0.5)18.(2分)一元二次方程x(x-6)=0的两个实数根中较大的为. [填空题] *_________________________________(答案:6)19.(2分)若关于的一元二次方程x2+(k-3)x+k=0的一个根是-2,则另一个根是______. [填空题] *空1答案:1020.抛物线y=7(x-3)2的开口______,对称轴是______,当x=_____时,取得最_______值,这个值等于________。
九年级上册数学基础训练人教版
九年级上册数学基础训练人教版一、一元二次方程。
1. 定义与一般形式。
- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式:ax^2+bx + c = 0(a≠0),其中a是二次项系数,b是一次项系数,c 是常数项。
- 例如方程3x^2-5x + 1 = 0,这里a = 3,b=-5,c = 1。
2. 解法。
- 直接开平方法。
- 对于形如x^2=k(k≥0)的方程,解为x=±√(k)。
- 例如,方程x^2=9,解得x = 3或x=-3。
- 配方法。
- 步骤:先将方程化为ax^2+bx=-c的形式,然后在等式两边加上一次项系数一半的平方((b)/(2a))^2,将左边配成完全平方式(x +(b)/(2a))^2,再进行求解。
- 例如,解方程x^2+6x - 1 = 0。
- 首先将方程变形为x^2+6x=1。
- 然后在等式两边加上((6)/(2))^2=9,得到x^2+6x + 9=1 + 9,即(x +3)^2=10。
- 解得x=-3±√(10)。
- 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
- 例如,解方程2x^2-3x - 2 = 0,这里a = 2,b=-3,c=-2。
- 先计算b^2-4ac=(-3)^2-4×2×(-2)=9 + 16 = 25。
- 然后代入公式x=(3±√(25))/(2×2)=(3±5)/(4),解得x = 2或x=-(1)/(2)。
- 因式分解法。
- 将方程化为一边是两个一次因式乘积,另一边为0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px+q = 0。
- 例如,解方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。
人教版九年级数学 中考数学 基础训练
人教版九年级数学中考数学 基础训练(卷面分值:150分;考试时间:120分钟)一、 选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求. 1. 一个几何体的三视图如图所示,则该几何体是( )2. 9的平方根是( ) A .±3 B .﹣3C .3D .±3.下列运算正确的是( )A. 22122a a-= B. ()32628a a -=- C. ()2224a a +=+ D. 2a a a ÷=4. 等腰三角形的两边长为方程x 2-7x +10=0的两根,则它的周长为( )A .12B .12或9C .9D .75. 某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A. 33603624120x y x y +=⎧⎨+=⎩B. 33602436120x y x y +=⎧⎨+=⎩C. 12036243360x y x y +=⎧⎨+=⎩D. 12024363360x y x y +=⎧⎨+=⎩6.一个三角形三边的长分别为15,20和25,则这个三角形最长边上的高为( ) A.12 B.15 C.20 D.25 7.用配方法解方程0522=--x x 时,配方后得到的方程为( ) A .9)1(2=+x B. 9)1(2=-x C. 6)1(2=+x D. 6)1(2=-x8.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m2,设小路宽为xm ,那么x 满足的方程是( )A 、x 2-25x+32=0 B 、x 2-17+16=0 C 、2x 2-25x+16=0 D 、x 2-17x-16=09.当1x =时,代数式334ax bx -+的值是7,则当1x =-时,这个代数式的值是( ) A.7 B.3 C.1 D.7-10.如图,在矩形ABCD 中,对角线BD AC ,交于点 O ,DB CE ⊥于E ,1:31:=∠∠DCE ,则OCE ∠=( ) A.︒30 B.︒45 C.︒60 D.︒5.67二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卷的相应位置处.11. 若2ab =,1a b -=-,则代数式22a b ab -的值等于 .12. 关于x 的方程3kx 2+12x +2=0有实数根,则k 的取值范围是________.13. 据统计,今年“国庆”节某市接待游客共14900000人次,用科学记数法表示为 .14.如果代数式有意义,那么字母x 的取值范围是 .15.如图,CF 是ABC ∆的外角ACM ∠的平分线,且CF ∥AB ,︒=∠100ACM ,则B ∠的度数为 .三、解答题(本大题Ⅰ—Ⅴ题,共9小题,共90分)解答时应在答题卷的相应位置处写出文字说明、证明过程或演算过程.Ⅰ. (本题满分15分,第16题5分,第17题10分) 16.计算:()()0332015422---+÷-17. (1) 2(3)2(3)0x x x -+-=; (2)x 2-5x +2=0 Ⅱ. (本题满分30分,第18题、第19题、第20题每题10分) 18.化简:xx x x x x x x 4)44122(22-÷+----+,然后从3,2,1,0中选择一个你喜欢的x 的值代入求值.19.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC ∥AB . 求证:AE CE =20.中秋、国庆假日期间,某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
2022年中考数学人教版基础训练:全等三角形
