555定时器的原理及三种应用电路讲解学习

合集下载

555定时器的原理及三种应用电路

555定时器的原理及三种应用电路

试验十 555定时器的原理及三种应用实验内容1.连接施密特触发器电路,分别输入正弦波、锯齿波信号,观察并记录输入输出波形。

电路如下图:输入正弦波时的波形:输入三角波时的波形:2.设计一个驱动发光二级管的定时器电路,要求每接收到负脉冲时,发光管持续点亮二秒后熄灭。

由电路要求知要用单稳态触发器电路,脉冲宽度为Tw=1.1RC,选取R=2KΩ,C=1.1μF,电路如下所示:波形图如下:3.连接多放谐振荡电路电路,取R1=1KΩ,R2=10KΩ,C1=0.1μF,C2=0.2μF观察、记录VCr、Vo的同步波形,测出Vo的周期并与估算值进行比较。

改变参数R1=15KΩ,R2=5KΩ,C1=0.033μF,C2=0.1μF用示波器观察并测量输出波形的频率。

与理论值比较,算出频率的相对误差值。

电路如图所示:R1=1KΩ,R2=10KΩ,C1=0.1μF,C2=0.2μF时的波形图:实验模拟结果:Vo周期To=1.5ms,VCr周期Tc=1.5ms,F=1/T=0.67KHz 理论计算值为:T=0.7*(R1+2R2)*C1=1.47ms,频率f=1/T=0.68KHz频率的相对误差为:ІF-fІ/f=1.47%R1=15KΩ,R2=5KΩ,C1=0.033μF,C2=0.1μF时的波形图:实验模拟结果:Vo周期To=0.6ms期Tc=0.6ms,频率F=1/T=1.67KHz理论计算值为:T=0.7*(R1+2R2)*C1=0.5775频率f=1/T=1.73KHz频率的相对误差为:ІF-fІ/f=3.47%4.用NE556时基电路功能实现救护车警铃电路,用555的两个时基电路构成低频对高频调制的救护车警铃电路。

555定时器应用电路的设计与调试

555定时器应用电路的设计与调试

555定时器应用电路的设计与调试1.555定时器的原理概述2.555定时器的基本工作原理555定时器的基本工作原理是通过外部RC电路产生的时间常数来控制输出的时间周期。

