2014年辽宁省锦州市中考数学试题(含答案)

合集下载

辽宁省锦州市2014年中考数学试卷(解析版)

辽宁省锦州市2014年中考数学试卷(解析版)

辽宁省盘锦市第一完全中学2012届九年级第二次中考模拟数学试题答题时间 120分钟 试卷满分150一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题卡相应位置上) 1.-2的绝对值是A .-2B .- 12C .2D .122. 下面四个几何体中,俯视图为四边形的是3. 温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是A .3.6×107B .3.6×106C .36×106D .0.36×108 4. 如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED′等于A .70°B .65°C .50°D .25°(第7题图)5.某市5月下旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是A .平均数为30B .众数为29C .中位数为31D .极差为56.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是7.如图,过O ⊙上一点C 作O ⊙的切线,交O ⊙直径AB 的延长线于点D. 若∠D=40°,则∠A 的度数A .20°B .25C .30° D.40°EDBC′FCD ′A(第4题图)A B C DB . 3 1 0 2 4 5 D .3 1 0 24 5A . 3 1 0 2 4 5 C . 3 1 0 2 4 58.如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c>1;(3)2a -b<0;(4)a+b+c<0。

2014年辽宁省锦州市中考数学试卷(含解析版)

2014年辽宁省锦州市中考数学试卷(含解析版)

