分式的加减法教学设计教案
《分式的加法和减法》教案
《分式的加法和减法》教案教学目标(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.(3)通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.教学重点熟练地进行异分母的分式加减法的运算.教学难点熟练地进行异分母的分式加减法的运算.教学方法引导启发、类比、讨论交流、讲练结合教学过程(一)、预习复习分数加减法的计算法则是怎样的?让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,请学生自己说出分式的加减法法则(二)、共同探索,建立知识体系1、学生类比分数的加减法法则归纳叙述分式的加减法法则:同分母分式相加减,分母不变,把分子相加减. 用式子表示是:c a ±c b =c ba ±.异分母分式相加减,先通分,变为分母的分式,再加减. 用式子表示为:b a ±d c =bd bcad ±.(注意:异分母的分式加减法的运算, 关键是通分,通分的关键是正确确定几个分式的最简公分母)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做通分.2、分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母.3、确定最简公分母的一般步骤:(1)找系数:如果各分母的系数都是整数,那么取它们的最小公倍数.(2)找字母:凡各分母因式中出现的所有字母或含字母的式子都要选取.(3)找指数:取分母因式中出现的所有字母或含字母的式子中指数最大的.这样取出的因式的积,就是最简公分母.4、异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式5、例题讲解计算:(1)2222235y x x y x y x ---+;(2)q p q p 321321--+ [例后总结]第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)2222223223y x y x y x y x y x y x --+-+--+[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.(2)96261312--+-+-x x x x [分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.(三)、作业练习.(1)ba ab b a b a b a b a 22255523--+++ (2)mn m n m n m n n m -+---+22(3)96312-++a a (4)b a b a b a b a b a b a b a b a ---+-----+-87546563。
分式的加法和减法教案
分式的加法和减法教案
教案标题:探究分式的加法和减法
教学目标:
1. 理解分式的加法和减法的基本概念。
2. 掌握分式的加法和减法的计算方法。
3. 能够应用所学知识解决实际问题。
教学重点:
1. 分式的加法和减法的计算方法。
2. 分式的化简和通分。
教学难点:
1. 分式的加法和减法的应用。
2. 解决实际问题的能力。
教学准备:
1. 教师准备教学课件和相关教学素材。
2. 学生准备课堂笔记和相关教学工具。
教学过程:
一、导入
教师通过提问和引入实际问题,引发学生对分式的加法和减法的兴趣,激发学生的思考和探究欲望。
二、概念讲解
1. 分式的加法和减法的基本概念讲解。
2. 分式的加法和减法的计算方法讲解。
3. 分式的化简和通分的方法讲解。
三、示范演示
教师通过示范演示分式的加法和减法的计算过程,让学生理解和掌握计算方法。
四、练习训练
1. 学生进行分组练习,通过练习巩固所学知识。
2. 学生自主完成课堂练习和作业,巩固分式的加法和减法的计算方法。
五、拓展应用
教师设计一些实际问题,让学生运用所学知识解决问题,培养学生的实际应用
能力。
六、课堂总结
教师对本节课的重点内容进行总结,并强调分式的加法和减法的应用。
七、作业布置
布置相关作业,巩固学生对分式的加法和减法的掌握程度。
教学反思:
教师在教学过程中要注重引导学生思考和探究,培养学生的分析和解决问题能力。
同时要关注学生的学习情况,及时调整教学方法,确保教学效果。
分式的加减 教案
分式的加减教案教案标题: 分式的加减教学目标:1. 学生能够理解和操作分式的加减运算;2. 学生能够利用分式的加减法解决实际问题;3. 学生能够灵活运用分式的加减法解决数学题目。
教学资源:1. 教科书:包含分式的加减法的相关知识点和练习题。
2. 黑板/白板和彩色粉笔/马克笔。
3. 分式加减练习题,分发给学生进行课堂练习。
教学步骤:引入: (5分钟)1. 导入已有的知识,回顾分式的概念和基本操作。
2. 提问学生关于分式的加减法的经验和疑惑,激发学生的学习兴趣。
讲解与示范: (15分钟)1. 通过示例,解释分式的加法和减法的定义和原则。
