七年级上册数学基础训练答案

合集下载

2024年人教版七年级上册数学第五单元课后基础训练(含答案和概念)

2024年人教版七年级上册数学第五单元课后基础训练(含答案和概念)

2024年人教版七年级上册数学第五单元课后基础训练(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 下列各数中,最小的数是()A. |3|B. 3C. |3|D. 33. 下列各数中,有理数是()A. √1B. √2C. 3.14D. π4. 下列运算中,正确的是()A. (3)² = 9B. (3)³ = 27C. |3| = 3D. |3| = 35. 如果a<0,那么下列各数中,有最大值的是()A. a²B. aC. aD. a²6. 有理数的乘法中,下列说法正确的是()A. 两个负数相乘得正数B. 两个正数相乘得负数C. 两个负数相乘得负数D. 两个正数相乘得正数7. 计算下列各式的结果:(2)×(3)×(4)=()A. 24B. 24C. 12D. 128. 下列各数中,是无理数的是()A. 1.414B. √9C. √2D. 2.59. 下列各数中,|3|与3的大小关系是()A. |3| > 3B. |3| < 3C. |3| = 3D. 无法比较10. 如果a<0,那么下列各数中,最小的是()A. a²B. aC. aD. a²二、判断题:1. 互为相反数的两个数的和为0。

()2. 互为倒数的两个数的乘积为1。

()3. 两个正数相乘一定得正数。

()4. 两个负数相加一定得负数。

()5. 0乘以任何数都等于0。

()6. 任何数乘以1都等于它本身。

()7. 任何数乘以1都等于它的相反数。

()8. 如果a<b,那么a>b。

()9. 两个负数相除一定得正数。

()10. 两个正数相除一定得正数。

()三、计算题:1. 计算:(3)+ 5 (2)+ 72. 计算:4 × 9 ÷ (2)3. 计算:(3)² 5 × (2)+ 14. 计算:|8| ÷ (4)+ 3²5. 计算:(5)×(6)÷ (3)6. 计算:4² (3)³ + 27. 计算:(2)×(3)×(4)8. 计算:5 + 15 ÷ (3)9. 计算:|7| 6² ÷ 310. 计算:(4)+ 8 ÷ (2) 111. 计算:3 × (2)² 512. 计算:2 × (3)× 413. 计算:|5| + 7 ÷ (1)14. 计算:3 × 6 ÷ (3)15. 计算:(2)× 5 + 8 ÷ 416. 计算:4 + 9 ÷ 3 × (2)17. 计算:(3)×(4)+ 7 ÷ (1)18. 计算:5 × (2)+ 6 ÷ 219. 计算:8 ÷ 4 × (2)+ 320. 计算:(5)× 2 4²四、应用题:1. 小明有5个苹果,他给了小红3个,然后又从妈妈那里得到了4个,现在小明有多少个苹果?2. 一本书的价格是48元,小华用去了他零花钱的一半还剩下24元,小华原来有多少元零花钱?3. 一个长方形的长是8厘米,宽是6厘米,求这个长方形的面积。

人教版数学七年级上册《近似数》基础训练(有答案)

人教版数学七年级上册《近似数》基础训练(有答案)