具体来说,当电源正常通电后,555定时器的电源引脚将被高电平激活,通过内部比较器将电压与阀值进行比较,并将结果传递给RS触发器。

RS触发器的输出信号会控制放电开关,根据输入信号的变化来控制电容的放电与充电,从而实现定时和脉冲控制功能。

3.555定时器的应用电路设计(1)单稳态触发器电路单稳态触发器电路常用于产生固定宽度的脉冲信号。

通过一个电容和一个电阻连接到555定时器的触发脚,当电源通电或接收到外部触发脉冲信号时,555定时器会产生一个固定宽度的脉冲信号输出。

(2)Astable多谐振荡器电路Astable多谐振荡器电路常用于产生固定频率和变量占空比的方波信号。

通过一个电容和两个电阻连接到555定时器的控制脚与放电脚,当电源通电后,555定时器会自动产生方波信号输出。

4.实验步骤与调试方法(1)准备实验所需材料,包括555定时器芯片、电容、电阻、开关和示波器等。

(2)按照设计电路图连接实验电路,注意正确连接每个元件的引脚。

(3)接通电源,通过示波器观察输出信号,并根据需要调整电容和电阻的数值以达到所需的定时和脉冲控制效果。

(4)通过实验数据和示波器观察结果,对实验电路进行调试和优化,直至达到预期的结果。

5.实验注意事项(1)实验时要注意正确连接元件的引脚,避免引脚连接错误导致电路无法正常工作。

(2)实验中可以选择合适的电阻和电容数值以达到所需的定时和脉冲控制效果。

(3)在实验过程中可以适当添加一些调试电路,如LED灯、蜂鸣器等,以便更直观地观察电路的工作情况和调试结果。

6.本文总结本文对555定时器应用电路进行了设计与调试的详细解析,介绍了555定时器的基本工作原理和应用电路设计,以及相关的实验步骤和调试方法。

通过合理的设计和调试,可以实现各种定时和脉冲控制功能,满足不同场合的需求。

555原理及应用

555原理及应用

555原理及应用555定时器是一种常用的集成电路,常用于模拟电路中的定时控制和多谐振荡器等电路中。

它由几个电阻和电容以及一些晶体管组成,提供了可调的方波输出信号。

555定时器内含有两个比较器(比较器A和比较器B),一个RS触发器和一个电压比较器,还有一个控制电源。

通过外接电阻和电容调整,可以实现不同的定时周期。

下面将对555定时器的工作原理和应用进行详细介绍。

555定时器的工作原理:555定时器的工作原理基于RS触发器的工作原理。

正常情况下,RS触发器的输出Q和Q’分别为低电平和高电平。

但当触发端(TRIG)的电压低于2/3 Vcc时,比较器A的输出变为高电平,RS触发器的输出Q翻转为高电平,使比较器B的输出变为低电平,保持触发状态。

同样地,当复位端(RST)的电压低于1/3 Vcc时,比较器B的输出变为高电平,RS触发器的输出Q翻转为低电平,使比较器A的输出保持低电平,保持复位状态。

当触发端(TRIG)为低电平时或者复位端(RST)为高电平时,RS触发器的输出保持不变,无论输入电平对它的影响。

当触发端(TRIG)的电压大于2/3 Vcc时,RS触发器的输出翻转为低电平,比较器B的输出翻转为高电平,开始计时。

当电容C充电到3/2 Vcc时,比较器A的输出变为高电平,RS触发器的输出翻转为高电平,计时结束。

555定时器的应用:1.单稳态多定时器:555定时器可以通过改变电容和电阻的值来实现不同的时间延迟,因此常用于单稳态多定时器电路中。

单稳态多定时器电路可以在输入定义的脉冲开始时生成一个可调的固定时间延迟脉冲。

2.方波产生器:通过将555定时器连接为多谐振荡器可以产生方波输出。

通过调整电容和电阻的值可以调节方波的频率。

3.PWM发生器:通过改变电荷和放电时间可以实现脉宽调制(PWM),用于控制电机的速度或实现亮度调节。

4.简单闪烁灯:通过连接灯泡到555定时器输出引脚,可以实现简单的闪烁灯电路,使灯泡交替闪烁。

555芯片定时电路

555芯片定时电路

555芯片定时电路555芯片是一种广泛应用于定时电路的集成电路。

它具有可调节的稳定多谐振荡器和一个比较器,可以根据输入信号的频率和幅度来生成输出波形。

本文将介绍555芯片的工作原理、应用场景以及调节定时电路的方法。

一、555芯片的工作原理555芯片由电压比较器、RS触发器、RS锁存器、发生器和输出级组成。

当电源电压施加到芯片上时,发生器开始工作,产生一个方波信号。

根据输入引脚上的不同电平,比较器会判断方波信号的高低电平,从而改变输出引脚的电平状态。

通过调节外部电阻和电容,可以改变方波信号的频率和占空比,实现定时电路的功能。

二、555芯片的应用场景1. 脉冲发生器:555芯片可以产生各种各样的脉冲信号,如方波、正弦波、三角波等。

这些脉冲信号在实际应用中被广泛用于时钟信号、定时器、频率计等领域。

2. 延时器:通过调节外部电阻和电容,可以实现不同的延时功能。