2. 运用具体的实例演示如何进行分式的加减运算。
3. 强调分式加减法的化简规则,鼓励学生灵活应用。
练习与互动: (20分钟)1. 分发练习题,并要求学生独立完成。
2. 学生互相交换练习题,进行互批互改。
3. 随机抽取几道题目,邀请学生上台讲解解题过程与答案。
巩固与拓展: (10分钟)1. 整理学生的错误和疑惑,解答他们的问题。
2. 给予学生拓展练习,让他们运用分式的加减法解决实际问题。
3. 鼓励学生思考如何运用分式的加减法解决其他类型的数学问题。
作业布置:1. 布置练习题作为课后作业,以巩固学生对分式的加减法的理解和运用。
2. 鼓励学生寻找和分享身边实际生活中与分式加减相关的问题,并用分式的加减法进行解答。
评估与反馈:1. 收集并批改学生的课堂练习和作业,对学生的掌握程度进行评估。
2. 针对学生的困惑和错误,进行针对性的解答和反馈。
3. 根据学生的表现和反馈,调整教学方法和策略,进一步提高教学效果。
教学延伸:1. 将分式的加减法与其他数学概念结合,例如整数运算、多项式的加减等。
2. 引导学生学习和探索更复杂的分式运算,例如分式的乘除运算。
3. 鼓励学生参加数学竞赛和解决实际问题,以提高对分式加减的运用能力。
备注:教案中的时间分配仅供参考,根据实际教学情况可进行适当调整。
分式的加减法教学设计
分式的加减法教学设计教学目标:1.理解分式的概念;2.能够进行分式的加法和减法运算;3.掌握分式的化简方法。
教学准备:1.教材:教材上关于分式的知识点和例题;2.工具:白板、荧光笔、计算器、学生课本、学生练习册。
教学过程:引入:(5分钟)1.教师出示一个橡皮擦和一个苹果,问学生两个物品的重量比之间的关系如何表示。
2.引导学生从橡皮擦和苹果的重量比举一反三,引出分数的概念。
导入:(10分钟)1.教师将分数的概念进行讲解,包括分子、分母的含义。
2.通过例题让学生猜测,分母越大,表示的是一个整体中的一部分越大还是越小。
3.强调分子和分母之间的关系,分子越大,表示的部分越多。
示范与实践:(30分钟)1.教师讲解分数的加法和减法运算规则。
-加法:分母相同,分子相加;分母不同,通分后,分子相加。
-减法:分母相同,分子相减;分母不同,通分后,分子相减。
2.教师通过例题演示分式的加法和减法运算。
例1:1/3+2/3=3/3=1例2:3/4-1/4=2/4=1/2例3:1/2+1/3=3/6+2/6=5/6例4:5/6-1/3=5/6-2/6=3/6=1/23.学生进行练习,教师给予指导和帮助。
练习1:2/3+3/4练习2:1/2-1/5练习3:3/5-1/4练习4:4/5+1/10小结与拓展:(15分钟)1.学生回答教师提问,总结分式的加法和减法运算规则。
2.教师讲解分式的化简方法。
化简的原则:分子和分母都能够被同一个数整除时,可以化简。
化简的步骤:找到分子和分母的最大公约数,然后将分子和分母都除以最大公约数。
巩固与评价:(20分钟)1.学生进行分式的加减法运算练习。
2.教师进行评价和点评,对正确率低的学生进行辅导。
延伸拓展:1.学生自主探究不同的分式运算情况。
2.学生进行更复杂的分式运算练习,如混合数的加减法运算。
教学反思:本节课中,通过引入物品的比较,引导学生理解分数的概念。
在示范与实践环节,教师通过例题演示了分式的加法和减法运算,让学生理解了规则的运用。
15.2.2.1分式的加减(教案)
4.问题解决:设计具有实际背景的问题,培养学生从现实情境中抽象出数学问题,并用所学知识解决问题的能力,提升数学应用意识。
5.情感态度:激发学生学习数学的兴趣,培养勇于面对和克服困难的积极情感态度,增强自信心。
本节课的核心素养目标旨在全面提升学生在数学学科领域的综合素养,为新教材要求下的素质教育奠定基础。
2.教学难点
-异分母分式的通分:对于不同分母的分式进行加减运算时,如何正确寻找最简公分母并进行通分是学生的难点。
-分式加减运算中的符号处理:在分子相加减时,如何正确处理正负号,特别是在通分过程中,保持等式两边的符号一致。
-实际问题中的分式转换:学生在面对实际问题时,难以将其转化为分式加减运算模型。
举例:难点如异分母分式$\frac{1}{2}$和$\frac{1}{3}$的加法,需要找到最简公分母6,并分别将分子乘以对应的倍数,变为$\frac{3}{6}$和$\frac{2}{6}$,然后相加得$\frac{5}{6}$。在此过程中,学生可能会在确定符号和计算最简公分母时出现困难。
3.重点难点解析:在讲授过程中,我会特别强调同分母分式加减法和异分母分式加减法这两个重点。对于难点部分,比如通分的步骤,我会通过具体的例子和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过不同长度的绳子来演示分数的加减,并观察结果。
《分式的加减》教案
一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算规则。
2. 培养学生运用分式加减法解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 分式的加减法概念及运算规则。