课时4近似数知识点1(近似数的定义)1.[2017·河南郑州五十七中月考]下列叙述中的各数,属于近似数的是()A.某本书的定价是12元B.教室里有4块黑板C.林林一步约0.4米D.树上有3只小鸟2.[2018·湖北宜昌中考]5月18日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354B.40000C.50000D.1200知识点2(近似数的精确度)3.把309740四舍五入,使其精确到千位,那么所得的近似数是()A.3.10×l05B.3.10×l04C.3.10×103D.3.09×l054.A地到S地的路程约为13.7万公里.近似数13.7万是精确到()A.十分位B.十万位C.万位D.千位5.按要求对0.05019分别取近似数,下面结果错误的是()A.0.1(精确到0.1)B.0.05(精确到0.001)C.0.050(精确到0.001)D.0.0502(精确到0.0001)6.下列用四舍五入法得到的近似数,说法不正确的是()A.2.40万精确到百分位B.0.03086精确到十万分位C.48.3精确到十分位D.6.5×l04精确到千位7.下列说法正确的是()A.近似数6与6.0表示的意义相同B.4.320万精确到千分位C.小华身高1.7米是一个准确数D.将7.996精确到百分位得近似数8.008.用四舍五入法,按要求对下列各数取近似值:(1)38063(精确到千位);(2)0.4030(精确到百分位);(3)0.02866(精确到0.0001);(4)3.5486(精确到十分位).9.甲、乙两同学的身高都为1.7×102cm,但甲说自己比乙高9cm,你觉得有可能吗?请说明理由.10.[2017·江苏苏州期中]某工厂小张师傅接受了加工两根轴的任务,他很快地完成了任务,当他把轴交给质检员验收时,质检员说:“不合格,作废!”小张不服气地说:“图纸上要求的是2.60m,而我做的轴,一根是2.56m,另一根是2.62m,怎么不合格了?”请你说一说,是小张师傅做的轴不合格,还是质检员故意刁难?为什么?11.下面是管理员与参观者在博物馆里的一段对话.管理员:小姐,这个化石有800002年了.参观者:你怎么知道这么精确?管理员:两年前,有个考古学家参观过这里,他说这个化石有80万年了.现在,两年过去了,所以是800002年.管理员的推断正确吗?为什么?参考答案1.C【解析】测量得到的数一般都是近似数.故选C.2.A【解析】27354为准确数,4000,50000,1200都是近似数.故选A.3.A【解析】309740=3.0974×105≈3.10×105.故选A.4.D【解析】因为13.7万=13.7×10000=137000,所以近似数13.7万是精确到千位.故选D.5.B【解析】选项A,对0.05019精确到0.1,结果是0.1,所以A正确;选项B,对0.05019精确到0.001,结果是0.050,所以B错误,C正确;选项D,对0.05019精确到0.0001,结果是0.0502,所以D正确.故选B.6.A【解析】选项A,因为2.40万=24000,所以2.40万精确到百位,所以A错误.故选A.7.D【解析】选项A,近似数6与6.0的精确度不一样,表示的意义不同,所以A 错误;选项B,4.320万精确到十位,所以B错误;选项C,小华身高1.7米是一个近似数,所以C错误;选项D,将7.996精确到百分位得近似数8.00,所以D正确,故选D.8.【解析】(1)38063≈3.8×104.(2)0.4030≈0.40.(3)0.02866≈0.0287.(4)3.5486≈3.5.9.【解析】有可能.理由如下:因为1.7×102cm精确到十位,所以当甲的身高为1.74×102cm,乙的身高为1.65×102cm时,满足甲比乙高9cm.10.【解析】小张师傅做的轴不合格.理由如下:因为近似数2.60的精确数x应满足2.595≤x<2.605,而小张师傅做的一根轴长2.56m,小于2.595m,所以不合格;另一根轴长2.62m,大于2.605m,所以也不合格.11.【解析】不正确.理由如下:因为80万是一个近似数,它精确到万位.由此,可知这个化石距今的时间可能在79.5万年与80.5万年之间,而已过去的2年对于这个近似数来说完全可以忽略不计,所以管理员的推断不正确.《近似数》知识点解读知识讲解:准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等.近似数是与实际非常接近的数,但与实际数还有差别.如我国有12亿人口,地球半径为6.37×106m等.相关概念:有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。

2024年数学七年级上册对数基础练习题(含答案)

2024年数学七年级上册对数基础练习题(含答案)

2024年数学七年级上册对数基础练习题(含答案)试题部分一、选择题:1. 下列哪个数是2的对数?()A. 1B. 2C. 4D. 0.52. 如果3^x = 27,那么x的值是多少?()A. 2B. 3C. 4D. 53. 已知log₂x = 3,那么x的值是()A. 6B. 8C. 9D. 274. 下列哪个式子是对数式?()A. 2^3 = 8B. 3^x = 9D. 5 × 5 = 255. 计算log₃(3^4)的值是多少?()A. 12B. 16C. 4D. 36. 下列哪个对数式是错误的?()A. log₄16 = 2B. log₂32 = 5C. log₁₀100 = 2D. log₃9 = 27. 已知log₅x = 2,那么x等于多少?()A. 25B. 15C. 10D. 58. 如果log₂x = 4,那么2^x等于多少?()A. 16B. 64C. 128D. 2569. 下列哪个对数式成立?()A. log₃27 = 3C. log₅25 = 2D. log₁₀1000 = 310. 计算log₂(1/8)的值是多少?()A. 3B. 2C. 1D. 0二、判断题:1. 对数函数是单调递增的。

