分式加减法(一)的教学设计
分式的加减(说课稿)

分式的加减(第一课时说课稿)姓名:孙明侠尊敬的各位老师,上午好!今天我说课的课题是《分式的加减》,下面我将从教材、教学目标、教学方法、教学过程这几个方面具体阐述我对这节课的理解和设计。
首先,我对本节教材进行简要分析。
一、说教材本节课是八年级下册第十六章第二节《分式的加减》第一课时,属于数与代数领域的知识。
它是代数运算的基础,主要内容是同分母的分式相加减及简单的异分母的分式相加减。
在此之前,学生已经学习了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础。
而掌握好本节课的知识,将为《分式的加减》第二课时以及《分式方程》的学习做好必备的知识储备。
因此,在分式的学习中,占据重要的地位。
本节课的重点是掌握分式的加减运算法则。
难点是运用法则计算分式的加减。
关键是掌握计算的一般解题步骤。
基于以上对教材的认识,考虑到学生已有的知识,我制定如下的教学目标。
二、说目标根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准制定如下:1知识与技能:会进行简单的分式加减运算,具有一定解决问题计算的能力。
2过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理3情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,使学生在学知识的同时感受探索的乐趣,体验成功的喜悦。
为突出重点,突破难点,抓住关键使学生能达到本节设定的教学目标,我从教法和学法上谈谈设计思路。
三、说教学方法1教法选择与手段:本课我主要以“复习旧知,导入新知,例题示范,拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研讨,体现以教为主导、学为主体、练为主线的教学过程。
2学法指导:根据学生的认知水平,我设计了“观察思考、猜想归纳、例题学习和巩固提高”四个层次的学法。
最后,我来具体谈一谈本节课的教学过程。
四、说教学过程在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:观察导入、例题示范、习题巩固、归纳小结和分层作业。
11.4分式的加减法(一)教案

§11.4 分式的加减法(一)●课题§11.4 分式的加减法(一)●教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.●教学重点1.同分母的分式加减法.2.简单的异分母的分式加减法.●教学难点当分式的分子是多项式时的分式的减法.●教学方法启发与探究相结合●教具准备投影片四张:第一张:提出问题,;第二张:想一想,做一做,;第三张:想一想,;第四张:议一议,; 第五张:例1,; 第六张:补充练习,. ●教学过程Ⅰ.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:[生]问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v 32)h .(2)走第一条路,小丽从甲地到乙地需要的时间为v23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v 23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出.[生]如果要比较(v 1+v 32)与v 23的大小,就比较难了,因为它们的分母中都含有字母.[生]比较两个数的大小,我们可以用作差法.例如有两个数a ,b . 如果a -b >0,则a >b ; 如果a -b =0,则a =b ; 如果a -b <0,则a <b .[师]这位同学想得方法很好,显然(v 1+v 32)和v 23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.[生]如果用作差的方法,例如(v 1+v 32)-v 23,如何判断它大于零,等于零,小于零呢?[师]我们不妨观察(v 1+v 32)-v 23中的每一项都是分式,这是什么样的运算呢?[生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题) 我们再来看一下问题二.[生]问题二中这个人用电脑录入3000字的文稿需a33000小时,利用分式的基本性质化简,即为a1000小时;用手抄3000字文稿则需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时.[生]a 3000, a 1000是分式,a 3000-a1000是分式的加减法.[师]但和问题一中加减法比较一下,你会发现什么?[生]问题一中的是异分母的分式相加减,而问题二是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法. Ⅱ.讲授新课 1.同分母的加减法[师]我们接着看下面的问题[生]同分母的分数的加减是分母不变,把分子相加减,例如134+133-1317=131734-+=-1310.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.[师]谁能试着到黑板上板演“做一做”中的三个小题. [生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ;[生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x=12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.