这在需要控制设备启动或停止时间的场景中非常有用,如定时灯、定时开关等。

3. 调制解调器:555芯片可以实现调制解调器的功能,将模拟信号转换为数字信号,实现信息的传输和接收。

4. 脉冲宽度调制:通过调节电阻和电容的数值,可以改变输出方波信号的占空比,从而实现脉冲宽度的调制。

这在直流电机的速度控制、LED灯的亮度调节等方面有广泛的应用。

三、调节定时电路的方法1. 改变电阻值:通过改变电阻的数值,可以改变电荷和放电的速率,从而改变定时电路的周期和频率。

电阻值越大,周期越长,频率越低;电阻值越小,周期越短,频率越高。

2. 改变电容值:通过改变电容的数值,可以改变电荷和放电的时间常数,从而改变定时电路的周期和频率。

电容值越大,周期越长,频率越低;电容值越小,周期越短,频率越高。

3. 调节电源电压:改变电源电压的大小,可以改变芯片内部的电流流动速度,从而改变定时电路的周期和频率。

电压越高,周期越短,频率越高;电压越低,周期越长,频率越低。

总结:555芯片是一种功能强大的定时电路集成电路,具有广泛的应用场景。

ne555定时器工作原理

ne555定时器工作原理

ne555定时器工作原理NE555定时器是一种集成电路,广泛应用于各种定时、脉冲和振荡电路中。

它是由Signetics公司于1972年推出的,是一种非常经典的定时器集成电路。

NE555定时器工作原理的理解对于电子爱好者和工程师来说是非常重要的,因为它在电子电路设计中有着广泛的应用。

本文将从NE555定时器的基本原理、内部结构、工作模式以及应用实例等方面进行介绍。

首先,NE555定时器的基本原理是基于电荷和放电的原理。

它内部有两个比较器,一个RS触发器和一个输出级。

NE555定时器可以工作在脉冲振荡模式和双稳态触发器模式。

在脉冲振荡模式下,NE555可以产生一定频率和占空比的方波信号。

在双稳态触发器模式下,NE555可以产生稳定的高电平或低电平输出。

NE555的内部结构包括电压比较器、RS触发器、输出级、电压分压器和电压调节器等部分。

这些部分共同作用,实现了NE555定时器的各种功能。

NE555定时器有三种工作模式,单稳态触发器模式、脉冲振荡模式和连续工作模式。

在单稳态触发器模式下,NE555定时器在接收到触发脉冲时,输出一个固定时间的高电平脉冲。

在脉冲振荡模式下,NE555定时器可以产生一定频率和占空比的方波信号。

在连续工作模式下,NE555定时器一直处于工作状态,输出高电平或低电平。

NE555定时器在电子电路设计中有着广泛的应用。

例如,它可以用于LED闪烁电路、蜂鸣器驱动电路、定时报警电路、PWM调速电路等。

在LED闪烁电路中,NE555定时器可以控制LED的闪烁频率和占空比。

在蜂鸣器驱动电路中,NE555定时器可以产生一定频率的方波信号驱动蜂鸣器发声。

在定时报警电路中,NE555定时器可以产生一定时间间隔的报警信号。

在PWM调速电路中,NE555定时器可以产生一定频率和占空比的PWM信号,用于驱动电机进行调速。

总之,NE555定时器是一种非常经典的定时器集成电路,它的工作原理基于电荷和放电的原理。

555定时器的电路解析

555定时器的电路解析
使电路迅速由暂稳态返
回稳态,uO1=UOH (全0出1)。 uO= UOL。
从暂稳态自动返回稳态之后,电容C将通过电阻R放电, 使电容上的电压恢复到稳态时的初始值。
单稳态触发器工作波形
2. 主要参数
(1)输出脉冲宽度tw 输出脉冲宽度tw,就是暂稳态的维持时间。 tw ≈0.7RC
(2) 恢复时间tre 暂稳态结束后,电路需要一段时间恢复到初始状态。
脉冲定时
7.4.4 用555定时器组成多谐振荡器
一、电路结构
将放电管V集电极经R1接到VCC上,便组成了一个反相器。其输出DIS端对地接 R2、C积分电路,积分电容C再接TH和TR端便组成了如图5.5.7所示的多谐振荡器。 R1、R2和C为定时元件。
二、工作原理
1、接通电源VCC后,VCC经电阻R1和R2对电容C充电,其电压 UC由0按指数规律上升。 当UC≥2/3VCC时,电压比较器C1和C2的输出分别为UC1=0、 UC2=1,基本RS触发器被置0,Q=0、Q=1 输出UO跃到低电平 UOL。与此同时, 放电管V导通, 电容C经电阻 R1和R2放电管 V放电,电路 进入暂稳态。
VI
VT + VT -
VO0
t
0
t
5.2 单稳态触发器
工作特点: 第一,它有稳态和暂稳态两个不同的工作状态; 第二,在外加脉冲作用下,触发器能从稳态翻转 到暂稳态; 第三,在暂稳态维持一段时间后,将自动返回稳 态,暂稳态维持时间的长短取决于电路本身的参数, 与外加触发信号无关。 例:楼道的路灯 。
(2)触发翻转:当输入端加入负脉冲(宽度应 小于脉宽tpo),即 TR 端<1/3VDD则S=1(R=0), 触发器翻转1态,输出uo为高电平。Q=1,这时