2. 分式加减法的实际应用问题。
三、教学重点与难点:1. 重点:分式的加减法概念、运算规则及实际应用。
2. 难点:分式加减法在实际问题中的运用。
四、教学方法:1. 采用案例分析法,让学生通过实际例子理解分式的加减法。
2. 运用小组讨论法,培养学生合作解决问题的能力。
3. 采用问答法,激发学生思考,引导学生深入理解分式加减法。
五、教学过程:1. 导入新课:通过生活实例引入分式的加减法概念。
2. 讲解与演示:讲解分式的加减法运算规则,并通过多媒体演示分式加减法的运算过程。
3. 案例分析:分析实际问题,让学生运用分式加减法解决问题。
4. 小组讨论:学生分组讨论,分享各自解决问题的方法。
5. 问答环节:教师提问,学生回答,巩固所学知识。
6. 课堂练习:布置练习题,让学生巩固所学内容。
8. 作业布置:布置课后作业,巩固所学知识。
9. 课后辅导:针对学生作业中的问题进行辅导。
10. 教学评价:对学生的学习情况进行评价,为下一步教学提供参考。
六、教学准备:1. 准备PPT课件,展示分式的加减法运算过程。
2. 准备实际应用问题案例,用于课堂讲解和练习。
3. 准备课后作业,巩固学生所学知识。
七、教学步骤:1. 回顾上节课的内容,复习分式的加减法概念和运算规则。
2. 通过PPT课件,展示分式加减法的运算过程,让学生跟随步骤进行学习。
3. 讲解实际应用问题,让学生运用分式加减法解决问题。
4. 分组讨论,让学生分享自己解决问题的方法和思路。
5. 问答环节,教师提问,学生回答,巩固所学知识。
八、课堂练习:1. 布置练习题,让学生独立完成,巩固分式的加减法运算。
2. 挑选部分学生的作业进行讲解和点评,指出其中的错误和不足。
《分式的加法和减法》教案
《分式的加法和减法》教案一、教学目标:知识与技能:使学生掌握分式的加法和减法运算方法,能够熟练地进行分式的加减运算。
过程与方法:通过实例分析,让学生学会将分式加减问题转化为同分母分式加减问题,培养学生的运算能力。
情感态度与价值观:激发学生学习分式的兴趣,培养学生勇于探索、积极进取的精神。
二、教学重点与难点:重点:分式的加法和减法运算方法。
难点:如何将分式加减问题转化为同分母分式加减问题。
三、教学准备:教师准备:分式的加法和减法运算示例及练习题。
学生准备:掌握分式的基本概念。
四、教学过程:1. 导入新课:通过复习分式的基本概念,引出分式的加法和减法运算。
2. 讲解与演示:讲解分式的加法和减法运算方法,演示如何将分式加减问题转化为同分母分式加减问题。
4. 巩固知识:出示一些分式加减运算的题目,让学生独立完成,教师批改并讲解错误。
五、作业布置:1. 请完成课后练习题中的分式加减运算题目。
通过本节课的教学,学生是否掌握了分式的加法和减法运算方法?是否能够熟练地进行分式的加减运算?针对存在的问题,下一步教学应该如何调整?七、课后评价:学生在本节课后的作业完成情况,以及在分式加减运算方面的掌握程度,将是评价本节课教学效果的主要依据。
八、教学进度安排:本节课的教学内容计划在1课时内完成。
九、教学资源:1. PPT课件:分式的加法和减法运算示例及练习题。
2. 练习题:分式加减运算题目及答案。
十、教学拓展:引导学生探索分式的其他运算方法,如乘法和除法,为后续课程打下基础。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及合作交流的表现。
2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性、解题过程的清晰性等。
3. 课后练习:布置一定量的分式加减练习题,要求学生在课后完成,以检验他们是否掌握了所学知识。
4. 课程反馈:收集学生对课程内容和学习方式的反馈,以便对后续教学进行调整。
1. 实例教学:通过具体的例题,让学生直观地理解分式加减的运算方法。
《分式的加减法》教案设计
《分式的加减法》教案设计《《分式的加减法》教案设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习内容分析学习目标描述:分式的加减法学习内容分析:本节内容一共安排了三课时。
第一节课阐述同分母的分式加减法的运算法则及分母互为相反式的分式加减法运算。
第二节课则阐述异分母分式的通分、加减法的运算法则及简单的应用,第三节课则提升到分母有公因式的分式加减法、分式与整式的加减运算、分式的求值及应用。
这样安排,给学生一个简单到复杂的认识过程,有了第一节的铺垫,使学生对分式加减法的掌握并不觉得难,且本节对于第三章分式的学习有着至关重要的作用,是后面根据实际生活问题列出分式方程,并求出正确答案的基本功,教学时必须踏踏实实,。
学生学情分析学生的知识技能基础:学生在小学时已经学习过同分母分数的加减,异分母分数的加减运算法则,在初一学习了整式的加减,在上一章学习了因式分解,本章又学习了分式及其乘除,都为这一节课的学习做好了铺垫。
由分数加减运算类比分式的加减是这节内容的要害。