[生]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2. [师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生]老师,是我做错了.第(3)题应为:(3)12++x x -11+-x x +13+-x x =1)3()1()2(+++--+x x x x=1312+-++-+x x x x=1+x x [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步.通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则: 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =c b a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式).前面问题二现在可以完成了吧!大胆地试一试.[生]a 3000-a1000=a 10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a2000个小时. 2.简单的异分母的分式相加减 [生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.[生 ]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法[生 ]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师 ]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.[生 ]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41.如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125.[生 ]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算. [例1]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a 515即可.解:(1)a 3+a a 515-=a 515+aa 515-=a a 5)15(15-+=a a 5=51;[生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把xx --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x.所以第(2)题的解法如下:(2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x[师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起.[生]问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35h. (2)小丽走第一条路所用的时间为v23h. 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v61h. Ⅲ.应用、升华 1.随堂练习第1题计算:(1)x b 3-x b ; (2)a 1+a 21;(3)b a a --ab a-解:(1)xb 3-x b =x b b -3=x b2;(2)a 1+a 21=a 22+a 21=a 212+=a 23;(3)b a a --a b a -=b a a --b a a--=b a a a ---)(=b a a -2. 2.补充练习Ⅵ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大.[生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.…… Ⅴ.课后作业 Ⅵ.活动与探究已知x +y 1=z +x 1=1,求y +z1的值. [过程]已知条件实际上是一个方程组,我们可以取其中两个方程x +y 1=1,z +x1=1,由这两个方程把y 、z 都用x 表示后,再求代数式的值.[结果]由x +y 1=1,得y =x-11, 由z +x 1=1,得z =x x 1-.所以y +z 1=x -11+1-x x =11--x +1-x x =11--x x =1.●板书设计。
分式的加减法(一)

第四章分式3.分式的加减法(一)苏红伟总体说明本节安排两课时。
第一节课阐述同分母的分式加减法的运算法则及其应用,分母中只有符号不同的分式加减运算主要。
第二节课则阐述异分母的分式加减法的运算法则及分式的通分。
这样安排,给学生一个简单到复杂的推理过程,由于第一节的铺垫,使学生对分式的掌握并不觉得难,且本节对于第四章分式有着至关重要的作用,起到承上启下。
否则,会面临许多学生根据实际生活问题列出分式方程,却得不出正确答案的窘境,有着功亏一篑的遗憾。
一、学生知识状况分析学生的知识技能基础:学生在小学时已经学习过同分母分数的加减,异分母分数的加减运算法则,并且经历过用字母表示现实情境中数量关系的过程。
由此类比分式的加减,可以猜想分式的加减运算法则。
学生活动经验基础:在相关知识的学习过程中,学生经历过一些从实际问题建模的思想。
如小学的应用题以及七年级数学(上)的一元一次方程的应用。
它还与分数、分解因式、一元一次方程等有密切联系,因此可以加强知识之间的纵向联系。
二、教学任务分析分式是表示具体情境中数量的模型,为了体现这一点,教科书通过几个实际问题的提出,从而激发学生的兴趣,使学生产生解决这些问题的欲望。
它也是为后面一节分式方程作好铺垫。
知识与技能:1、同分母的分式的加减法的运算法则及其应用;2、简单的异分母的分式的加减法的运算;3、经历用字母表示数量关系的过程,发展符号感;4、发展有条理的思考及其语言表达能力。