()2. log₂1 = 0。

()3. log₅125 = 3。

()4. 对数式log₂x = 3和2^3 = x是等价的。

()5. 任何正数都有对数。

()6. log₁₀10 = 1。

()7. log₃(1/27) = 3。

()8. 对数函数的定义域是全体实数。

()9. log₂0 = 0。

()10. log₅1 = 0。

()三、计算题:1. 已知log₂x = 5,求x的值。

2. 如果log₃(3x 2) = 2,求x的值。

3. 计算log₁₀100的值。

4. 已知log₄16 = x,求x的值。

5. 如果3^(2x 1) = 27,求x的值。

6. 计算log₂(1/32)的值。

2024年数学七年级上册代数基础练习题(含答案)

2024年数学七年级上册代数基础练习题(含答案)

2024年数学七年级上册代数基础练习题(含答案)试题部分一、选择题:1. 下列哪个数是最小的正整数?A. 1B. 0C. 1D. 22. 若a=3,b=2,则a+b的值为?A. 5B. 5C. 1D. 13. 计算下列各式的结果:(3)×(2)=?A. 6B. 6C. 9D. 94. 下列哪个选项表示3x的系数?A. 3B. xC. 6D. 95. 已知等式3x5=14,求解x的值为?A. 7B. 6C. 5D. 46. 下列哪个选项是单项式?A. 2x+3B. 3x²C. x+yD. 2x²+3x+17. 计算下列各式的结果:4x2x=?A. 2xB. 6xC. 8xD. 2x8. 下列哪个选项表示同类项?A. 2x和3yB. 4x²和5x²C. 6x和6x²D. 7x和7y9. 已知等式5x+3=2x+12,求解x的值为?A. 1.5B. 2C. 3D. 410. 下列哪个选项是多项式?A. 2x+3B. 3x²C. x+y+zD. 2x²+3x+1二、判断题:1. 任何两个负数相乘的结果都是正数。

()2. 单项式是只包含数字和字母的代数式。

()3. 系数是指单项式中字母的个数。

()4. 等式两边同时乘以同一个数,等式仍然成立。

()5. 同类项是指字母相同且指数相同的项。

()三、计算题:1. 计算:(3/4) (2/3) + (5/6)。

2. 计算:2^3 × 3^2 ÷ 2^2。

3. 计算:(5/8) ÷ (3/4)。

4. 计算:4.5 × 1.2 3.6。

5. 计算:(7/9) + (2/3) (4/9)。

6. 计算:3 × (2/5) + 4 × (1/5)。

7. 计算:2^5 ÷ 2^3。

8. 计算:(4/7) × (5/8)。

【教师卷】怀化市七年级数学上册第一章《有理数》基础练习(含答案)

【教师卷】怀化市七年级数学上册第一章《有理数》基础练习(含答案)

1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C【分析】 根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个A解析:A【分析】 根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误;()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 3.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C 解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.下列各式中,不相等的是( )A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53|B解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.5.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1B .2C .0D .-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 6.已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 7.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是( )A .7.26×1010B .7.26×1011C .72.6x109D .726×108A 解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】726亿=7.26×1010.故选A .【点睛】本题考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.8.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.9.若21(3)0a b -++=,则b a -=( ) A .-412B .-212C .-4D .1C解析:C 【解析】【分析】 根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.10.如果|a|=-a,下列成立的是()A.-a一定是非负数B.-a一定是负数C.|a|一定是正数D.|a|不能是0A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.11.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.12.下列结论错误的是( )A.若a,b异号,则a·b<0,ab<0B.若a,b同号,则a·b>0,ab>0C.ab-=ab-=-abD.ab--=-abD解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.13.下列四个式子,正确的是()①33.834⎛⎫->-+⎪⎝⎭;②3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+⎪⎝⎭.A.③④B.①C.①②D.②③D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.14.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.15.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】-=(℃);11月4日的温差为19415--=(℃);11月5日的温差为12(3)15-=(℃);11月6日的温差为20416-=(℃).11月7日的温差为19514所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.1.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.4.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.5.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.6.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式(12)(34)(20192020)11111010 =-+-++-=-----=-.故答案为:1010-.【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.7.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.8.点A 表示数轴上的一个点,将点A 向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A 到原点的距离为______.2【分析】设点A 表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x 依题意可得:x+10-8=0解得:x=-2则点A 到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A 表示的数为x ,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A 表示的数是x ,依题意可得:x+10-8=0,解得:x=-2,则点A 到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减. 9.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 10.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b,a 的形式,则4a b -的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3a b=-3,解得b=-3.a=3,然后代入4a b -进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b、a 的形式 ∴0b ≠,∴a b +=0, ∴3a 3b=-, ∴b =3-,a =3, ∴4a b -=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b =-3是解答本题的关键.11.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键. 1.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.2.计算:(﹣1)2014+15×(﹣5)+8 解析:8【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.3.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.4.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.。