2022年中考数学人教版基础训练:全等三角形一、选择题(本大题共10道小题)1. AD是△ABC的角平分线,自D点向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( )A.DE = DFB. AE = AFC.BD = CDD. ∠ADE =∠ADF2. 两个三角形有两个角对应相等,正确说法是()A.两个三角形全等B.两个三角形一定不全等C.如果还有一角相等,两三角形就全等D.如果一对等角的角平分线相等,两三角形全等3. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等4. 如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是( )A.∠B=∠EB.∠BAD=∠EACC.∠BAC=∠EADD.BC=ED5. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是( )A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC6. 已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠27. 如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40° B.50° C.60° D.75°8. 如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是( ).A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OD9. 平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°10. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题11. 杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是12. 如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.13. 如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=______14. 如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.15.如图,△ABC是三边均不等的三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画个.16. 如图所示,∠AOB=60°,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,则∠DCO=________.17. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形与△ABC全等,则这样的三角形最多可以作出________个.AA BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳), 18. 把两根钢条','如图,若测得AB=5厘米,则槽宽为厘米.三、解答题19. 如图,已知AB DC AC DB==,.求证:12∠=∠.20. 已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.21. 如图,木工师傅常用角尺来作任意一个角的平分线,请你设计一个方案,只用角尺来作∠AOB的平分线,并说明理由.22. 已知:如图所示,BF与CE相交于点D,BD=CD,BF⊥AC于点F,CE⊥AB于点E,求证:点D 在∠BAC的平分线上.23.如图,两根旗杆AC、BD间相距12m,某人从A点沿AB走向B,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1/m s,求这个人运动了多长时间?24. 在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC 的平分线交BC于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.25.如图①,点A,E,F,C在一条直线上,AE=CF,过点E,F分别作ED⊥AC,FB⊥AC,AB=CD.(1)若BD与EF交于点G,试证明BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.26. 在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.。
初中数学试卷基础训练答案
一、选择题1. 答案:C。
解析:根据题目给出的信息,可以列出方程:x + 2 = 5,解得 x = 3。
2. 答案:B。
解析:根据题目给出的信息,可以列出方程:2x - 3 = 7,解得 x = 5。
3. 答案:A。
解析:题目中给出的图形是一个正方形,其边长为4,所以面积为4 × 4 = 16。
4. 答案:D。
解析:根据题目给出的信息,可以列出方程:3x + 2 = 8,解得 x = 2。
5. 答案:C。
解析:题目中给出的图形是一个长方形,其长为6,宽为3,所以周长为(6 + 3)× 2 = 18。
二、填空题6. 答案:3。
解析:题目中给出的信息是一个数加上5等于10,所以这个数是10 - 5 = 3。
7. 答案:7。
解析:题目中给出的信息是两个数的和是11,其中一个数是4,所以另一个数是11 - 4 = 7。
8. 答案:25。
解析:题目中给出的信息是一个数的平方等于25,所以这个数是√25 = 5。
9. 答案:12。
解析:题目中给出的信息是一个数的立方等于27,所以这个数是∛27 = 3,又因为3 × 4 = 12,所以答案是12。
10. 答案:3.5。
解析:题目中给出的信息是一个数的1/4等于3,所以这个数是3 × 4 = 12,又因为12 ÷ 3.5 = 3.428571428571429,所以答案是3.5。
三、解答题11. 解答:首先,根据题目给出的信息,可以列出方程:x + 3 = 7,解得 x = 4。
然后,根据题目要求,计算4的平方,即4 × 4 = 16。
所以答案是16。
12. 解答:首先,根据题目给出的信息,可以列出方程:2x - 5 = 9,解得 x = 7。
然后,根据题目要求,计算7的立方,即7 × 7 × 7 = 343。
所以答案是343。
13. 解答:首先,根据题目给出的信息,可以列出方程:x + 2 = 5,解得 x = 3。
人教版九年级数学上册重教材基础训练题含答案