学生活动经验基础:在相关知识的学习过程中,学生经历过许多类比和猜测的活动,如实数的加减运算类比整式的合并同类项;由在时的值的情况去猜测时的情况,由正整数相乘去发现规律猜测与负整数的乘法等,这些活动经验都为本节学习有很好的启迪教学策略设计同分母分式的加减法是最简单的,也是学习异分母的分式加减的基础,所以作为起始节也是工具节内容,它就要求教学时务必使学生理解它并且能够灵活运用,对分母互为相反式的分式加减,能明白改变运算符号的实质。
因此,本节课的教学目标定位为:1、类比同分数加减法的法则归纳出同分母分式的加减法法则。
2、理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算。
3、通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想。
信息技术运用说明利用PPT进行教学《分式的加减法》教案设计这篇文章共2272字。
人教版八年级上册15.2.2分式的加减(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式加减的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式加减的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调同分母分式加减和异分母分式加减这两个重点。对于难点部分,如通分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如调配饮料,演示分式加减的基本原理。
三、教学难点与重点
1.教学重点
-分式加减的基本概念:理解分式加减的定义,掌握分式加减的法则,能够正确应用法则进行计算。
-分式的通分:掌握寻找公分母的方法,能够将异分母分式转化为同分母分式进行加减运算。
-实际应用:能够将分式加减应用于解决实际问题,建立数学模型。
举例解释:
(1)重点讲解分式加减的运算步骤,通过多个例题演示,强调分子相加(减)时分母必须保持不变。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式加减的基本概念。分式加减是指对具有相同或不同分母的分式进行加或减的运算。它在数学运算中非常重要,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两种不同浓度的溶液混合后的浓度,通过分式加减可以帮助我们解决这个问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
分式的加减教案范文
分式的加减教案范文分式的加减教案1教学目标:〔1〕理解通分的意义,理解最简公分母的意义;〔2〕掌握分式的通分法则,能熟练掌握通分运算。
教学重点:分式通分的理解和掌握。
教学难点:分式通分中最简公分母确实定。
教学工具:投影仪教学方法:启发式、讨论式教学过程:〔一〕引入〔1〕如何计算:由此让同学复习分数通分的意义、通分的依据、通分的法则以及最简公分母的概念。
〔2〕如何计算:〔3〕何计算:引导同学思索,推测如何求解?〔二〕新课1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
注意:通分保证:〔1〕各分式与原分式相等;〔2〕各分式分母相等。
2、通分的依据:分式的基本性质。
3、通分的关键:确定几个分式的最简公分母。
通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母。
依据分式通分和最简公分母的定义,将分式通分:最简公分母为:然后依据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为。
通分如下:通过本例使同学关于分式的通分大致过程和思路有所了解。
让同学归纳通分的思经过程。
例1通分:〔1〕分析:让同学找分式的公分母,可设问“分母的系数各不相同如何解决?〞,依据分数的通分找最小公倍数。
解:∵最简公分母是12xy2小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。
解:∵最简公分母是10a2b2c2,由同学归纳最简公分母的思路。
分式通分中求最简公分母概括为:1〕取各分母系数的最小公倍数;2〕凡出现的字母为底的幂的因式都要取;3〕相同字母的幂的因式取指数最大的。
取这些因式的积就是最简公分母。
例2通分:设问:关于分母为多项式的分式通分如何找最简公分母?前面讲的是单项式,关于多项式首先应该对多项式因式分解,确定各分母所含的因子然后再确定最简公分母。
解:∵最简公分母是2x〔x+1〕〔x—1〕小结:当分母是多项式时,应先分解因式。
分式的加减法教案
分式的加减法教案教案标题:分式的加减法教案教案目标:1. 学生能够理解分式的基本概念和表示方法。
2. 学生能够掌握分式的加法和减法运算规则。
3. 学生能够应用所学知识解决与分式加减法相关的问题。
教学准备:1. 教师准备白板、黑板笔、教学PPT等教学工具。
2. 学生准备纸和笔。