七年级上册数学基础训练答案

七年级上册数学基础训练答案

选择题1、两个互为相反数的有理数相乘,积为()A、正数B、负数C、零D、负数或零考点:有理数的乘法。

分析:1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同零相乘,都得0.2、两个互为相反数的数有两种情况,一正一负或都为0.解答:解:∵正数的相反数为负数,负数的相反数为正数,根据异号两数相乘得负,∴积为负.又∵0的相反数是0,∴积为0.故选D点评:本题考查了有理数的乘法法则.注意互为相反数的数有两种情况.2、绝对值不大于4的整数的积是()A、16B、0C、576D、﹣1考点:有理数的乘法;绝对值。

专题:计算题。

分析:先找出绝对值不大于4的整数,再求它们的乘积.解答:解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4.,所以它们的乘积为0.故选B.点评:绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.3、五个有理数的积为负数,则五个数中负数的个数是()A、1B、3C、5D、1或3或5考点:有理数的乘法。

分析:多个有理数相乘的法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.解答:解:五个有理数的积为负数,负数的个数是奇数个,则五个数中负数的个数是1、3、5.故选D.点评:本题考查了有理数的乘法法则.4、现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当x<0时,|x|=﹣x;④当|x|=﹣x时,x<0.其中正确的说法是()A、②③B、③④C、②③④D、①②③④考点:有理数的乘法;绝对值。

分析:根据0乘以任意数都得0和0的绝对值还是0知,①④错误.解答:解:①几个有理数相乘,只要有一个因数为0,不管负因数有奇数个还是偶数个,积都为0,而不会是负数,错误;②正确;③正确;④当|x|=﹣x时,x≤0,错误.故选A.点评:本题主要考查了绝对值的定义及有理数的乘法法则.有理数这一部分应该时时刻刻考虑到一个特别的数字0.5、某校期末统一考试中,A班满分人数占2%,B班满分人数占4%,那么满分人数()A、A班多于B班B、A班与B班一样多C、A班少于B班D、不能比较考点:有理数的乘法。

人教版七年级数学上第一章有理数基础训练测试(附参考答案)

人教版七年级数学上第一章有理数基础训练测试(附参考答案)

第一章有理数基础训练测试姓名: 卷面分:(100分) 得分:一选择题:(每小题3分,共36分)1、 的相反数是 ( ) A 2 B -2 C D -2、下列各组数中,不是互为相反意义的量是( ) A 收入200元与支出400元。

B 向东10米和向北7米C 超过0.06与不足0.07D 水位上升3米与水位下降9米3、在1,2,-1,-2四个数中,最大的一个数是( )A 1B 2C -1D -2 4、在 ,-(-2),3--,2)3(-, -12中,负数共有( ) A 2个 B 3个 C 4个 D 5个 5、下列算式中,积为负数的是( )A (-3)×0B -4×0.5×(-10)C -1.5×(-5)D 2)4(-×(-2) 6下列各组中,相等的是( )A -1与(-2)+(-1)B 3--与+(-3)C 与D (-3)2与-97一个数的它的倒数相等,则这个数是( )A 1B -1C ±1D ±1和08、下面说法正确的有( )①π的相反数是-3.14;②符号相反的数是互为相反数;③-(-3)的相反数是3;④一个数和它的相反数不可能相等;⑤正数和负数互为相反数。