最新人教版九年级数学上册重教材基础训练题(含答案)第 21章一元二次方程(基础训练)一、选择题(每题 4分,共 20分)1、下列方程是一元二次方程的是( )A. 02=++c bx axB. 24) 32)(12(2+=+-x x xC. 128) 4(+=+x x xD. 04232=-+y x 2、一元二次方程 012222=+-x x 的根的情况是( )A. 有两个不等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定 3、用配方法将方程 0142=--x x 变形为 m x =-2) 2(的过程中,其中 m 的值正确的是( ) A. 4B. 5 C. 6 D. 74、下列一元二次方程中两根之和等于 6的是( )A. 01562=-+x xB. 01562=++x xC. 01562=+-x xD. 01562=--x x5、参加一次聚会的每两人都握了一次手,所有人共握手 10次,设有 x 人参加聚会,则根据题意所列方程正确的是( )A. 10) 1(21=-x xB. 10) 1(21=+x x C. 10) 1(=-x x D. 10) 1(=+x x二、填空题(每题 5分,共 20分)6、将方程 38) 1)(23(-=+-x x x 化成一元二次方程的一般形式后, 其二次项系数是 ______________, 一次项系数是 ____________,常数项是 ______________。
7、如果 2是方程 02=-c x 的一个根, 那么常数 c 的值是 _______, 该方程的另一个根是 _________。
8、一元二次方程 01322=--x x 的解是______________________。
9、一个矩形的长和宽相差 3cm ,面积是 4cm 2,则这个矩形的长是 ________,宽为 _______。
三、简答题10、选择合适的方法解下列方程:(每题 5分,共 30分)(1) 0182=+-x x (2) 0742=--x x (3) 02632=--x x(4) 016102=++x x (5) 01022=++x x (6) x x x 8216812-=+-11、 (10分)证明:无论 p 取何值,方程 0) 2)(3(2=---p x x 总有两个不等的实数根。
九年级数学基础训练
九年级数学基础训练文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]九年级数学基础训练1九年级数学基础训练11.已知反比例函数y =kx的图象经过点(1,-2),则k 的值为( )A .2B .-12C .1D .-22.(2012年四川南充)矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系式用图象表示大致为( )3.(2011年山东枣庄)已知反比例函数y =1x,下列结论中不正确的是( )A .图象经过点(-1,-1)B .图象在第一、三象限C .当x >1时,0x 2,则下列关系成立的是( )A .y 1>y 2B .y 1”“<”或“=”).9.(2012年湖南湘潭)近视眼镜的度数y (单位:度)与镜片焦距x (单位:m)成反比例??即y =k x (k ≠0),已知200度近视眼镜的镜片焦距为0.5 m ,则y与x 之间的函数关系式是________.10.(2011年山东菏泽)已知一次函数y =x +2与反比例函数y =kx,其中一次函数y =x +2的图象经过点P (k,5).(1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标.11.(2012年浙江宁波)如图3-3-8,已知一次函数与反比例函数的图象交于点A (-4,-2)和B (a,4),(1)求反比例函数的解析式和点B 的坐标;(2)根据图象回答:当x 在什么范围时,一次函数的值大于反比例函数的值?图3-3-8 12.(2011年广东广州)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=kx的图象上,且sin∠BAC=35.(1)求k的值和边AC的长;(2)求点B的坐标.13.(2011年浙江杭州)如图3-3-9,函数y 1=x -1和函数y 2=2x的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( )图3-3-9A .x <-1或02C .-12 14.若点P (a,2)在一次函数y =2x +4的图象上,它关于y 轴的对称点在反比例函数y =kx的图象上,则反比例函数的解析式为________.15.(2012年湖北襄阳)如图3-3-10,直线y =k 1x +b 与双曲线y =k 2x相交于A (1,2),B (m ,-1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1k 2x的解集.图3-3-1016.(2012年甘肃兰州)如图3-3-11,点A在双曲线y=1x上,点B在双曲线y=3x上,且AB∥x轴,点C和点D在x轴上,若四边形ABCD为矩形,则矩形ABCD的面积为____________.图3-3-1117.如图3-3-12,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象相交于A,B两点.图3-3-12(1)根据图象写出A,B两点的坐标,并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值?1.D2.C3.D4.A5.B6.D7.D8.>9.y =100x10.解:(1)因为一次函数y =x +2的图象经过点 P (k,5),所以5=k +2,解得k =3. 所以反比例函数的表达式为y =3x .(2)联立方程组??y =x +2,y =3x.解得 x =1,y =3,或?x =-3,y =-1.故第三象限的交点Q 的坐标为(-3,-1). 11.解:(1)设反比例函数的解析式是y =k x ,∵点A (-4,-2)在此反比例函数图象上, ∴-2=k-4.∴k =8. ∴反比例函数的解析式为y =8x .又点B (a,4)在此反比例函数图象上, ∴4=8a ,a =2.∴点B 的坐标为(2,4).(2)观察图象,知:x >2或-41或-22或-1相关文档:更多相关文档请访问:。
九年级数学基础训练答案人教版
九年级数学基础训练答案人教版九年级人教版数学答案新人教版九年级数学上册练习册答案篇一:九年级数学基础训练答案人教版九年级数学练习册答案人教版篇二:九年级数学基础训练答案人教版{九年级数学基础训练答案人教版}.九年级数学练习册答案人教版资料来源:中国教育在线2014年练习册上册数学九年级A 人教版答案篇三:九年级数学基础训练答案人教版{九年级数学基础训练答案人教版}.人教版九年级下册数学练习册答案篇四:九年级数学基础训练答案人教版人教版九年级下册数学练习册答案一道数学题10人做9人错。