教学过程:引入(5分钟):1. 引导学生回顾分式的基本概念,例如分子、分母和分式的表示方法。
2. 提出问题:如果有两个分式,我们如何进行加法或减法运算呢?讲解与示范(15分钟):1. 通过教学PPT或黑板,讲解分式的加法和减法运算规则。
a. 加法规则:分母相同,分子相加,分母保持不变。
b. 减法规则:分母相同,分子相减,分母保持不变。
c. 如果分母不同,需要先通分,再按照相同分母的规则进行运算。
2. 通过示例演示如何进行分式的加法和减法运算。
示例1:1/3 + 2/3 = 3/3 = 1示例2:3/4 - 1/4 = 2/4 = 1/2示例3:2/5 + 1/3 = (6/15) + (5/15) = 11/15练习与巩固(20分钟):1. 学生个别或小组完成一些基础的分式加减法练习题,教师进行指导和纠正。
练习题示例:a. 2/3 + 1/3b. 5/6 - 1/6c. 3/4 + 2/5d. 7/8 - 3/82. 学生进行一些应用题的解答,例如:a. 小明有1/2个苹果,小红有1/3个苹果,他们一起有多少个苹果?b. 一辆汽车每小时行驶3/4个小时,共行驶了多少小时?总结与拓展(10分钟):1. 教师与学生一起总结分式的加法和减法运算规则。
2. 鼓励学生思考更复杂的分式加减法问题,例如分式的混合运算等。
作业布置:1. 布置一些分式加减法的作业题,要求学生独立完成。
2. 鼓励学生通过阅读相关教材或上网查找更多分式加减法的例题和解题方法。
教学延伸:1. 引导学生探索分式的乘法和除法运算规则,并进行相应的教学和练习。
2. 引导学生应用分式的加减法解决实际问题,例如比例、百分比等。
八年级数学下册《分式的加减法》教案、教学设计
2.提问学生:“我们已经学习了分数的加减法,那么分式是否也可以进行加减运算呢?”引发学生思考,激发学习兴趣。
3.通过对比分数加减法与分式加减法的异同,导入新课,让学生对分式的加减法产生好奇心,为后续学习打下基础。
-对于基础薄弱的学生,通过个别辅导、课后答疑等方式,帮助他们弥补知Байду номын сангаас缺陷,增强学习信心。
5.注重学习评价,及时反馈教学效果:
-设计形式多样的评价方式,如课堂提问、作业批改、阶段测试等,全面评估学生的学习状况。
-根据评价结果,及时调整教学策略,帮助学生巩固知识,提高教学效果。
四、教学内容与过程
(一)导入新课
(二)过程与方法
1.通过导入实际问题,激发学生的学习兴趣,引导学生主动探究分式加减法的运算规律。
2.采用师生互动、小组合作的学习方式,让学生在讨论、交流中掌握分式加减法的方法。
3.设计丰富的例题和练习,帮助学生巩固所学知识,提高运算技巧。
4.引导学生通过分式的加减法,发现数学规律,培养学生的观察能力和逻辑思维能力。
2.选做题:
-完成课本第57页的拓展题1、2,鼓励学生在掌握基本知识的基础上,挑战更高难度的题目,提高运算技巧和逻辑思维能力。
-对本节课学习的分式加减法进行总结,撰写学习心得体会,要求不少于300字,帮助学生反思学习过程,提高自我认知。
3.小组合作任务:
-以小组为单位,共同讨论并解决一道具有挑战性的分式加减问题,要求小组成员共同参与,分工合作,将解题过程和答案以书面形式提交。
2.针对难点问题,采取以下策略进行教学:
《分式的加法和减法》教案
《分式的加法和减法》教案一、教学目标:知识与技能:使学生掌握分式的加法和减法运算法则,能够正确进行分式的加法和减法运算。
过程与方法:通过实例分析和练习,培养学生解决实际问题的能力。
情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点:重点:分式的加法和减法运算法则。
难点:如何正确进行分式的加法和减法运算,以及解决实际问题。
三、教学准备:教师准备:分式的加法和减法运算示例、练习题。
学生准备:了解分式的基本概念,具备基本的数学运算能力。
四、教学过程:1. 导入新课:通过一个实际问题,引入分式的加法和减法运算。
2. 讲解与演示:讲解分式的加法和减法运算法则,并通过示例进行演示。
3. 练习与讨论:学生进行练习,教师引导学生讨论解题思路和方法。
4. 解决问题:学生运用所学知识解决实际问题。
五、课后作业:1. 完成练习题:巩固分式的加法和减法运算。
2. 思考题:引导学生进行深入思考,提高解决问题的能力。
注意:教师在教学过程中要关注学生的学习情况,及时解答学生的疑问,确保学生能够掌握分式的加法和减法运算。
要注重培养学生的逻辑思维能力,提高他们解决实际问题的能力。
六、教学评估:1. 课堂问答:通过提问学生,了解他们对分式加减法的理解和掌握程度。
2. 练习批改:对学生的练习题进行批改,评估他们对分式加减法的操作熟练度。
3. 课后访谈:课后与部分学生进行访谈,了解他们在课堂外的学习情况和问题。
七、教学反思:1. 针对学生的掌握情况,调整教学方法和节奏,以适应不同学生的学习需求。
2. 对于学生在学习中遇到的问题,进行个别辅导,确保他们能够跟上课程进度。
3. 总结本次教学中的成功经验和不足之处,为下一次教学做好准备。