555 计时器 计时工作原理

555 计时器 计时工作原理

555 计时器计时工作原理555计时器是一种常用的定时器芯片,它可以在电子电路中实现精确的计时功能。

在本文中,我们将详细介绍555计时器的工作原理及其应用。

一、555计时器的基本结构和原理555计时器由比较器、RS触发器和输出驱动器组成,它可以通过外部元件的连接和设置来实现不同的计时功能。

555计时器有8个引脚,分别是VCC、GND、TRIG、THRES、OUT、RESET、CTRL和DIS。

555计时器的工作原理如下:1. 当RESET引脚为低电平时,计时器被复位,输出为低电平。

2. 当RESET引脚为高电平时,计时器开始工作。

3. 当TRIG引脚为低电平时,RS触发器的S端置高,Q端置低,输出为高电平。

4. 当TRIG引脚为高电平时,RS触发器的R端置高,Q端置高,输出为低电平。

5. 当THRES引脚为低电平时,比较器的输出为高电平。

6. 当THRES引脚为高电平时,比较器的输出为低电平。

7. 当比较器的输出为高电平时,输出驱动器输出为低电平;当比较器的输出为低电平时,输出驱动器输出为高电平。

二、555计时器的工作模式555计时器有三种基本工作模式,分别是单稳态、自由运行和触发模式。

1. 单稳态模式:在这种模式下,计时器在接收到一个触发脉冲后产生一个固定的时间延迟,然后恢复到初始状态。

这种模式常用于产生单脉冲信号和延时触发。

2. 自由运行模式:在这种模式下,计时器的输出信号以一定的频率周期性地变化。

这种模式常用于产生方波信号和频率分频。

3. 触发模式:在这种模式下,计时器的输出信号在接收到一个触发脉冲后翻转一次,然后保持翻转状态直到下一个触发脉冲到来。

这种模式常用于产生周期性的脉冲信号和频率锁定。

三、555计时器的应用领域555计时器广泛应用于各种电子电路中,如定时器、频率计、脉冲生成器、电子钟、蜂鸣器驱动器等。

1. 定时器:通过设置555计时器的参数,可以实现各种精确的定时功能。

例如,可以将555计时器配置为一个秒表,用于测量时间间隔。

555定时器的原理及三种应用电路详解

555定时器的原理及三种应用电路详解

555定时器的原理及三种应用电路详解•实验目的•掌握555定时器的电路结构、工作原理。

•熟悉555定时器的功能及应用。

•实验箱一个;双踪示波器一台;稳压电源一台;函数发生器一台。

CB555定时器;100Ω~100kΩ电阻;0.01~100μF电容;1kΩ和5kΩ电位器;发光二极管或蜂鸣器。

•实验内容•按图2-10-3连接施密特触发器电路,分别输入正弦波、锯齿波信号,观察并记录输出输入波形。

•实验原理•仿真电路如图:•实验结果:输入正弦波:输入锯齿波:•设计一个驱动发光二极管的定时器电路,要求每接收到负脉冲时,发光管持续点亮2秒后熄灭。

•实验原理:由555定时器构成单稳态触发器,由单稳态触发器的功能可知,当输入为一个负脉冲时,可以输出一个单稳态脉宽,且=1.1RC。

所以想要使发光二极管接收到负脉冲时,持续点亮2S,即要使=2S。

所以,需选定合适的R、C值。

选定R、C时,先选定C的值为100uF,然后确定R的值为18.2kΩ。

•仿真电路如图:•实验结果及分析:波形图为:若是1秒或者是5秒。

只需改变R与C的大小,使得脉冲宽度T=1.1RC分别为1或是5即可。

1秒时:C=100uF,R=9.1kΩ 5秒时:C=100uF,R=45.5kΩ 。

•按图2-10-7连接电路,取R1=1kΩ,R2=10kΩ,C1=0.1μF,C2=0.01μF,观察、记录的同步波形,测出的周期并与估算值进行比较。

改变参数R1=15kΩ,R2=10kΩ,C1=0.033μF,C2=0.1μF,用示波器观察并测量输出端波形的频率。

经与理论估算值比较,算出频率的相对误差值。

•实验原理555定时器构成多谐振荡器。

2.仿真电路如图:R1=1kΩ,R2=10kΩ,C1=0.1μF,C2=0.01μF时:R1=15kΩ,R2=10kΩ,C1=0.033μF,C2=0.1μF时:3.实验结果及分析:波形图如下:R1=1kΩ,R2=10kΩ,C1=0.1μF,C2=0.01μF时:理论值:实际值:R1=15kΩ,R2=10kΩ,C1=0.033μF,C2=0.1μF时:理论值:实际值:•用NE556时基电路功能实现救护车警铃电路,应用电路参考图如2-10-10所示。

555定时器的工作原理及其应用

555定时器的工作原理及其应用

555定时器的工作原理及其应用概述:555定时器是一种高度通用的集成电路(IC),广泛用于电子电路中产生精确的定时信号。

它是由电子公司Signetics(现在是NXP半导体的一部分)于1971年推出的,从此成为电子领域最受欢迎的集成电路之一。

由于其简单、低成本和易于使用,555定时器通常用作定时器、振荡器和脉冲发生器。

它能够产生精确的定时信号,这使得它适用于广泛的应用,包括定时电路、频率产生和波形整形。

身体:1. 555定时器工作原理:555定时器是基于一个不稳定的多谐振荡器的原理,这是一个电路,产生连续输出波形,没有任何外部触发。

该集成电路由两个比较器、一个触发器、一个放电晶体管以及决定时序特性的电阻和电容组成。

555定时器的定时功能是通过外部电容的充放电来实现的。

1.1充电阶段:在充电阶段,电压源连接到定时器的VCC引脚,外部电容(C)通过串联电阻(R)充电。

内部触发器设置为高状态,导致放电晶体管关断。

结果,电容器以指数方式充电,时间常数由R和C的值决定。

1.2放电阶段:一旦电容器上的电压达到某个阈值(约为电源电压的2/3),内部触发器将复位到低状态。

这触发放电晶体管打开,将电容器连接到地。

然后电容器通过放电晶体管和外部电阻呈指数级放电。

2. 555定时器的应用:555定时器是一种令人难以置信的通用IC,可用于各种电子电路。

555定时器的一些常见应用是:2.1时序电路:555定时器的主要应用之一是在定时电路中,它可以用作单稳定或不稳定的多谐振荡器。

在单稳定模式下,555定时器响应外部触发器产生一个特定持续时间的单脉冲。

这在延时电路、脉宽调制和脱杂电路等应用中非常有用。

在稳定模式下,555定时器产生具有特定频率和占空比的连续方波。

这通常用于时钟生成、分频和音调生成等应用。

2.2 PWM产生:555定时器还可用于产生脉宽调制(PWM)信号,广泛用于电机速度控制、LED调光和音频放大器等应用。

通过将555定时器配置为稳定模式并改变定时元件(电阻和电容),可以调整输出波形的占空比,从而控制传递给负载的平均功率。

555定时器电路原理图 基于555芯片的定时器电路设计

555定时器电路原理图 基于555芯片的定时器电路设计

555定时器电路原理图基于555芯片的定时器电路设计这节要将的是关于555(芯片)组成的(定时器)电路,主要讲解6种,分别是延时定时器、长延时定时器、分段式定时器、抗干扰的定时器、可变间歇定时器和通、断时间分别可调的循环定时器。

前3种相对而言简单一些;后3种定时器,相对前面3种就相对复杂一些。

不过,只要认真探索,任何困难都能迎刃而解的。

一、延时定时器本电路是一个用555(集成电路)组成的单稳延时电路,可以实现延时关断。

延时定时器原理图原理介绍与一般的555单稳电路不同的是在第5脚接有一只(二极管)VD1,将该脚与(电源)电压+6V接通。

该脚是555的控制端,与内部2/3电源分压点相接,接入VD1后,则该点将被箝位在 5.3V (0.6-0.7=5.3V),其中0.7V是VD1的导通压降。

这样就使得(阈值电压)也相应提高到5.3V,从而使得C1的充电时间有较大延长,一般来说,可以在相同R、C时间常数下使定时时间增大数倍。

计时开始前,先按动一下S1,计时开始,定时时间到时,555第3脚输出低电平,继电器K线圈失电断开,实现被控负载延时关断的功能。

增大C1的容量可以获得更长的延时时间。

二、长延时定时器本电路是由2只555组成延时的定时器。

长延时定时器原理图原理介绍由U1和R1、R2、RP1、VD1、VD2、C1组成无稳态多谐(振荡器),U1的振荡方波通过VD3、R3,加至U2的第6、7脚。

U2和R4、C4、R3、C3等组成一单稳延时电路。

刚开始通电时,由于C4接在触发端第2脚与地之间,故第3脚呈现高电平,继电器K吸合,其常开触点K1-1闭合,维持给U1、U2的(供电),此时,与U2的第7脚相连的集成电路内的放电管截止,因而C3开始充电。