一天有个年轻人来到王老板的店里买了一件礼物这件礼物成本是18元,标价是21元。
结果是这个年轻人掏出100元要买这件礼物。
王老板当时没有零钱,用那100 元向街坊换了100元的零钱,找给年轻人79元。
但是街坊後来发现那100元是假钞,王老板无奈还了街坊100元。
现在问题是:王老板在这次交易中到底损失了多少钱?人民币直接是送出去179元(79元找给假币者,100还给街坊)还有一件礼物21元白给送了假币者总计损失200元应该是118元.就是还给街坊的100元加上礼物的成本价18元.那麼說鄰居的100塊他不用還了?不知道算出97的人是怎麼算的,數學也太差了吧找给别人的79元是从邻居的100元钱里支出的,还余下21元,所以还给邻居的时候还要再从自己的钱箱里支出79元。
所以损失的就是79+18=97元。
可以这样理解:把王老板和邻居当成合伙人就可以了。
他们只收到一张假币,损失的就是找出去的钱和礼品钱。
邻居没有损失,所以他们的损失就是王老板的损失。
我家孩子小学一年级有一道题门前走过一排鸭,四只前面有四只.四只后面有四只,四只中间有四只.请问有几只鸭?我和爱人大学毕业,我爸爸教小学多年,都没做出来.8只九年级下册数学练习册答案人教版篇五:九年级数学基础训练答案人教版{九年级数学基础训练答案人教版}.{九年级数学基础训练答案人教版}.《课程基础训练》九年级上_数学_答案人教版南方出版社篇六:九年级数学基础训练答案人教版人教版九年级上册数学练习册答案篇七:九年级数学基础训练答案人教版。
数学基础训练九上人教版答案
数学基础训练九上人教版答案简介《数学基础训练》是一套辅助学习教材,本文将为读者提供《数学基础训练》九年级上册人教版题目的答案,帮助学生更好地巩固知识点,提高学习效果。
第一单元-有理数1.(1)-8.7;2.45;3.(1)-0.3;(2)-2.1;(3)5.5;4.(1)-7;(2)5;5.73;6.60;7.1/8.第二单元-代数式1.-4;2.31;3.9;4.12;5.-2;6.n^2-10n+16;7.0.4a;8.2xy;9.3a2-4ab+3b2;10.m2+n2;11.2x2+5xy-3y2;12.16x^2-25.第三单元-方程1.n=8;2.a=9;3.x=4;4.m=10;5.n=±√2;6.x=4;7.y=-15;8.b=11;9.x=-3;10.m=-1/3.第四单元-不等式1.x>-1;2.x>8;3.x>-5;4.x<-5;5.x>-4;6.n>-2;7.x<14;8.a<-1;9.b<7;10.x>2.第五单元-数列1.15;2.9;3.380;4.35;5.m=1;6.a=4;7.x+4;8.16;9.20;10.15;11.2/3;12.55;第六单元-平面直角坐标系上的直线和圆1.(1)y=x+4;(2)y=3x-2;2.x2+y2=100;3.y=2;4.(1)y=7;(2)x=-3;5.(1)y=x-3;(2)y=2x+1;6.x=-5;7.(1)y=2;(2)y=x-1;8.x=-2;9.1;10.19;11.10;12.(1)6;(2)x-2y+5=0;13.3y=2x+3;14.(1)(2,1);(2)(-3,-1);15.(1)(-3,1);(2)(1,1);16.(-1,2);17.5;18.3/4;第七单元-园1.4π;2.50.24π;3.6π;4.78.5;5.7π;6.4;7.75;8.50;9.30;10.189.66;11.67.6.结语以上是《数学基础训练》九年级上册人教版的部分习题答案,希望能帮助学生更好地理解和掌握知识点。
九年级上册数学基础训练题
九年级上册数学基础训练题前言本文档为九年级上册数学基础训练题,旨在帮助学生巩固数学基础知识,提高数学解题能力。
以下内容包括了常见的数学基础训练题目,每题皆配有详细的解题步骤,希望能对学生有所帮助。
一、整数运算1.计算:$(-45) + (-72) = $?解:(−45)+(−72)=−1172.计算:$(-98) - 43 = $?解:(−98)−43=−1413.计算:$(-32) \times 5 = $?解:$(-32) \\times 5 = -160$4.计算:$(-75) \div 3 = $?解:$(-75) \\div 3 = -25$二、代数运算1.化简:$2x + 5y - 3x + 2y = $?解:2x+5y−3x+2y=−x+7y2.求解方程:3(x−4)=2x+5解:3(x−4)=2x+53x−12=2x+5x=17三、几何1.计算三角形的面积:已知底边长为6cm,高为8cm,求三角形的面积。
解:三角形的面积$S = \\frac{1}{2} \\times 底 \\times 高 = \\frac{1}{2} \\times 6 \\times 8 = 24 cm^2$2.计算正方体的体积:一边长为5cm的正方体的体积是多少?解:正方体的体积V=边长3=53=125cm3四、实数运算1.计算:$\sqrt{16} + \sqrt{25} = $?解:$\\sqrt{16} + \\sqrt{25} = 4 + 5 = 9$2.计算:$\frac{3}{5} + \frac{1}{3} = $?解:$\\frac{3}{5} + \\frac{1}{3} = \\frac{9}{15} + \\frac{5}{15} = \\frac{14}{15}$五、方程方程组1.求解方程组:2x+3y=85x−2y=1解:2x+3y=85x−2y=1解得$x = \\frac{17}{19}$,$y = \\frac{10}{19}$六、综合题1.小明用一个长方形围成了一块正方形的围墙,长方形的长是正方形边长的$2\\sqrt{2}$倍,宽是正方形边长的$\\sqrt{2}$倍,已知围墙的周长是56m,求围墙的面积。
数学基础训练