过程与方法:根据学生已有的经验,通过一些问题的提出。
诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结规律,采用的是启发与探究相结合的方法。
情感与态度:1、经历从现实情境中提出问题,提出“用数学”的意识。
2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
三、教学重难点重点:同分母分式的加减法则难点:分母中只有符号不同的分式加减运算中的符号处理。
三、教学过程分析本节课设计了7个教学环节:提出问题——同分母加减——简单异分母加减——练习与提高——解决开始提出问题——课时小结第一环节提出问题活动内容问题一:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a 字/时,那么他录入3000字文稿比手抄少用多少时间?问题二:从甲地到乙地有两条路,每条路都是3 km,其中第一条路是平路,第二条路有1km的上坡路,2 km的下坡路。
分式的加减法1学案

分式的加减法1主备人:王军 审核人: 姓名 班级学习目标:通过类比分数的加减法运算,猜想、归纳分式的加减法的运算方法,能利用分式的加减法法则熟练的进行运算。
进一步了解通分的意义,培养加强计算能力。
学习重点:分式的加减法的运算。
学习重点:异分母分式的加减法的计算。
预习导学:计算:=+7372;=-6561;=+4131;=-6552。
根据1题的计算过程回忆分数的加减法法则:同分母分数相加减 。
异分母分数相加减 。
模仿分数的加减计算:=+aa32 ;=-bb41 ;=+nm11 ;=-yx11 。
合作探求:1.阅读课本78—79页。
同分母分式加减,分母 ,把分子相 ; 例(1)aa a 5123-+ (同分母分式相加减) (2)yx y yx x +++ (同分母分式相加减)解:原式=a(分母不变,分子______) 解:原式=yx + (分母不变,分子______)= (化最简分式) = (化最简分式)(3)2222223223yx y x yx y x yx y x --+-+--+ (同分母分式相加减)解:异分母分式加减法先 ,化为 的分式,然后再按 分式的加减法法则进行计算. (1)ba 11+ (最简公分母是 ) ( 2)abcacab433265+-(最简公分母是 )解:原式=+ (化成同分母) 解:原式=++ (化成同分母)= (按同分母运算) = (按同分母运算)(3)yx yx --+11 (最简公分母是 )解:原式=+ (化成同分母)= (按同分母运算)当堂检测:(必做题)xxx321)1(++ ba b a ba a +--+2)2(bb 342)3(+ 242)4(2+-+a a axy yyx x-+-22)5( (6)xxx312161++选做题:1.计算:122+----+ab bba ab a2.先化简,再求值: 。
其中3,21)1121(-=+-÷--+-a a a aa a a。
分式加减法教案

分式加减法教案教案标题:分式加减法教案教案目标:1. 学生能够理解分式加减法的概念和基本原则。
2. 学生能够运用分式加减法解决实际问题。
3. 学生能够运用所学知识,灵活地进行分式加减法的计算。
教学重点:1. 分式加减法的基本原则和运算规则。
2. 分式加减法的实际应用。
教学难点:1. 学生理解分式加减法的概念和运算规则。
2. 学生能够将实际问题转化为分式加减法的计算。
教学准备:1. 教师准备教学课件、黑板、彩色粉笔等。
2. 学生准备纸和铅笔。
教学过程:一、导入(5分钟)1. 教师通过提问复习上节课所学的分式的概念和运算规则。
2. 引入今天的主题:分式加减法。
二、讲解与示范(15分钟)1. 教师通过PPT或黑板,详细讲解分式加减法的基本原则和运算规则,包括相同分母的分式加减法和不同分母的分式加减法。
2. 教师通过具体的例子演示如何进行分式加减法运算,并解释每一步的操作原因。
三、练习与巩固(20分钟)1. 学生进行基础练习,计算给定的分式加减法题目。
2. 学生完成一些应用题,将实际问题转化为分式加减法的计算,并给出答案和解答过程。
3. 学生互相交流,讨论解题思路和方法。
四、拓展与应用(15分钟)1. 学生分组进行小组讨论,设计一些实际问题,通过分式加减法进行计算,并给出解答和解题过程。
2. 每个小组派代表上台展示他们的问题和解答过程。
五、总结与反思(5分钟)1. 教师总结今天的教学内容,强调分式加减法的重要性和实际应用。
2. 学生对今天的学习进行反思,提出问题和困惑。
教学延伸:1. 学生可以通过做更多的分式加减法题目来加深对知识点的理解和掌握。
2. 学生可以通过查阅资料,了解更多分式加减法的实际应用。
教学评估:1. 教师观察学生在课堂上的表现,包括参与度、理解程度和解题能力。
2. 教师布置作业,检查学生对分式加减法的掌握情况。
3. 学生之间相互评价和反馈。
教学反馈:1. 教师根据学生的表现和作业情况,及时给予反馈和指导。
分式的加减法(1)PPT教学课件

D.3
7
4
2021/01/21
14
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/01/21
15
先通分,把异分母分式化 为同分母的分式, 然后再按同分母分式的 加减法法则进行计算。
异分母分式加减法法则与异分母分数加减法的法则类似
2021/01/21
6
小明认为,只要把异分母的分 式化成同分母的分式,异分母分式的加 减问题就变成了同分母分式的加减问题。 小亮同意这种看法,具体的做法如下:
3 a
1 4a
a 3 4 4 a a 4 a a a 1 4 a a 22 4 a a 2 1 4 a a 23 1 4 a3
小明
31 3 4 1 1 2 1 13 a4 aa 44 a4 a4 a4 a
小亮
2021/0你1/21认为谁的方法更好?为什么?