21 432169212121A 0个B 1 个C 2个D 3个9、有理数a、b在数轴上的对应位置如图所示:( )A a+b<0B a+b>0C a-b>0D a-b=010、表示的意义 ( ) A 3个-5相乘的积 B -5乘以3C 5个-3相乘的积D 3个-5相加11、我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65 000用科学记数法表示为( )A 6.5×10-4B 6.5×104C -6.5×104D 65×10412、1米长的小棒,第1次截止一半,第2次截止剩下的一半,如此下去,第6次后剩下的小棒长为( ) A B C D二填空题:(每小题3分,共18分)13、 -5的倒数是 ,-2的绝对值是 。

七年级上册数学基础训练试卷

七年级上册数学基础训练试卷

七年级上册数学基础训练试卷一、选择题1.下列数中,是整数的是()。

A. √16B. 2/3C. -5.1D. 2.5答案:A(因为√16=4,是整数)2.如果一个数的平方是25,那么这个数可能是()。

A. 5B. -5C. 5或-5D. 0答案:C(因为5²=25,(-5)²=25)3.下列代数式中,是单项式的是()。

A. 3x + 4yB. 2a²bC. 5x² + 2xy - 3y²D. 3a² + 2a - 5答案:B(单项式是只含有一个项的代数式)4.下列函数中,是反比例函数的是()。

A. y = 2x + 3B. y = 3/xC. y = x²D. y = 5答案:B(反比例函数的一般形式为y=k/x,其中k为常数)5.下列图形中,是轴对称图形的是()。

A. 正方形B. 长方形(非特殊情况下,如非正方形长方形)C. 等腰三角形D. 以上都是答案:D(正方形、长方形(特殊情况下如正方形)、等腰三角形都是轴对称图形)6.五个有理数的积为负数,则五个数中负数的个数是()。

A. 1B. 3C. 5D. 1或3或5答案:D(几个不等于0的数相乘,积的符号由负因数的个数决定,负因数有奇数个时,积为负)7.下列数据中,中位数是5的是()。

A. 1,2,3,4,5,6B. 2,3,4,5,6,7C. 3,4,5,6,7,8D. 4,5,6,7,8,9答案:A(中位数是将一组数据从小到大排序后,位于中间位置的数)二、填空题8.2的平方根是____,3的立方根是____。

答案:±√2;∛3(注意平方根有两个解,一个正数和一个负数,而立方根只有一个实数解)9.如果a = 5,那么a² + a - 2的值是____。

答案:28(将a=5代入公式计算得:5²+5-2=25+5-2=28)10.在直角坐标系中,点A(1,-2)和点B(-3,4)之间的距离是____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择题1、两个互为相反数的有理数相乘,积为()A、正数B、负数C、零D、负数或零考点:有理数的乘法。

分析:1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同零相乘,都得0.2、两个互为相反数的数有两种情况,一正一负或都为0.解答:解:∵正数的相反数为负数,负数的相反数为正数,根据异号两数相乘得负,∴积为负.又∵0的相反数是0,∴积为0.故选D点评:本题考查了有理数的乘法法则.注意互为相反数的数有两种情况.2、绝对值不大于4的整数的积是()A、16B、0C、576D、﹣1考点:有理数的乘法;绝对值。

专题:计算题。

分析:先找出绝对值不大于4的整数,再求它们的乘积.解答:解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4.,所以它们的乘积为0.故选B.点评:绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.3、五个有理数的积为负数,则五个数中负数的个数是()A、1B、3C、5D、1或3或5考点:有理数的乘法。

分析:多个有理数相乘的法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.解答:解:五个有理数的积为负数,负数的个数是奇数个,则五个数中负数的个数是1、3、5.故选D.点评:本题考查了有理数的乘法法则.4、现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当x<0时,|x|=﹣x;④当|x|=﹣x时,x<0.其中正确的说法是()A、②③B、③④C、②③④D、①②③④考点:有理数的乘法;绝对值。