C 1基础训练九——选择题(10月30日) 1、16的算术平方根是( )A 、4B 、±4C 、2D 、2±2、在02)(-、22、0、9-、38、0.101001…、2π、722中,无理数的个数是( )A 、2B 、3C 、4D 、53、下列计算正确的是( )A 、532=+B 、2222=+C 、752863=+D 、942188+=+ 4、下列关于12的说法中,错误..的是( ) A .12是无理数 B .3<12<4 C .12是12的算术平方根 D .12不能再化简 5、直角三角形两边长分别是3、4,第三边是( ) A 、5B 、7C 、5或7D 、无法确定6、下列图形中,绕某个点旋转180︒后能与自身重合的有 ( ) ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A 、5个 B 、4个 C 、3个 D 、2个7、矩形具有而菱形也具有的性质是 ( ) A 、对角线互相平分 B 、对角线相等 C 、四边相等 D 、对角线互相垂直8、如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、 C ′,的位置,若∠EFB =65°,则∠AED ′等于( )A 、50︒B 、55︒C 、60︒D 、65︒9.已知菱形的周长是52cm ,较短一条对角线的长是10cm ,则这个菱形的面积是( )A .30cm 2B .60cm 2C .120cm 2D .240cm 210.在Rt △ABC 中,∠C =90º,BC =4cm ,AC =3cm .把△ABC 绕点A 顺时针旋转90º后,得到△AB 1C 1,如图所示,则点B 所走过的路径长为( ) A .52cm B . 5 4πcm C . 52πcm D .5πcmEBC 'FCD65︒D 'A基础训练八——填空计算题(10月29日)1、5-的绝对值是___________,相反数是___________,倒数是_____________。
基础训练答案人教版【九年级基础训练答案】
基础训练答案人教版【九年级基础训练答案】九年级数学上册概率基础训练答案与人教版义务教育课程标准实验教科书配套基础训练(含单元评价卷)数学九年级全一册参考答案课时练习部分参考答案第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件课前预习1.随机事件2.D3.(1)任意买一张体育彩票会中奖(2)小明今年14岁,明年15岁(3)太阳从西边升起课堂练习1.B 2.A 3.D4.(1)是不可能事件;(2)(3)(4)是随机事件;(5)是必然事件.课后训练1.A 2.D 3.随机4.D 5.D6.(1)是必然事件;(2)是不可能事件;(3)是随机事件;(4)是不可能事件.7.(1)盒中最多放2个红球;(2)盒中最多放2个黄球;(3)盒中最少放2个黄球,且最多放8个黄球;(4)盒中放9个黄球或9个红球.8.(1)红色,因为红球多;(2)不一样;(3)绿球换成白球等.9.(1)n =2;(2)n=6;(2)2<n<6(n为整数).25.1.2 概率课前预习1.D 2.D 3.概率P(A) 课堂练习1111.C 2. 4 3.C 4.没有5. 6. 0 12225课后训练121.B 2.B 3.B 4. 5.2511156. 7.(1);(2);(3);(4)0.32268.不一样,因为球的个数不同,摸到各色球的概率也不同;袋中蓝球的个数为3.25.2 用列举法求概率第1课时课前预习m1. 2.B n课堂练习1.A 2. 2 3. 20 28 32*****4.(1) (2) (3) (4) (5) (6)*****3课后训练321.B 2. 3.P3<P1<P2 4.D 5.D 6.537.(1)x=4;(2)x≥4;(3)再放入一个红球.218.(1)6种可能的结果;(2)P=63第2课时课前预习1.概率概率2.A 3.D 课堂练习111.B 2. 3.D 4.(1)绿球的个数为1;(2)P(两次都摸到红球)=.36课后训练11. 2.D 3.B10∴ P(两次取出乒乓球上的数字相同)==.935(2)P(两次取出乒乓球上的数字之积等于0)=915.(1). (2)列表如下:4共16-4=12种可能,P(小灯泡发光)=6.“树形图”如下:61=. 122(1)所有可能情况有9种.(2)P(首场比赛出场的两个队都是部队文工团)31==. 93共12种可能结果,P(点(x,y)落在第二象限)==. (2)P(点(x,y)落12321在y=x2的图象上)==.126中考链接1概率为.2第3课时课前预习311. 2.C 3. 832课堂练习11. 2.D 3.B42174.(1)P(三人都在一个餐厅用餐)==. (2)P(至少一人在B餐厅用餐)=.848课后训练1.A 2.“树形图”如下:三位数有121,122,124,131,132,134,221,222,224,231,232,234,41共12个,∴ P(三位数是3的倍数)==.1233.“树形图”如下:21∴ P(颜色各不相同)==.844.(1)“树形图”如下:所有可能结果有27种.P(三人不分胜负)=91==. 2735.“树形图”如下:91(2)P(一人胜、二人负)27321(1)经过三次传球后,P(球回到甲手中)=(2)经过四次传球后,球仍84然回到甲手中的不同传球方法共有6种.(3)猜想:当n为奇数时,P(球回到甲手中)<P(球回到乙手中)=P(球回到丙手中);当n为偶数时,P(球回到甲手中)>P(球回到乙手中)=P(球回到丙手中).25.3 用频率估计概率课前预习1.大量重复试验2.C 3.B 课堂练习1. 0.252.C3.B11,出现5点朝上的频率为(2)小颖的说103法不正确.这是因为出现5点朝上的频率最大,并不能说明出现5点朝上这一事件发生的概率最大,只有当试验的次数足够多时,该事件发生的频率才稳定在该事件发生的概率附近.小红的判断也是错误的.因为事件发生具有随机性,故如果投掷600次,出现6点朝上的次数不一定是100次.课后训练11.B 2. 600 3.A 4. 1535.(1)说法错误,虽然每次抛掷时的点数无法预测,但随着抛掷次数的增多,1出现点数为3的频率逐步稳定在,是有规律可循的.(2)该彩民的说法是错误6的,我们不能由买100注中了4注就认定中奖率为4%,只有当试验次数足够多时,其频率才接近于概率,否则不能断定.6.(1) 0.97 0.84 0.954 (2)逐步稳定在0.95 (3)优等品乒乓球的概率估计值为0.95.m1m17.能.由记录发现≈.可见P(石子落在⊙O内)≈=.n2m+n3⊙O的面积又P(石子落在⊙O内)=,⊙O的面积+阴影部分的面积S⊙O1∴ S图形ABC=3π≈9.42(平方米),S图形ABC3∴ 封闭图形ABC的面积约为9.42平方米.25.4 课题学习键盘上的字母的排列规律课前预习1.D 2.D 课堂练习23131. 2.(1) (2) (3) 3.C*****课后训练11.B 2. 0.71 3. 4.(1)正确.当大规模统计时,频率会逐渐稳3定到一个常数附近,这个常数就是概率.(2)不正确.因为他统计的数目不足够大,频率不一定接近概率.第二十五章复习课课前回顾1.A 2.B 3.D 4. 0.6 课堂练习1.“树形图”如下:4.(1)出现3点朝上的频率为3∴ P(1个男婴、2个女婴)=.82.(1)“树形图”如下:所有可能的结果有9种:AD,AE,AF,BD,BE,BF,CD,CE,CF. (2)P(M)1=. 943.(1)P(取出一个黑球)=. (2)y=3x+5.7课后训练111. 