八、拓展与延伸:1. 引导学生思考分式加减法在实际生活中的应用,提高他们的实际问题解决能力。
2. 介绍分式加减法的相关数学历史背景,激发学生对数学的兴趣。
3. 推荐学生阅读相关的数学读物,拓展他们的数学视野。
(完整版)分式的加减教案
=+7271=-7271=+125127=-125127第五章分式与分式方程第三节分式的加减法(第一课时)一、教学目标1、知识与技能掌握同分母分式的加减法法则,会进行简单分式的加减运算。
2、过程与方法经历探索分式加减运算法则的过程,进一步培养代数化归意识和类比思想。
3、情感态度与价值观通过学习认识到数与式的联系,激发学生学习数学的兴趣,重视学习过程中对学生的归纳、概括、交流等能力的培养;丰富数学情感与思想。
二、教学重点(1)同分母分式的加减运算法则,同分母分式加减法的简单应用。
(2)类比、转化的思想的渗透。
三、教学难点(1)分子为多项式括号要加括号。
(2)当分式的分母是互为相反式时,转化为同分母。
四、教学过程1、情景引入(1)做一做:你能说说上面式子的特点吗?并思考做法理由?运算法则:同分母的分数相加减,分母不变,把分子相加减.=-xx 12=+a a 21=+bb 2523=-yy 3437(2)猜一猜:运算法则:同分母的分式相加减,分母不变,把分子相加减.(类比思想) 用式子表示为:ac b a c a b ±=± 2、 同分母加减例1(1)ab b a ab b a --+; (2)2422---x x x ; (3)n m n m n m n m ++-+-42; (4)111213+--++++-x x x x x x . 目的:教学生如何运用法则进行运算,通过这4道例题,让学生学会加减法运算并注意运算时可能出现的问题。
注意:在进行运算时若分子是多项式的,分子要先带括号,再去括号后合并同类项;运算结果也类比分数加减法的结果,要化成最简形式,即约去分子与分母的所有公因式—化简。
牛刀小试1:(1) y x xy x y x x -+--22322; (2)ba ab a b a b ++++222 .注意:通过学生的解答情况,对法则做进一步的讲解,力图让学生理解并掌握同分母分式的加减法法则。
《分式的加法和减法》教案
《分式的加法和减法》教案第一章:分式加减法的基本概念1.1 分式的定义与性质1. 分式的定义:分式是由分子和分母组成的表达式,分子和分母都是代数式或数字。
2. 分式的性质:分式具有与整数类似的加减乘除运算性质,也具有约分、通分等特殊性质。
1.2 分式的加法与减法1. 分式加法的定义:两个分式相加,就是将它们的分子相加,分母保持不变。
2. 分式减法的定义:两个分式相减,就是将它们的分子相减,分母保持不变。
第二章:分式加减法的运算规则2.1 同分母分式的加减法1. 同分母分式相加:直接将分子相加,分母保持不变。
2. 同分母分式相减:直接将分子相减,分母保持不变。
2.2 异分母分式的加减法1. 通分:将异分母分式通分,使其分母相同。
2. 分子相加(减):将通分后的分子相加(减)。
3. 约分:将运算结果的分子和分母约分至最简形式。
第三章:分式加减法的例题解析3.1 同分母分式的加减法例题例题1:\(\frac{3x}{4} + \frac{5x}{4}\)例题2:\(\frac{2y}{3} \frac{4y}{3}\)3.2 异分母分式的加减法例题例题1:\(\frac{3x}{4} + \frac{5y}{6}\)例题2:\(\frac{2x}{3} \frac{4y}{5}\)第四章:分式加减法的练习与巩固4.1 同分母分式的加减法练习练习1:\(\frac{3x}{4} + \frac{5x}{4}\)练习2:\(\frac{2y}{3} \frac{4y}{3}\)4.2 异分母分式的加减法练习练习1:\(\frac{3x}{4} + \frac{5y}{6}\)练习2:\(\frac{2x}{3} \frac{4y}{5}\)第五章:分式加减法在实际问题中的应用5.1 分式加减法在几何问题中的应用例题1:一个矩形的面积为\(A = \frac{3x}{4} + \frac{5y}{6}\),求矩形的面积。
分式加减教学设计
分式加减教学设计一、教学目标1. 理解分式的概念,学会分式的加减运算方法;2. 掌握分式加减运算的基本技巧;3. 能够熟练解决与分式加减相关的问题。
二、教学准备1. 教材:教科书、练习册等;2. 教具:黑板、白板、彩色粉笔或白板笔;3. 辅助工具:计算器、分数线、带有分数计算功能的软件等。
三、教学过程1. 导入教师可以通过一个与分式加减相关的实际问题引入本节课的内容,并激发学生的学习兴趣。
2. 概念讲解(1)分式的定义:分式是由分子和分母组成的数,分子和分母都是整数。
(2)分式的加法和减法:a. 分母相同的分式相加减:将分子相加减,分母保持不变。
b. 分母不同的分式相加减:先找到它们的公分母,然后按照公分母相加减的原则进行计算。
3. 实例演示教师通过多个实例演示分式的加减运算步骤和方法,引导学生理解并掌握运算技巧。