分析:根据0乘以任意数都得0和0的绝对值还是0知,①④错误.解答:解:①几个有理数相乘,只要有一个因数为0,不管负因数有奇数个还是偶数个,积都为0,而不会是负数,错误;②正确;③正确;④当|x|=﹣x时,x≤0,错误.故选A.点评:本题主要考查了绝对值的定义及有理数的乘法法则.有理数这一部分应该时时刻刻考虑到一个特别的数字0.5、某校期末统一考试中,A班满分人数占2%,B班满分人数占4%,那么满分人数()A、A班多于B班B、A班与B班一样多C、A班少于B班D、不能比较考点:有理数的乘法。

分析:因为缺少A班,B班的总人数,所以无法判断.解答:解:因为A班,B班的总人数不确定,所以A班,B班的满分人数也无法比较.故选D.点评:利用百分比比较多少时,要有总数,当总数不确定时无法比较大小.6、5个非零实数相乘,结果为负.则负因数的个数为()A、1个B、3个C、5个D、1个或3个或5个考点:有理数的乘法。

分析:几个不为0的有理数相乘,积的符号取决于负因数的个数:当负因数的个数是奇数时,则积的符号是负号;当负因数的个数是偶数时,积的符号是正号.解答:解:5个非零实数相乘,结果为负.则负因数的个数为奇数个,即1个或3个或5个.故选D.点评:此题考查了有理数的乘法法则.填空题7、﹣4×125×(﹣25)×(﹣8)= ﹣100000 .考点:有理数的乘法。

分析:运用乘法法则,先确定符号为负,再把绝对值相乘.解答:解:﹣4×125×(﹣25)×(﹣8)=﹣(4×125×25×8)=﹣100000.点评:不为零的有理数相乘的法则:两数相乘,同号得正,异号得负,并把绝对值相乘.8、商场在促销活动中,将标价为200元的商品,在打八折的基础上再打八折销售,则该商品的售价是128 元.考点:有理数的乘法。

专题:应用题。

分析:商场在促销活动中,在打八折的基础上再打八折销售,则该商品的售价=标价× × .解答:解:200× × =128元.则该商品的售价是128元.点评:解答此题的关键是理解八折就是原来的,再打八折就是打八折以后的.9、比﹣3大,但不大于2的所有整数的和为0 ,积为0 .考点:有理数的乘法;有理数大小比较;有理数的加法。

分析:根据题意画出数轴便可直接解答.解答:解:根据数轴的特点可知:比﹣3大,但不大于2的所有整数为:﹣2,﹣1,0,1,2.故其和为:(﹣2)+(﹣1)+0+1+2=0,积为:(﹣2)×(﹣1)×0×1×2=0.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10、科学家最新研究表明,吸烟会导致人的寿命减少,按天计算,平均每天吸一包烟可以导致寿命减少2小时20分,如果一个人一个月有n天每天吸一包烟,则这个月他的寿命减少了天.考点:有理数的乘法。

专题:应用题。

分析:把2小时20分除以24化成以天为单位,再乘以n即可.解答:解:2小时20分=2 小时= = 天,∴这个月他的寿命减少了天.点评:本题把2小时20分化成天是解题的关键,要注意一天是24小时.11、已知四个数:2,﹣3,﹣4,5,任取其中两个数相乘,所得积的最大值是12 .考点:有理数的乘法。

分析:由于有两个负数和两个正数,故任取其中两个数相乘,最大的数为正数,且这两个数同号.故任取其中两个数相乘,最大的数=﹣3×(﹣4)=12.解答:解:2,﹣3,﹣4,5,这四个数中任取其中两个数相乘,所得积的最大值=﹣3×(﹣4)=12.故本题答案为12.点评:几个不等于零的数相乘,积的符号由负因数的个数决定:当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正.选择题1、(2010•菏泽)负实数a的倒数是()A、﹣aB、C、﹣D、a考点:倒数。

分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数可知.解答:解:根据倒数的定义可知,负实数a的倒数是.故选B.点评:本题主要考查了倒数的定义.2、如果m是有理数,下列命题正确的是()①|m|是正数;②|m|是非负数;③|m|≥m;④m的倒数是.A、①和②B、②和④C、②和③D、②、③和④考点:倒数;绝对值。

分析:根据绝对值的性质及倒数的概念对各选项进行逐一分析即可.解答:解:①错误,m=0时不成立;②正确,符合绝对值的意义;③正确,符合绝对值的意义;④错误,m=0时不成立.故选C.点评:此题比较简单,解答此题的关键是熟知绝对值及倒数的概念.绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.倒数的概念:如果两个数的积为1,那么这两个数叫互为倒数.3、﹣的负倒数是()A、﹣B、2001C、﹣2001D、考点:倒数。