C3的充电呈阶跃式,即U1输出方波的正脉冲,即高电平期间对其充电,由于VD3的存在,C3上的电荷不能向U1反向放电。

当C3的充电电压超过+6V的2/3阈值电平时,U2复位,第3脚输出低电平,定时时间到,继电器K释放,K1-1断开,U1、U2也同时失电,电路完全停止工作。

555定时器工作原理及应用实例--土豪版资料

555定时器工作原理及应用实例--土豪版资料

555定时器555定时器是一种多用途的数字—模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。

本文主要介绍了555定时器的工作原理及其在单稳态触发器、多谐振荡器方面的应用。

关键词:数字—模拟混合集成电路;施密特触发器;波形的产生与交换1概述1.1 555定时器的简介自从signetics公司于1972年推出这种产品以后,国际上个主要的电子器件公司也都相继的生产了各自的555定时器产品。

尽管产品型号繁多,但是所有双极型产品型号最后的3位数码都是555,所有CMOS产品型号最后的4位数码都是7555.而且,它们的功能和外部引脚排列完全相同。

1.2 555定时器的应用(1)构成施密特触发器,用于TTL系统的接口,整形电路或脉冲鉴幅等;(2)构成多谐振荡器,组成信号产生电路;(3)构成单稳态触发器,用于定时延时整形及一些定时开关中。

555应用电路采用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路,如定时器、分频器、元件参数和电路检测电路、玩具游戏机电路、音响告警电路、电源交换电路、频率变换电路、自动控制电路等。

2 555定时器的电路结构与工作原理图 13 555芯片引脚图及引脚描述CB555芯片的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。

1脚为地。

2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。

2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。

6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。

555定时器电路与功能详解

555定时器电路与功能详解

555定时器电路及其功能555定时器是一种多用途的中规模集成电路器件,在外围配以少量阻容元件就可以构成施密特触发器、单稳态触发器和多谐振荡器等电路,在脉冲产生和变换等技术领域有着广泛的应用。

一、555定时器的电路组成555定时器是一种模拟电路和数字电路相结合的器件,内部电路结构如图6-1所示:555定时器由三部分组成:.电阻分压器和电压比较器:由三个等值电阻R和两个集成运放比较器C1、C2构成。

电源电压Vcc经分压取得V+2、V-1作为比较器的输入参考电压,在无外加控制电压Vm时,V+2=1/3Vcc、V-1=2/3Vcc;外加控制电压Vm可改变参考电压值。

比较器分别对阀值输入Vi1与V-1、触发输入Vi2与V+2进行比较,它们的结果决定比较器输出Vc1、Vc2的电位高低。

注意:不接外加控制时,控制端(5脚)不可悬空,需通过电容接地,以旁路高频干扰。

.基本RS触发器:由比较器输出电位Vc1、Vc2控制其状态。

(4脚)为触发器复位端当=0时,触发器反相输出端=1,定时器输出Vo=0,同时,使T D导通。

.输出缓冲器和开关管:由反相放大器和集电极开路的三极管T D构成。

反相放大器用以提高负载能力,起到隔离作用。

二、555定时器的逻辑功能555定时器的逻辑功能取决于比较器C1、C2的工作状态。

在无外加控制电压Vm的情况下:当Vi1>V-1、Vi2>V+2时,比较器输出Vc1=1、V C2=0,触发器置0,=1,Vo=0,T D 导通。

将Vo=0,Vo’对地导通的状态称定时器的0态。

当Vi1<V-1、Vi2<V+2时,比较器输出V C1=0、V C2=1,触发器置1,=0,Vo=1,T D截止。

将Vo=1,Vo’对地断开的状态称定时器的1态。

当Vi1<V-1、Vi2>V+2时,比较器输出Vc1=0、V C2=0,触发器维持原状态不变施密特触发器时间:2008-07-31 06:19:14 来源:作者:点击:1096施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。