例如:(1)7/8 + 5/8 = ?首先,分母相同,直接将分子相加,结果为 12/8;然后,将 12/8 化简为 1 4/8 或 1 1/2。
(2)1/3 - 1/6 = ?先找到它们的公分母,最小公倍数是 6;然后,将分子按照公分母相应比例扩大或缩小,得到 2/6 - 1/6 = 1/6。
4. 课堂练习教师设计一些练习题,让学生在课堂上进行练习,巩固所学的知识和技巧。
5. 拓展延伸教师可以设计一些扩展题目,让学生运用所学的知识解决更加复杂的问题,培养学生的分析和解决问题的能力。
6. 总结归纳教师对本节课所学的内容进行总结和归纳,强调重点和难点,让学生进行知识梳理和思考。
四、巩固练习布置一些相关的作业,让学生继续巩固和应用所学的知识。
五、教学反思回顾本节课的教学过程和结果,思考如何改进,提高学生的学习效果和兴趣。
以上是一份关于分式加减教学设计的范例,具体的教学设计可以根据教师的实际情况进行调整和修改。
希望能对您的教学工作有所帮助。
八年级数学北师大版下册 第5章《分式的加减法》教学设计 教案(1)
教学设计分式的加减法一、教学目标1、类比分数加减法的法则归纳出分式的加减法法则。
2、理解分式加减法的运算法则,能进行同分母、异分母的分式加减法运算。
3、通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想。
二、课时安排1课时三、教学重点分式的加减运算四、教学难点异分母分式加减法法则及应用五、教学过程(一)导入新课 做一做:=+3231 =-7271 =+8381 =-125127 猜一猜=+a a 21 =-x x 12 =+bb 2523 =-y y 3437 通过做一做的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性。
从而抛出同分母分式加减法的运算法则,点明本节课的主要内容。
通过人人都可以入手的做一做,让学生回答,可以使学生很快进入状态又不觉得困难。
而后两个运算后要约分,学生极有可能报出没有约分的答案。
因此,类比时注意引导学生,正确猜想,约分是分数的必要步骤哦,使法则的提出顺理成章,也为后面的学习做好铺垫。
运算法则:同分母的分式相加减,分母不变,把分子相加减. 用式子表示为:ac b a c a b ±=±(二)讲授新课1.同分母分式加减法学习了同分母分式加减法的法则,是否会用还得先讲再练:例1(1)abb a ab b a -++; (2)2422---x x x ; (3)n m n m n m n m ++-+-42; (4)131112+-++--++x x x x x x . 教学生如何运用法则进行运算,通过这4道例题,让学生学会加减法运算并注意运算时可能出现的问题。
在进行运算时若分子是多项式的,分子要先带括号,再去括号后合并同类项;运算结果也类比分数加减法的结果,要化成最简形式,即约去分子与分母的所有公因式——化简。
例2 计算(1)y x y y x x -+-; (2)aa a a ----12112. 练一练(1)a b b b a a 222-+-; (2)xx x --+-1112 (3)m n n n m n m n n m ---+-+22 这是一组分母互为相反式的分式加减的题目,实则是简单的异分母分式的加减法,有了例题的讲解,又有练一练的巩固,应该能够掌握,第三小题有意增加难度,在于学生能力的提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 分式的加减法(2)
教学目标
1.进一步掌握异分母的分式的加减;
2.积累通分的经验;
3.能解决一些简单的实际问题, 进一步体会分式的模型作用。
教学重点:通分、化简.
教学难点:通分、化简.
教学过程
一、创设问题情境,引入新课
对于异分母的分数相加减必须利用分数的基本性质,化成同分母的分数相加减,然后才能运算.下面我们再来看几个异分母的加减法.
做一做:在分数的加减法中,我们把异分母的分数化成同分母分数的过程叫做通分.
二、讲授新课
下面可尝试用分式的基本性质,将“做一做”中的异分母分式的加减法通分化成同分母的分式加减法,计算并化简.
(让同学们分组讨论交流完成,教师可巡视发现问题并解决问题).
把异分母的分式加减法,通过通分,每个分式都化成同分母的加减法.你是怎样通分,把异分母的分式化成同分母的?
同学们可根据“做一做”的每个步骤,总结你是怎样通分的?(小组讨论完成)
我认为通分的关键是几个分式的公分母,从而确定各分式的分子、分母同乘以什么样的“适当整式”,才能化成同分母.
确定公分母的方法:系数取每个分式的分母的系数的最小公倍数,再取各分母所有因式的最高次幂的积,一起作为几个分式的公分母.
同学们概括得很好.下面我们来看一个例题
[例1]通分:
(1)
x y 2,23y x ,xy 41;(2)y x -5,2)(3x y -; (3)31+x ,31-x ; (4)412-a ,2
1-a 分析: 通分时,应先确定各个分式的分母的公分母:先确定公分母的系数,取各个分母系数的最小公倍数;再取各分母所有因式的最高次幂的积.