分析:将﹣与四个选项中的每一个数相乘,如果积是﹣1,根据负倒数的定义可知,这个数即是﹣的负倒数.解答:解:A、﹣×(﹣)= ≠﹣1,选项错误;B、﹣×2001=﹣1,选项正确;C、﹣×(﹣2001)=1≠﹣1,选项错误;D、﹣× =﹣≠﹣1,选项错误.故选B.点评:主要考查了负倒数的定义:若两个数的乘积是﹣1,我们就称这两个数互为负倒数.此概念在初中数学中没有正式出现,所以要求理解即可.4、两个互为相反数的有理数相乘,积为()A、正数B、负数C、零D、负数或零考点:有理数的乘法。

分析:1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同零相乘,都得0.2、两个互为相反数的数有两种情况,一正一负或都为0.解答:解:∵正数的相反数为负数,负数的相反数为正数,根据异号两数相乘得负,∴积为负.又∵0的相反数是0,∴积为0.故选D点评:本题考查了有理数的乘法法则.注意互为相反数的数有两种情况.5、绝对值不大于4的整数的积是()A、16B、0C、576D、﹣1考点:有理数的乘法;绝对值。

专题:计算题。

分析:先找出绝对值不大于4的整数,再求它们的乘积.解答:解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4.,所以它们的乘积为0.故选B.点评:绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.6、五个有理数的积为负数,则五个数中负数的个数是()A、1B、3C、5D、1或3或5考点:有理数的乘法。

分析:多个有理数相乘的法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.解答:解:五个有理数的积为负数,负数的个数是奇数个,则五个数中负数的个数是1、3、5.故选D.点评:本题考查了有理数的乘法法则.7、现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当x<0时,|x|=﹣x;④当|x|=﹣x时,x<0.其中正确的说法是()A、②③B、③④C、②③④D、①②③④考点:有理数的乘法;绝对值。

分析:根据0乘以任意数都得0和0的绝对值还是0知,①④错误.解答:解:①几个有理数相乘,只要有一个因数为0,不管负因数有奇数个还是偶数个,积都为0,而不会是负数,错误;②正确;③正确;④当|x|=﹣x时,x≤0,错误.故选A.点评:本题主要考查了绝对值的定义及有理数的乘法法则.有理数这一部分应该时时刻刻考虑到一个特别的数字0.8、某校期末统一考试中,A班满分人数占2%,B班满分人数占4%,那么满分人数()A、A班多于B班B、A班与B班一样多C、A班少于B班D、不能比较考点:有理数的乘法。

分析:因为缺少A班,B班的总人数,所以无法判断.解答:解:因为A班,B班的总人数不确定,所以A班,B班的满分人数也无法比较.故选D.点评:利用百分比比较多少时,要有总数,当总数不确定时无法比较大小.9、5个非零实数相乘,结果为负.则负因数的个数为()A、1个B、3个C、5个D、1个或3个或5个考点:有理数的乘法。

分析:几个不为0的有理数相乘,积的符号取决于负因数的个数:当负因数的个数是奇数时,则积的符号是负号;当负因数的个数是偶数时,积的符号是正号.解答:解:5个非零实数相乘,结果为负.则负因数的个数为奇数个,即1个或3个或5个.故选D.点评:此题考查了有理数的乘法法则.10、下列说法中错误的是()A、零不能做除数B、零没有倒数C、零没有相反数D、零除以任何非零数都得零考点:有理数的除法;相反数;倒数。

分析:根据除法的意义及法则,倒数、相反数的意义作答.解答:解:A、0不能做除数,0作除数无意义,正确;B、0没有倒数,正确;C、0有相反数,0的相反数是0,错误;D、零除以任何非零数都得零,正确.故选C.点评:本题考查关于0的运算的知识点为:0不能做除数;0没有倒数;0的相反数是0;零除以任何非零数都得零,需要熟记.11、若ab<0,则的值()A、是正数B、是负数C、是非正数D、是非负数考点:有理数的除法。

相关文档
最新文档