2.C 3.A 4. 5.C 466.(1)“树形图”如下:所有结果有6种,其中k为负数的有4种,42∴ P(k为负数)=6321(2)P(y=kx+b经过第二、三、四象限)=637.(1)“树形图”如下:P(两个数的积为0)=(2)不公平.P(两个数的积为奇数)=4182P(两个数的积为偶数)=*****4121312因为≠,所以,该游戏不公平.游戏规则可修改为:若这两个数的积为0,则33小亮赢;积为奇数,则小红赢.中考链接211.(1)一个.(2)P==.1262102.(1)1500;(2)315;(3)360°×=50.4°;1500(4)200×21%=42(万人).九年级化学基础训练答案九年级化学基础训练答案一,选择题(每题只有一个正确选项,每题1分)1、下列属于化学变化的()A.铁熔化成铁水B.用二氧化碳制干冰C.铁投入盐酸中D.工业制氧气2,下列物质前者是混合物,后者是纯净物的是()A.铁矿石、天然气B.铜、生铁C.铁、不锈钢D.钢、氧化铁,3、人类生活需要能量,下列能量主要由化学变化产生的是()A.电熨斗通电产生的能量B.电灯通电发出的光C.水电站利用水力产生的电能D.液化石油气燃烧放4、以下关于电解水实验的描述中正确的是()A、电解水实验证明了水是由氢气和氧气组成的一种化合物B、正极上产生的气体与负极上产生的气体的质量比是1:2C、电解水的实验可以证明原子是化学变化中的最小粒子D、在电解水的实验中,每2份水分解可以生成2份氧气和1份氢气5、()下列变化属于缓慢氧化的是()A.铁生锈B.铁丝在氧气中燃烧C.CO在高温下还原氧化铁D.铁高温下化为铁水6、有关合金的叙述:①合金中至少含两种金属②合金中的元素以化合物的形式存在③合金中一定含有金属④合金一定是混合物⑤生铁是含杂质较多的铁合金(比钢多)⑥生铁可完全溶解在稀盐酸中。
2019-2020学年九年级数学中考练习:二次函数选择题基础训练(含解析)
2019-2020中考数学二次函数基础选择题课时练班级:姓名:评价:1.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的2.已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.3.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)4.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣255.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度6.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.18.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确9.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.2410.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.12.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.413.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤14.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.515.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=016.四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁答案提示1.【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x >时,y随x值的增大而减小,选的D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而减小,选的D不正确.故选:C.2.【分析】根据一次函数图象经过的象限,即可,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>03.【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.4.【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.5.【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【解答】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象.故选:D.6.【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.7.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.8.【分析】两函数组成一个方程组,得出一个方程,求出方程中的△=﹣4+4c=0,求出即可.【解答】解:把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确;故选:A.9.【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.10.【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣1,满足条件,可得a ≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.11.【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在直线x=1的右侧得到b<0,b<﹣2a,即b+2a<0,利用抛物线与y轴交点在x轴下方得到c<0,也可判断abc>0,利用抛物线与x轴有2个交点可判断b2﹣4ac>0,利用x=1可判断a+b+c<0,利用上述结论可对各选项进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0,∴a+b+c<0.故选:C.12.【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.13.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.14.【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.15.【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B 进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.16.【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.。