简述有关 555 定时器的工作原理及其应用

简述有关 555 定时器的工作原理及其应用

简述有关 555 定时器的工作原理及其应用一、引言555定时器是一种常用的集成电路,其工作原理简单,应用广泛。

本文将详细介绍555定时器的工作原理及其应用。

二、555定时器的基本结构555定时器由比较器、RS触发器、放大器和输出级组成。

其中比较器有两个输入端,一个是正向输入端(+),一个是反向输入端(-)。

RS触发器由两个双稳态触发器组成,分别称为S触发器和R触发器。

放大器由三级放大电路组成,其中第一级为差动放大电路,第二级为共射极放大电路,第三级为共集电极放大电路。

输出级由一个双极晶体管组成。

三、555定时器的工作原理当Vcc施加到555芯片上时,内部的比较器会将Vcc与2/3Vcc进行比较。

如果正向输入端(+)的电压高于反向输入端(-)的电压,则输出高电平;反之,则输出低电平。

此时,S触发器被置位(Q=1),R触发器被复位(Q=0)。

当外部信号施加到TRIG脚上时,如果TRIG脚上的信号低于1/3Vcc,则比较器的正向输入端(+)电压低于反向输入端(-)电压,输出低电平。

此时,S触发器被复位(Q=0),R触发器被置位(Q=1)。

当TRIG脚上的信号高于1/3Vcc时,比较器输出高电平,S触发器被置位(Q=1),R触发器被复位(Q=0)。

当外部信号施加到RESET脚上时,如果RESET脚上的信号高于2/3Vcc,则S触发器被复位(Q=0),R触发器被置位(Q=1)。

当RESET脚上的信号低于2/3Vcc时,则S触发器被置位(Q=1),R触发器被复位(Q=0)。

555定时器的输出由放大级和输出级组成。

放大级将RS触发器的输出进行放大,然后通过输出级驱动负载。

四、555定时器的应用1. 方波振荡电路将TRIG和THRES接在一起,并将这个节点通过一个RC网络连接到控制电压引脚CV。

当CV引脚上的电压变化时,RC网络会使得TRIG 和THRES之间的电压出现周期性变化。

这样就可以实现方波振荡。

2. 单稳态触发器电路将TRIG接到一个脉冲信号源,将THRES接到CV引脚上,并通过一个RC网络连接到CV引脚。

555定时器工作原理以及应用

555定时器工作原理以及应用

555定时器工作原理以及应用1.开关网络:555定时器由一个比较器、RS触发器和放大器组成。

比较器根据输入电压与参考电压的大小关系来产生输出信号。

RS触发器用于存储比较器的状态,在每次时钟脉冲到达时更新状态。

放大器用于放大输出信号。

2.RS触发器:RS触发器由两个非反馈的比较器和一个混沌器构成,具有两个触发输入和一个输出。

其中一个输入称为R(复位),另一个输入称为S(设置),输出称为Q。

当R=0,S=1时,输出Q=1;当R=1,S=0时,输出Q=0;当R=1,S=1时,输出Q的状态由之前的状态决定。

3.模式选择:555定时器有多种工作模式可选择,包括单稳态(单谐振脉冲)、正脉冲生成、负脉冲生成和方波振荡等。

4.外部电路:555定时器通常需要外部电路来设置定时器的时间参数。

外部电路通常由电阻和电容组成,并连接到定时器的相关引脚上。

电阻和电容的数值决定了定时器的时间延迟。

1.方波振荡器:555定时器可以配置为方波振荡器,产生一个稳定的方波输出信号。

这种方波信号常用于时序控制、频率测量和数字信号处理等。

2.时脉发生器:555定时器可以将其配置为时钟发生器,生成用于时序控制的脉冲信号。

时脉发生器常用于数字电路、计数器和触发器等的同步和控制。

3.延时器:555定时器可以用作延时器,控制载波通信的传输延迟。

延时器广泛应用于雷达、无线电通信和自动控制系统等领域。

4.脉冲生成器:555定时器可以生成单谐振脉冲,用于测量和检测应用。

脉冲生成器常用于电子设备的调试和测试。

5.脉宽调制:555定时器可以配置为脉宽调制器,用于控制电路的输出脉冲宽度。

脉宽调制常用于功率电子设备、音频设备和通信设备等的控制和调节。

总之,555定时器通过将相关元器件和电路组合在一起,实现了方波振荡、时序控制、延时计时和脉冲生成等功能。

它在电子设备中的广泛应用,使得我们能够更好地实现电路的精确控制和稳定性。

第四讲555定时器原理及应用

第四讲555定时器原理及应用

τ RC
2 VCC 3
t
O
uo
t
根据uC的波形,由过 渡过程公式即可计算出暂 稳态时间tw , tw电容C从 0V充电到2 VCC /3的时间, 根据三要素方程:
uc (t ) uc () [uc (0) uc
t ()]e τ
tW
O
t
为此需要确定三要素: uC (0) =0V、 uC (∞) =VCC、 =RC, 当t= tw时,uC (tw) =2 VCC /3代入公 式。于是可解出
压控振荡器参数的计算
uc
u5
u5 2
输出波形的振荡周期可用过 渡过程公式计算:
t
tw1 : uC (0) = u5 /2、 uC (∞) =VCC、 1=(RA+ RB)C、 当t= tw1时,uC (tw1) =u5代入三要 t 素方程。于是可解出
t w1 ( R A R B )C ln V CC u 5 / 2 VCC u 5
VCC RA
7 4 8 3 5 1
uc
2 VCC 3
1 VCC 3
RB
uc
6 2
555
uo
O
uo
t
C
C5
O
t
图4-10 多谐振荡器的波形
图4-9 多谐振荡器电路图
多谐振荡器参数的计算
uc
2 VCC 3
1 VCC 3
输出波形的振荡周期可用过 渡过程公式计算:
t
tw1 : uC (0) = VCC /3 V、 uC (∞) =VCC、 1=(RA+ RB)C、 当t= tw1时,uC (tw1) =2 VCC /3代 t 入三要素方程。于是可解出