7
转化 异分母的分式 通分 同分母的分式
异分母分式通分时,通常取最简单的公分母 (简称最简公分母)作为它们的共同分母。
A、 m n B、 m n C、 3m nD、 3m n
n 2m n 2m
n 2m
n 2m
2021/01/21
9
小结:谈谈本节课的收获?
(1)分式加减运算的方法思路:
异分母相 加减
通分 转化为
同分母 相加减
分母不变 转化为
分子(整式) 相加减
(2)分子相加减时,如果分子是一个多项 式,要将分子看成一个整体,先用括号括 起来,再运算,可减少出现符号错误。
分式的加减法数学教案设计

分式的加减法数学教案设计一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算方法。
2. 培养学生运用分式加减法解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 分式的加减法概念及运算方法。
2. 分式加减法在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的加减法运算方法。
2. 难点:分式加减法在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解分式的加减法概念及运算方法。
2. 运用案例分析法,分析分式加减法在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作能力。
五、教学过程:1. 导入新课:通过复习分数的加减法,引导学生思考分式的加减法。
2. 讲解分式的加减法概念及运算方法:(1)分式的加减法概念:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再按照同分母分式加减法的法则计算。
(2)分式加减法的运算方法:a. 同分母分式相加减:分子相加减,分母保持不变。
b. 异分母分式相加减:先通分,再按照同分母分式加减法的法则计算。
3. 案例分析:分析分式加减法在实际问题中的应用。
(1)例题讲解:分析实际问题,引导学生运用分式加减法解决问题。
(2)学生练习:布置练习题,让学生独立解决实际问题。
4. 小组讨论:组织学生进行小组讨论,分享分式加减法在实际问题中的应用实例。
5. 总结与评价:总结本节课所学内容,对学生的学习情况进行评价。
6. 布置作业:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对分式加减法概念的理解程度。
2. 练习题:布置随堂练习,评估学生对分式加减法运算方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作能力和解决问题的能力。
七、教学拓展:1. 引入更复杂的分式加减法问题,提高学生的解题能力。
2. 探讨分式加减法在高级数学中的应用,如在微积分、线性代数等领域。
分式的加减法(一)

难点:简单异分母分式的加减运算
一、自主学习
(一)自主探索:认真研读教材78页到81页内容完成下列各题:
1)1.计算 + = - =
2.类比计算 + = =
3.归纳法则:同分母的分式相加减,,。
2)1.计算 =
2.类比计算 =
3.在80页的“议一议”中,小明和小亮的做法有什么异同,你认为的
教学反思(疑惑)
第37页第38页
解法比较简便。
4.由此可归纳:把异分母分式化为同分母分式的过程叫,通分时,通常取作为它们的共同分母,其变形的依据是
。
3)自学例1,分析各题的解题思路及注意事项。仿照例1进行计算:
1、 2、 3、
二、小组学习:
试确定下列各组分式的最简公分母,并归纳如何确定最简公分母。
1) 与 2) 与 3) 与
最简公分母分别是。
初二年级数学科自主探究学案主备:周志琴时间:3月22日
学习内最简公分母是。
三、展示反馈:
1、计算
1) 2) + 3)
2、课本82页“问题解决”
四、拓展检测(先化简,再选一个你喜欢的数代入求值。)
1、 2、 - - 3、 - -
学习目标:会进行简单分式的加减运算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式加减法(1)》的教学设计