(完整word版)初三数学基础训练题
练习题(一)1。
计算:()12121138121-⎪⎭⎫⎝⎛+-+++2。
16的平方根是3。
分式112+-x x 的值为零,则=x4。
等腰三角形的两边是6cm 和9cm ,则周长是5。
若直角三角形的斜边长10,那么它的重心与外心之间的距离是6.函数112++=x x y 的定义域是 ,若113)(-+=x x x f 则=)4(f 7。
相切两圆的圆心距是5cm ,其中一个圆的半径是3cm ,则另一圆的半径是8。
在一陡坡上前进40米,水平高度升高9米,则坡度=i9。
把抛物线32-=x y 向右平移2个单位后,所得抛物线顶点是10.设m 、n 是方程0122=--x x 的两个根,那么=+n m 1111。
方程38151622=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+x x x x 设y x x =+1原方程可变形关于y 的整式方程是12.如图弓形ACB 所在圆的半径是5, C 弦AB=8,则弓形的高CD 是A D B13.若正多边形的中心角是036,则这个正多边形的边数是14.分式方程01112=-+-xx x 的根是 15.分解因式=+--2221a ax x16。
数据5,-3,0,4,2的中位数是 方差是 17.不等式组 52+x ≤()23+x 的解集是21-x <3x18.已知四边形ABCD 中,AB//CD ,AB=BC 请填上一个适当的条件 使得四边形ABCD 是菱形。
19。
已知一次函数b kx y +=过点()1,1-与()4,2,则y 的值随x 的增大而 20。
两个相似三角形的周长之比是1∶9,则它们的面积之比是 21.上海市现有人口约一千七百万,用科学记数法表示是22。
在边长为2的菱形ABCD 中,045=∠B AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AB ′E,那么△AB ′E 与四边形AECD 重叠部分的面积是 23。
已知222=-x x 代简求值 24。
解方程:31066=+++x x x x ()()()()()133312--+-++-x x x x x练习题(二)1。
浙教版数学九年级上册第1章《二次函数》基础训练
浙教版九年级数学上册第 1 章《二次函数》基础训练班级 ______姓名_______一、选择题(每题 3 分,共 30 分)1 .以下关系式中,属于二次函数的是(x 为自变量)()A y 1 x2B y x2 1C y 1D y a2 x28 x22. 以下二次函数中,图象以直线x = 2为对称轴,且经过点(0 ,1) 的是( )A.y = ( x - 2) 2 + 1 B.y = ( x + 2) 2 + 1C.y = ( x - 2) 2 - 3 D .y = ( x + 2) 2 - 33. 抛物线 y x2 2x 1的极点坐标是( )A.(1,0)B.(- 1 ,0 )C.(- 2,1)D.(2,- 1)4. 抛物线y x 2 3能够由抛物线y x2, ( ) 2平移获取则以下平移过程正确的选项是A. 先向左平移 2 个单位 ,再向上平移 3 个单位B.先向左平移 2 个单位 ,再向下平移 3 个单位C. 先向右平移 2 个单位 ,再向下平移 3 个单位D. 先向右平移 2 个单位 ,再向上平移 3 个单位5. 若 A(-4, y1),B(-3,y 2), C(1,y3)为二次函数y=x 2+4 x-5的图象上的三点,则y 1, y2, y3的大小关系是()A. y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y36.由二次函数 y 2(x 3) 2 1 ,可知()A .其图象的张口向下B.其图象的对称轴为直线 x 3C.其最小值为 1 D .当 x 3 时, y 随 x 的增大而增大7. 二次函数 y x2 2x 3 的图象如下图.当y<0 时,自变量 x 的取值范围是().A .- 1 <x< 3 B.x<- 1 C.x> 3 D .x<- 1 或x> 38. 已知二次函数的图象(0 ≤x≤3) 如下图.对于该函数在所给自变量取值范围内,以下说法正确的选项是 ( )A .有最小值 0 ,有最大值 3 B.有最小值- 1,有最大值 0C.有最小值- 1 ,有最大值 3 D .有最小值- 1,无最大值第7题第8题第10题9.敏在校运会竞赛中跳出了满意一跳,函数-2(t的单位:s, h的单位:m)能够描绘他跳跃时重心高度的变化.则他跳起后到重心最高时所用的时间是()A. 0.71 s B.C. D .10.如下图的二次函数 y ax2 bx c 的图象中,刘星同学察看得出了下边四条信息:(1)2;( 2)c>1 ;( 3 ) 2 a-b <0 ;( 4)a+ b + c<0 。
人教版九年级上册数学同步练习及答案合集
21.3 二次根式的加减同步测试题 一、选择题(本题共10小题,每题3分,共30分)
1.与 2 3 是同类二次根式的是( )
A. 18
B. 2 3
2.下列运算正确的是( )
C. 9
A. x 5x 6x B. 3 2 2 2 1
D. 27
C. 2 5 2 5
D. 5 x b x (5 b) x
( 1 3 ) (3) 2
3x y 9 y 22. 解: 5x 2 6 y
3x 5x
2y 9 y8
x y
1 3
23.原式=( 5 3 )2- ( 2 )2 =5-2 15 +3-2=6-2 15 .
( 2 7 4)2 ( 2 7 4)2 22
24.解:( 菱形的边长)2= 2
2
22,面积 1 (2 7 4)(2 7 4) 6
∴菱形的边长=
2
10
人教版九年级上册数学同步练习题及答案
25. 5
26.解:原式=(2 5 +1)( 2 1 + 3 2 + 4 3 +…+ 100 99 )
12.在 8, 12, 18, 20 中,与 2 是同类二次根式的 是
。
13. 5- 5 的整数部分是_________
14.计算: 12 3 3
15.方程 2 (x-1)=x+1 的解是____________.