555定时器及其应用知识讲解

555定时器及其应用知识讲解
当uc下降到略微低于时rs触发器置1电路输出又变为uo1v1截止电容c再次充电又重复上述过程电路输出便得到周期性的矩形脉振荡周期t的计算多谐振荡器的振荡周期为两个暂稳态的持续时间之和tt1t2
555定时器及其应用
一、555定时器的组成及逻辑功能 二、 555定时器的典型应用
555定时器是一种中规模模、数混合集成 电路,主要用于定时、检测,控制、报警等方 面。其结构简单,使用方便灵活,只要外部配 接少数几个阻容元件便可构成单稳态触发器、 多谐振荡器、施密特触发器及其它各种实用电 路。所以在脉冲波形的产生与变换、仪器仪表、 测量与控制等领域有着广泛的应用。
3) 占空比可调的多谐振荡器
UCC
R1
RW
74 8
R2 C
V1
555 3
Uo
2 V2
61 5
0. 01μ
图 3 占空比可调的多谐振荡器
电容C的充电路径为UCC→R1→V1→C→地,因而 T1=0.7R1C
电容C的放电路径为C→V2→R2→放电管V1→地,因 而T2=0.7R2C
振荡周期为 占空比为
CC
时,RS触发器置
1,
电路输出又变为Uo=1,V1截止,电容C再次充电,
又重复上述过程,电路输出便得到周期性的矩形脉
冲。
2) 振荡周期T
多谐振荡器的振荡周期为两个暂稳态的持续时 间之和,T=T1+T2。由图 2(b)UC的波形及RC电路 过渡过程三要素法公式求得电容C的充电时间T1和
放电时间T2各为
当U62 3UCC,U213UCC时,比较器C1输出为 0, C2输出为 1,基本RS触发器被置 0,V1导通,Uo输 出为低电平。
当 U62 3UCC,U213UCC 时,C1输出为 1,C2 输 出为 0,基本RS触发器被置 1,V1截止,Uo输出高 电平。

555定时器及其应用实验报告

555定时器及其应用实验报告

555定时器及其应用实验报告引言:555定时器是一种集成电路,广泛应用于定时、脉冲、频率调制、频率分割和频率测量等领域。

本文将介绍555定时器的基本原理和实验过程,并探讨其在电子领域中的应用。

一、555定时器的基本原理555定时器是一种多功能集成电路,由比较器、RS触发器、RS锁存器和电压比较器等组成。

它的工作基于门电路的触发与复位过程,实现了不同的定时功能。

二、555定时器的工作模式555定时器有三种基本工作模式:单稳态、自由运行和串接。

在单稳态模式下,555定时器输出一个脉冲宽度可调的方波信号;在自由运行模式下,它输出一个连续变化的方波信号;在串接模式下,多个555定时器可以通过级联实现更复杂的定时功能。

三、实验过程为了验证555定时器的工作原理,我们进行了以下实验:1. 准备实验所需材料:555定时器芯片、电容、电阻等。

2. 连接电路:按照电路图将555定时器与其他元件连接起来。

3. 设置参数:根据实验要求调整电容和电阻的数值。

4. 运行实验:给电路通电,观察555定时器输出的信号波形。

5. 记录实验结果:记录实验过程中观察到的波形变化和参数调整情况。

四、实验结果与分析通过实验,我们观察到555定时器的输出信号波形随着电容和电阻数值的变化而改变。

通过调整电容和电阻的数值,我们可以控制输出信号的频率和占空比。

这证明了555定时器的可靠性和灵活性。

五、555定时器的应用555定时器在电子领域中有广泛的应用,以下是一些典型的应用场景:1. 脉冲生成:通过调整电容和电阻的数值,可以产生不同频率的脉冲信号,用于驱动其他电路或触发器件。

2. 方波发生器:通过在555定时器中添加元件,如电容和电阻,可以实现方波信号的产生和调节。

3. 时钟电路:555定时器可以用作时钟电路的基础元件,用于控制其他电子设备的定时功能。

4. 脉宽调制:通过调整电容和电阻的数值,可以实现脉宽调制功能,用于控制电子设备的输出功率。

555定时器的原理和应用

555定时器的原理和应用

555定时器的原理和应用1. 555定时器的简介555定时器是一种经典的集成电路,由美国第一电子公司推出。

它是一种多功能计时、延时和脉冲发生器。

555定时器有稳定的性能、简单的接线、广泛的工作电压范围和可调的输出脉冲宽度等特点,使其被广泛应用于各种电子电路中。

2. 555定时器的工作原理555定时器由比较器、RS触发器和输出级组成。

它具有两个触发输入引脚(TRIG引脚和THRES引脚)、一个控制电压引脚(CV引脚)、一个输出引脚(OUT引脚)、一个复位引脚(RESET引脚)和一个电源引脚(VCC引脚)。