2014年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2014•锦州)﹣1.5的绝对值是()A. 0 B.﹣1.5 C. 1.5 D.2.(3分)(2014•锦州)如图,在一水平面上摆放两个几何体,它的主视图是()A. B.C. D.3.(3分)(2014•锦州)下列计算正确的是()A. 3x+3y=6xy B. a2•a3=a6 C. b6÷b3=b2 D.(m2)3=m64.(3分)(2014•锦州)已知a>b>0,下列结论错误的是()A. a+m>b+m B. C.﹣2a>﹣2b D.5.(3分)(2014•锦州)如图,直线a∥b,射线DC与直线a相交于点C,过点D 作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115° B.125° C.155° D.165°6.(3分)(2014•锦州)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:每人销售件数1800 510 250 210 150 120人数 1 1 3 5 3 2那么这15位销售人员该月销售量的平均数、众数、中位数分别是()A. 320,210,230 B. 320,210,210C. 206,210,210 D. 206,210,2307.(3分)(2014•锦州)二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2 B.m≥5 C.m≥0 D. m>48.(3分)(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(3分)(2014•锦州)分解因式2x2﹣4x+2的最终结果是.10.(3分)(2014•锦州)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10﹣9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为米.11.(3分)(2014•锦州)计算:tan45°﹣(﹣1)0= .12.(3分)(2014•锦州)方程﹣=1的解是.13.(3分)(2014•锦州)如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是.14.(3分)(2014•锦州)某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是.15.(3分)(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.16.(3分)(2014•锦州)如图,点B1在反比例函数y=(x>0)的图象上,过点B1分别作x轴和y轴的垂线,垂足为C1和A,点C1的坐标为(1,0)取x轴上一点C2(,0),过点C2分别作x轴的垂线交反比例函数图象于点B2,过B2作线段B1C1的垂线交B1C1于点A1,依次在x轴上取点C3(2,0),C4(,0)…按此规律作矩形,则第n(n≥2,n为整数)个矩形)An﹣1Cn﹣1CnBn的面积为.三、解答题(本大题共10小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(2014•锦州)已知=,求式子(﹣)÷的值.18.(8分)(2014•锦州)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)(2)在网格中,△ABC的下方,直接画出△EBC,使△EBC与△ABC全等.19.(8分)(2014•锦州)对某市中学生的幸福指数进行调查,从中抽取部分学生的调查表问卷进行统计,并绘制出不完整的统计表和条形统计图.等级频数频率★60 0.06★★80 0.08★★★160 0.16★★★★300 0.30★★★★★400 0.40(1)直接补全统计表.(2)补全条形统计图(不要求写出计算过程).(3)抽查的学生约占全市中学生的5%,估计全市约有多少名中学生的幸福指数能达到五★级?20.(10分)(2014•锦州)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转发盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一下区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?21.(10分)(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=12 AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.22.(10分)(2014•锦州)如图,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)23.(10分)(2014•锦州)如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.24.(12分)(2014•锦州)在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图象为折线OABC,y2的图象是过O、B、C三点的抛物线一部分.(1)根据图象回答: 调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是2<x<6 ; 说明线段AB的实际意义是从第二小时到第六小时甲的工作效率是3件.(2)求出调试过程中,当6≤x≤8(3)时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式.25.(12分)(2014•锦州)(1)已知正方形ABCD中,对角线AC与BD相交于点O,如图① ,将△BOC绕点O逆时针方向旋转得到△B′OC′,OC′与CD交于点M,OB′与BC交于点N,请猜想线段CM与BN的数量关系,并证明你的猜想.(2)如图② ,将(1)中的△BOC绕点B逆时针旋转得到△BO′C′,连接AO′、DC′,请猜想线段AO′与DC′的数量关系,并证明你的猜想.(3)如图③ ,已知矩形ABCD和Rt△AEF有公共点A,且∠AEF=90°,∠EAF=∠DAC=α,连接DE、CF,请求出的值(用α的三角函数表示).26.(14分)(2014•锦州)如图,平行四边形ABCD在平面直角坐标系中,点A 的坐标为(﹣2,0),点B的坐标为(0,4),抛物线y=﹣x2+mx+n经过点A和C.(1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO分成两部分,对称轴左侧部分的图形面积记为S1,右侧部分图形的面积记为S2,求S1与S2的比.(3)在y轴上取一点D,坐标是(0,72),将直线OC沿x轴平移到O′C′,点D关于直线O′C′的对称点记为D′,当点D′正好在抛物线上时,求出此时点D′坐标并直接写出直线O′C′的函数解析式.2014年辽宁省锦州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2014•锦州)﹣1.5的绝对值是()A. 0 B.﹣1.5 C. 1.5 D.考点:绝对值分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣1.5|=1.5.故选:C.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014•锦州)如图,在一水平面上摆放两个几何体,它的主视图是()A. B.C. D.考点:简单组合体的三视图..分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得左边是一个竖着的长方形,右边是一个横着的长方形,故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(2014•锦州)下列计算正确的是()A. 3x+3y=6xy B. a2•a3=a6 C. b6÷b3=b2 D.(m2)3=m6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:A、3x与3y不是同类项,不能合并,故A选项错误;B、a2•a3=a5,故B选项错误;C、b6÷b3=b3,故C选项错误;D、(m2)3=m6,故D选项正确.故选:D.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.4.(3分)(2014•锦州)已知a>b>0,下列结论错误的是()A. a+m>b+m B. C.﹣2a>﹣2b D.考点:不等式的性质..分析:运用不等式的基本性质判定即可.解答:解:a>b>0,A、a+m>b+m,故A选项正确;B、,故B选项正确;C、﹣2a<﹣2b,故C选项错误;D、,故D选项正确.故选:C.点评:本题主要考查了不等式的基本性质,熟记不等式的基本性质是解题的关键.5.(3分)(2014•锦州)如图,直线a∥b,射线DC与直线a相交于点C,过点D 作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115° B.125° C.155° D.165°考点:平行线的性质..分析:如图,过点D作c∥a.由平行线的性质进行解题.解答:解:如图,过点D作c∥a.则∠1=∠CDB=25°.又a∥b,DE⊥b,∴b∥c,DE⊥c,∴∠2=∠CDB+90°=115°.故选:A.点评:本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.6.