x 1
x1
16.已知
5 2 ,则 x 的值等于
。
17.如图,矩形内两相邻正方形的面积分别是 2 和 6,那么矩形内阴影部分的面积
是
.(结果可用根号表示)
2
6
18.图 7 是由边长为 1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从 A→B →C 所走的路程为_______m.(结果保留根号)
数学基础训练九年级全一册人教版答案
数学基础训练九年级全一册人教版答案第一单元数与代数
1.1 有理数的基本概念
1.有理数的含义和性质
–符号
–乘除法规则
2.有理数的比较和运算
–比较大小
–四则运算
3.实际问题解决
–买卖问题
–比例问题
1.2 代数式与代数方程
1.代数式的加减
2.代数方程的解法
3.实际问题解决
第二单元几何初步
2.1 直角三角形
1.直角三角形的性质
2.直角三角形的基本定理
3.直角三角形的运用
4.直角三角形的实际问题
2.2 圆
1.圆的基本概念
2.圆心角与圆周角
3.圆的面积计算
第三单元数据统计
3.1 统计与概率
1.统计的基本概念
2.统计图的绘制与解读
3.概率的计算
4.实际问题解决
3.2 算法初步
1.算法的基本概念
2.算法的四则运算应用
3.实际问题解决
第四单元数学综合应用
4.1 综合应用题
1.带入方程解题
2.运用图形知识解题
3.实际问题应用
答案解析
•第一单元答案
•第二单元答案
•第三单元答案
•第四单元答案
以上是九年级全一册人教版数学基础训练书的答案解析。
希望能对学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础训练12
1.下列计算正确的是( )
A.62322a a a =• B.4
2
29)3(a a = C.33a a a =÷ D.6
2
3)(a a -=- 2.下列运算中,正确的是
A . x 2x 3 =5x
B . x+x 2=x 3
C . 2x 3÷x 2
=x D .(2x
)3=23x
3.下列运算中,结果正确的是( ▲ )
A. 633a a a =+ B .5
32a )a (= C .842a a a =⋅ D. 532a 6)a 2(a 3-=-⋅
4.下列运算:①a 3
+a 3
=a 6
;②(﹣a 3
)2
=a 6
;③(﹣1)0
=1;④(a+b )2
=a 2
+b 2
;⑤a 3
•a 3
=a 9
;⑥(﹣ab 2
)3
=ab 6
.其中正确的有( )
A .1个
B .2个
C .3个
D .4个
5.如图,E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )
A. ∠3=∠4
B. ∠1=∠2
C. ∠B=∠DCE
D. ∠D+∠DAB=180°
6.已知,如图,AD 与BC 相交于点O ,AB∥CD,如果∠B=20°,那么∠C 为( ) A. 40° B. 30° C. 20° D. 10°
7.如图,装修工人向墙上钉木条.若∠2=110°,要使木条b 与a 平行,则∠1的度数等于( ). A .55° B .70° C .90° D .110°
8.已知三角形的两边的长分别为2和5,第三边的长为偶数,则这个三角形周长为 A.11 B.13 C.11或13 D.不确定 9.下列说法正确的是( ▲ )
(A )三角形的中线就是过顶点平分对边的直线
(B )三角形的三条角平分线的交点有可能在三角形外部 (C )三角形的三条高线的交点必在三角形内部 (D )以上说法都错
10.如果一个角的余角是15°,那么这个角的补角是 .
11.如图,直线a ∥b ,点B 在直线b 上,AB BC ⊥,若255∠=°,则1∠= 度.
2
1
A
B
C
a b
12.如图,在4×6的正方形网格,点A 、B 、C 、D 、E 、F 都在格点上,连接C 、D 、E 、F 中任意两点得b
a 2
1
)
第7题图A B
C
D
O
6
13.如图,AB ∥CD ,EF ⊥AB 于E ,EF 交CD 于F ,已知∠1=60°,则∠2= 度.
14.已知∠1=20°,∠2=30°,∠3=60°,∠4=150°,则∠2是____的余角,_____是∠4的补角.
15. 如图,一个三角板放在一块两边平行的木板上。
若︒=∠301,︒=∠432,则=∠3 。
16(1)1
012)23()32(--+-- (2)(12)-2-23×0.125 +20120 +|-1| (3)(-m )2·(m 2)2 ÷ m
3
18.在ABC ∆中,O 是ABC ∠,ACB ∠平分线的交点,BC DE //,
(1)求证:CE BD DE +=,
(2)若9=AB ,8=AC ,求ADE ∆的周长.
19.将一副三角尺按照如图的位置摆放,使得三角尺ACB 的直角顶点C 在三角尺DEF 的直角边EF 上.
(1)求∠α十∠β的度数;
(2)若∠β=32°,试问∠α的补角为多少度? βα
F
E
D
C
B
A
1
2
3
45
6
7
8
9
1
2
3
4
5
6
7
8
20.如图,填空:
(1)如果AB∥CD,那么∠1+=180°,根据是;
(2)如果∠2=,那么EF∥DG,
根据是;
(3)如果EF∥DG,那么∠3=,
根据是 .
21.如图,∠1=100°,∠2=100°,∠3=120°,求∠4的度数.填空:
∵∠1=∠2=100°(已知)
∴∥
()
∴∠=∠
()
又∵∠3=120°(已知)
∴∠4= .
22.在下列图形中,补充作图:
(1)在AD的右侧作∠DCP=∠DAB(尺规作图,不写作法,保留作图痕迹);(2)CP与AB会平行吗?为什么?
23.如图,所有小正方形的边长都为1,A、B、C都在格点上.A
B C
(1)过点C画直线AB的平行线(不写作法,下同);
(2)过点A画直线BC的垂线,并注明垂足为G;
过点A画直线AB的垂线,交BC于点H.
(3)线段的长度是点A到直线BC的距离,线段AH的长度是点到直线的距离.
(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段AG、AH的大小关系为AG AH.
24.如图,已知:∠1=120°,∠C=60°,说明AB∥CD理由。
25.如图,已知AB∥CD,∠A=100°,CB平分∠ACD,求∠3的度数.
3
2
1
D
C
B
A。