当TRIG引脚的电压低于1/3 VCC时,RS触发器置位,输出引脚处于低电平状态。

当TRIG引脚的电压高于2/3 VCC时,RS触发器复位,输出引脚处于高电平状态。

当THRES引脚的电压高于2/3 VCC时,比较器输出低电平,RS触发器置位,输出引脚处于低电平状态。

当RS触发器置位时,控制电压引脚的电压等于1/3 VCC,输出引脚处于高电平状态。

当RS触发器复位时,控制电压引脚的电压等于2/3 VCC,输出引脚处于低电平状态。

通过改变控制电压和外部电阻、电容的数值,可以实现不同的定时、延时和频率调节功能。

3. 555定时器的应用3.1. 555定时器的单稳态多谐振器•555定时器可以作为单稳态触发电路,产生一定宽度的脉冲。

•利用这个特点,可以设计出单稳态多谐振器,用于产生多个不同频率的脉冲。

3.2. 555定时器的方波发生器•通过改变RC时间常数,可以调节555定时器输出的方波的频率。

•这使得555定时器成为一个简单的方波发生器,广泛应用于数字电路、音频电路等领域。

3.3. 555定时器的频率分割器•使用555定时器的电压控制运算放大器,可以实现频率分割器的功能。

•频率分割器用于在输入信号频率较高时,将输入信号的频率分成较低的频率。

3.4. 555定时器的脉冲宽度调节器•通过改变控制电压、电阻和电容的数值,可以改变555定时器输出脉冲的宽度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

555定时器的原理及三种应用电路
实验10 555定时器的原理及三种应用电路
一、实验目的
(1)掌握555定时器的电路结构、工作原理。

(2)熟悉555定时器的功能及应用。

二、实验箱一个;双踪示波器一台;稳压电源一台;函数发生器一台。

CB555定时器;100Ω~100k Ω电阻;0.01~100μF 电容;1k Ω和5k Ω电位器; 发光二极管或蜂鸣器。

三、实验内容
(1)按图2-10-3连接施密特触发器电路,分别输入正弦波、锯齿波信号,观察并记录输
出输入波形。

1.实验原理
11
,33
12
33
22
,33
12
33
2
,3i CC TH TR CC o CC i o i CC TH TR CC o i CC i o i CC o V V V V V V V V V V V V V V V V V V V <=<<<>=><<<当输入电压时,V 为高电平。

当时,V 保持高电平。

当时,为低电平。

由大变小时,即时,V 保持低电平。

一旦则又回到高电平。

2.仿真电路如图:
3.实验结果:
输入正弦波:
输入锯齿波:
(2)设计一个驱动发光二极管的定时器电路,要求每接收到负脉冲时,发光管持续点亮
2秒后熄灭。

1.实验原理:
由555定时器构成单稳态触发器,由单稳态触发器的功能可知,当输入为一个负脉冲时,可以输出一个单稳态脉宽W T ,且W T =1.1RC 。

所以想要使发光二极管接收到负脉冲时,持续点亮2S ,即要使W T =2S 。

所以,需选定合适的R 、C 值。

选定R 、C 时,先选定C 的值为100uF,然后确定R 的值为18.2k Ω。

2.仿真电路如图:
3.实验结果及分析:
波形图为:
若是1秒或者是5秒。

只需改变R 与C 的大小,使得脉冲宽度T=1.1RC 分别为1或是5即可。

1秒时:C=100uF ,R=9.1k Ω 5秒时:C=100uF ,R=45.5k Ω 。

(3)按图2-10-7连接电路,取R1=1k Ω,R2=10k Ω,C1=0.1μF,C2=0.01μF ,观察、记录
Cr O V V 、的同步波形,测出O V 的周期并与估算值进行比较。

改变参数R1=15k Ω,
R2=10k
Ω,C1=0.033μF,C2=0.1μF ,用示波器观察并测量输出端波形的频率。

经与理论估算值比较,算出频率的相对误差值。

1.实验原理
555定时器构成多谐振荡器。

1211211
,,13
12
33
1
,3
12
33
1
,3
CC Cr TH TR CC O Cr CC Cr CC O Cr TH TR CC O D CC Cr CC O Cr TH TR CC O D CC V R R R V V V V V V V V V V V V V V V C R V V V V V V V V V T V R ==<=<<==≥<<==<当加电后,通过对充电,充电开始时所以。

当上升到时,保持高电平。

一旦则转换为低电平,T 导通,通过放电。

当再次时,保持低电平。

一旦又翻转到高电平,截止,电源又通过21121
,R R ≈对充电。

如此循环往复形成多谐振荡器。

电路输出脉冲的振荡周期T 0.7(R +2R )C 2.仿真电路如图:
R1=1k Ω,R2=10k Ω,C1=0.1μF,C2=0.01μF 时:
R1=15k Ω,R2=10k Ω,C1=0.033μF,C2=0.1μF 时:
3.实验结果及分析: 波形图如下:
R1=1k Ω,R2=10k Ω,C1=0.1μF,C2=0.01μF 时:
理论值:364
1210.7(2)0.7(110)100.1107.710T R R C S --=+=⋅+⨯⨯⨯=⨯
实际值:8.17.7
0.05%7.7
a -=
=T=81.054ms,相对误差:
R1=15k Ω,R2=10k Ω,C1=0.033μF,C2=0.1μF 时:
理论值:364
1210.7(2)0.7(155)100.03310 4.6210T R R C S --=+=⋅+⨯⨯⨯=⨯
实际值:9.9 4.62
114%4.62
a -=
=T=99.086ms,相对误差:
(4)用NE556时基电路功能实现救护车警铃电路,应用电路参考图如2-10-10所示。


555定时器的两个时基电路构成低频对高频调制的救护车警铃电路。

设计电路如图:。

相关文档
最新文档