教学内容:义务教育课程标准实验教科书(人教版)《数学》八年级(下册)第十六章第二节第2课时
课时安排: 1课时
学情分析:
学生认知基础:学生在小学时已经学习过同分母分数加减及异分母分数加减的运算法则,并且经历过用字母表示现实情境中数量关系的过程。
由此类比分式的加减法,可以猜想分式的加减运算法则。
活动经验基础:在相关知识的学习过程中,学生经历过一些从实际问题建模的思想,因此本节课从实际问题入手,能够引起学生的有意记忆;同时,还与整式运算、分解因式等有密切联系,因此可以加强知识之间的纵向联系。
学习内容分析
分式加减法的教学在教材中安排了两课时。
第一课时讲述同分母分式加减法的运算法则及其应用以及简单异分母分式相加减的运算。
第二节课则讲述异分母分式加减法的运算法则及分式的通分。
在此,我做了部分调整:讲授完同分母分式加减法的运算法则及其应用以后,把第二课时的异分母分式相加减的运算法则也放到本课时,让学生形成连贯的知识,且形成知识的对比记忆,并体会数学中的化归思想,
教学目标:
1、探究同分母分式加减法的运算法则及简单的异分母分式加减法的运算法则。
2、通过实际问题的提出,引导学生自己解决问题,采用类比的方法,帮助学生自己总结知识点。
3结合已有的学习经验,解决新问题,获得成就感以及克服困难的方法和勇气。
教学重点:同分母分式及简单的异分母分式加减法的运算法则。
教学难点:运用运算法则正确求解分式计算问题。
课堂教学结构:
创设情境 引出课题——类比思想 总结法则
——质疑讨论 归纳法则——课堂小结 布置作业
教学过程:
活动一 创设情境 引出课题
1.P15问题3是一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2. P115[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.
⒊师归纳:有关分式的加减运算,引出课题。
【设计意图】通过行程问题引入分式的加减运算,既体现了加减运算的意义,又让学生经历了从实际问题建立分式模型的过程,发展学生有条理的思考及代数表达能力。
同时在解决实际问题时,教学生用画图的方法理解题意,从而解决问题。
活动二 类比思想 总结法则
㈠探究同分母分式加减运算法则
⒈做一做⑴你能找到他们的好朋友吗?
⑵问题:同分母分数如何相减?
⒉试一试⑴你能找到他们的好朋友吗?
⑵问题:同分母分式如何相加减?
⒊类比归纳:同分母分式相加减:分母不变,把分子相加减。
㈡例题讲练
⒈做一做:尝试完成下列各题:
⒉师归纳:(1)把分子相加减后,如果所得结果不是最简分式时,要约分.(2)注意分数线有括号的作用,分子相加减时,要注意添括号.
⒊例 1 计算:⑴
⑵
⑶
【设计意图】通过一些简单的练习,引导学生借助与分数类比的思想,
大胆猜想分式的加减运算法则,并让学生说明其合理性。
同时,加强讲练结合,配一些习题及例题,达到巩固新知的作用。
活动三质疑讨论归纳法则
㈠探究异分母分式加减运算法则
⒈问题:小明认为,只要把异分母的分式化成同分母的分式,异分母的分式的加减问题就变成了同分母的分式的加减问题。
小亮同意小明的这种看法,但他俩的具体做法不同:
小明:
小亮:
你认为谁的方法更好?为什么?
⒉交流讨论:
⒊归纳:⑴异分母分式相加减:通分,把异分母分式化为同分母分式。
⑵异分母分式通分时,确定最简公分母。
㈡例题讲练
⒈找找最简公分母:
⒉计算:
⒊解决前面的实际问题:(=
⒋拓展:⑴⑵
⑶甲乙两地相距s千米,汽车从甲地到乙地按v千米/时的速度行驶,若按(v+a)千米/时的速度行驶,可提前多少小时到达?
【设计意图】以讨论的形式,让学生很自然过渡到异分母分式的加减问题。
让学生体会异分母分式的加减关键在于化异分母分式为同分母分式,而异分母分式化同分母分式的重点是通分,确定最简公分母等知识点,这要求老师根据学生出现的具体问题加以正确引导。
活动四课堂小结
⒈谈谈这节课,你的收获与感想?
⒉归纳:
【设计意图】鼓励学生结合本节课的学习,谈自己的收获与感想。
感受到数学就在我们身边,随时随地帮助我们解决生活中的许多实际问题,从而激发学生学好数学的积极性。
与此同时,教师适时地总结,起到提纲挈领的作用。
布置作业:P22(2)(3)
编一道用分式加减法来解决的应用题。