解:(1)三个分母的公分母为12 xy 2,则
x y 2=22626y x y ⋅⋅=2
3126xy y ; 23y x =x y x x 4342⋅⋅=22124xy
x ;
xy 41=y xy y 3431⋅⋅=2123xy
y (2)因为(y -x )2=(x -y )2,所以两个分母的公分母为(x -y )2. y x -5=))(()(5y x y x y x ---=2
)()(5y x y x --; 2)(3x y -=2)
(3y x -. (3)两个分母的公分母为(x +3)(x -3)=x 2-9.
31+x =)3)(3(3-+-x x x =9
32--x x ; 31-x =)3)(3(3-++x x x =9
32++x x . (4)因为a 2-4=(a +2)(a -2),所以两个分母的公分母为a 2-4.
412-a =4
12-a ; 21-a =)2)(2(2+-+a a a =4
22-+a a . 我们再来看一个例题
[例2]计算:
(1)31-x -31+x ;(2)412-a -2
1-a ; (3)用两种方法计算: (23-x x -2
+x x )·x x 42-. (可由学生板演,学生之间互查互纠).
解:(1)31-x -31+x =)3)(3(3+-+x x x -)3)(3(3+--x x x =9)3()3(2---+x x x =9
62-x (2)412-a -21-a =)
2)(2()2(1+-+-a a a =
)2)(2(1+---a a a =-)2)(2(1+-+a a a (3)方法一:(按运算顺序,先计算括号里的算式) (23-x x -2
+x x )·x x 42-=()2)(2()2(3-++x x x x -)2)(2()2(-+-x x x x )·x x 42-
=)2)(2()2()63(22-+--+x x x x x x ·x
x x )2)(2(-+ =x
x x 822+=2x +8. 方法二:(利用乘法分配律). (23-x x -2
+x x )·x x 42- =x x x x x ⋅--+⋅)2()2)(2(3-x
x x x x ⋅+-+⋅)2()2)(2( =3(x +2)-(x -2)=3x +6-x +2=2x +8.
例3甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.
(1)甲、乙所购饲料的平均单价各是多少?
(2)谁的购货方式更合算?由于两次购买饲料的单价有所变化,可设第一次购买的饲料的单价为m 元/千克,第二次购买的饲料的单价为n 元/千克,甲、乙所购买饲料的平均单价应为两次饲料的总价除以两次所买饲料的总质量.在第(2)题中,比较甲、乙所购饲料的平均单价,谁的平均单价低谁的购货方式就更合算,可以用作差法比较平均单价.
解:(1)设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 是正数,且m ≠n )
甲两次购买饲料的平均单价为
2100010001000⋅+n m =2
n m +(元/千克) 乙两次购买饲料的平均单价为
n
m 8008002800+⨯=n m mn +2(元/千克) (2)甲、乙两种饲料的平均单价的差是
2n m +-n m mn +2=)
(2)(2
n m m m ++-)(24n m mn + =)(24222n m mn n mn m +-++=)
(2)(2
n m n m +- 由于m 、n 是正数,因为m ≠n 时,)(2)(2n m n m +-也是正数,即2n m +-n
m mn +2>0,因此乙的购买方式更合算.
三.课堂练习
1.随堂练习第1题第(2)小题:
(2)11-a -2
12a - 解:原式=11-a -1
22--a =
)1)(1(1+-+a a a -122--a =112-+a a -122--a =1)2(12---+a a =1
32-+a a 2.补充练习
计算:(1)9122-m +m -32;(2)a +2-a
-24. 解:(1)9122-m +m
-32 =)3)(3(12-+m m +)
3(2--m =)3)(3(12-+m m +)
3)(3()3(2+-+-m m m =)
3)(3()3(212-++-m m m =
)3)(3(26-+-m m m =)3)(3()3(2-+--m m m =-32+m . (2)a +2-a -24=12+a -a
-24 =a a a --+2)2)(2(-a
-24=a a ---2442 =)1()2()1(2-⨯--⨯-a a =2
2
-a a 四.课时小结
这节课我们学习了异分母的分式加减法,使我们提高了分式运算的能力.
五、课后作业: 习题第1、2、3、4题
六、活动与探究 若)1)(1(3-+-x x x =1+x A +1
-x B ,求A 、B 的值. 本题把一个真分式化成两个部分分式之和的形式,这里A 和B 都是待定系数,待定系数可根据对应项的系数来求解.
[结果]右式通分,得
)1)(1(3-+-x x x =)
1)(1()1()1(-+++-x x x B x A . 因为左右恒等且分母相同,故分子应恒等,即x -3≡A (x -1)+B (x +1) 所以x -3=(A +B )x +(-A +B )
对应系数比较,得⎩⎨⎧-=+-=+31B A B A 解得⎩
⎨⎧-==12B A 所以A =2,B =-1。