(3分)(2014•锦州)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:每人销售件数1800 510 250 210 150 120人数 1 1 3 5 3 2那么这15位销售人员该月销售量的平均数、众数、中位数分别是()A. 320,210,230 B. 320,210,210C. 206,210,210 D. 206,210,230考点:加权平均数;中位数;众数..分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.解答:解:平均数是:(1800+510+250×3+210×5+150×3+120×2)÷15=4800÷15=320(件);210出现了5次最多,所以众数是210;表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件).故选B.点评:此题主要考查了一组数据平均数的求法,以及众数与中位数的求法,又结合了实际问题,此题比较典型.7.(3分)(2014•锦州)二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2 B.m≥5 C.m≥0 D. m>4考点:抛物线与x轴的交点..分析:根据题意利用图象直接得出m的取值范围即可.解答:解:一元二次方程ax2+bx+c=m有实数根,可以理解为y=ax2+bx+c和y=m有交点,可见,m≥﹣2,故选:A.点评:此题主要考查了利用图象观察方程的解,正确利用数形结合得出是解题关键.8.(3分)(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组..分析:由弟弟的年龄是x岁,哥哥的年龄是y岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y﹣x,列出方程组即可.解答:解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.点评:此题考查由实际问题列方程组,注意找出题目蕴含的数量关系解决问题.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(3分)(2014•锦州)分解因式2x2﹣4x+2的最终结果是2(x﹣1)2.考点:提公因式法与公式法的综合运用..分析:先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.故答案为:2(x﹣1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(3分)(2014•锦州)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10﹣9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为6×10﹣5米.考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:60000纳米=60000×10﹣9米=0.000 06米=6×10﹣5米;故答案为:6×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(3分)(2014•锦州)计算:tan45°﹣(﹣1)0= .考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算即可得到结果.解答:解:原式=1﹣=.故答案为:点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.(3分)(2014•锦州)方程﹣=1的解是x=0 .考点:解分式方程.专题:计算题.分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:﹣1﹣3﹣x=x﹣4,移项合并得:2x=0,解得:x=0,经检验x=0是分式方程的解,故答案为:x=0点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(3分)(2014•锦州)如图,在一张正方形纸片上剪下一个半径为r 的圆形和一个半径为R 的扇形,使之恰好围成图中所示的圆锥,则R 与r 之间的关系是 R=4r .考点: 圆锥的计算..分析: 利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算. 解答: 解:扇形的弧长是:=,圆的半径为r ,则底面圆的周长是2πr,圆锥的底面周长等于侧面展开图的扇形弧长则得到:=2πr,∴2R=2r , 即:R=4r ,r 与R 之间的关系是R=4r . 故答案为:R=4r .点评: 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.14.(3分)(2014•锦州)某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是.考点:几何概率分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解答:解:由题意可得,投掷在阴影区域的概率是:=.故答案为:.点评:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.15.(3分)(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.考点:轴对称-最短路线问题;菱形的性质..分析:作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE 的最小值,再由轴对称的性质可知DE=DE′=1,故可得出△AE′D是直角三角形,由菱形的性质可知∠PDE′=∠ADC=30°,根据锐角三角函数的定义求出PE的长,进而可得出PC的长.解答:解:如图所示,作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE 的最小值,∵菱形ABCD的边长为2,E是AD边中点,∴DE=DE′=AD=1,∴△AE′D是直角三角形,∵∠ABC=60°,∴∠PDE′=∠ADC=30°,∴PE′=DE′•tan30°=,∴PC===.故答案为:.点评:本题考查的是轴对称﹣最短路线问题,熟知菱形的性质及锐角三角函数的定义是解答此题的关键.16.(3分)(2014•锦州)如图,点B1在反比例函数y=(x>0)的图象上,过点B1分别作x轴和y轴的垂线,垂足为C1和A,点C1的坐标为(1,0)取x轴上一点C2(,0),过点C2分别作x轴的垂线交反比例函数图象于点B2,过B2作线段B1C1的垂线交B1C1于点A1,依次在x轴上取点C3(2,0),C4(,0)…按此规律作矩形,则第n(n≥2,n为整数)个矩形)An﹣1Cn﹣1CnBn的面积为.考点:反比例函数系数k的几何意义.专题:规律型.分析:根据反比例函数的比例系数k的几何意义得到第1个矩形的面积=2,第2个矩形的面积=×(﹣1)=,第3个矩形的面积=(2﹣)×1=,…于是得到第n个矩形的面积=×=,由此得出答案即可.解答:解:第1个矩形的面积=2,第2个矩形的面积=×(﹣1)=,第3个矩形的面积=(2﹣)×1=,…第n个矩形的面积=×=.故答案为:.点评:本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题(本大题共10小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(2014•锦州)已知=,求式子(﹣)÷的值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再根据=得出=,代入原式进行计算即可.解答:解:原式=•===,∵=,∴=,∴原式=﹣2×=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.(8分)(2014•锦州)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)(2)在网格中,△ABC的下方,直接画出△EBC,使△EBC与△ABC全等.考点:作图—复杂作图;全等三角形的判定;角平分线的性质..分析:(1)作∠ABC的平分线即可;(2)利用点A关于BC的对称点E画出△EBC.解答:解:(1)如图,作∠ABC的平分线,(2)如图,点评:本题主要考查了作图﹣复杂作图,角平分线的性质及全等三角形的判定,解题的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.19.(8分)(2014•锦州)对某市中学生的幸福指数进行调查,从中抽取部分学生的调查表问卷进行统计,并绘制出不完整的统计表和条形统计图.等级频数频率★60 0.06★★80 0.08★★★160 0.16★★★★300 0.30★★★★★400 0.40(1)直接补全统计表.(2)补全条形统计图(不要求写出计算过程).(3)抽查的学生约占全市中学生的5%,估计全市约有多少名中学生的幸福指数能达到五★级?考点:条形统计图;用样本估计总体;频数(率)分布表..分析:(1)根据统计图中,4颗星的人数是300人,占0.3;根据频数与频率的关系,可知共随机调查的总人数,根据总人数即可求出别的数据.(2)根据(1)中求出的数值,据此可补全条形图;(3)先求出全市中学生的总人数,再除以对应的幸福指数为5颗星的百分比.解答:解:(1)对中学生的幸福指数进行调查的人数:300÷0.30=1000(人)一颗星的频率为:60÷1000=0.06,二颗星的频率为:80÷1000=0.08,三颗星的频数为:1000×0.16=160,四颗星的频数为:300,五颗星的频数为:1000﹣60﹣80﹣160﹣300=400,五颗星的频率为:400÷1000=0.40.故答案为:0.06,0.08,160,300,400,0.40.(2)如图,根据(1)中求出的数值,据此可补全条形图;(3)1000÷5%×0.4=8000(名)答:估计全市约有8000名中学生的幸福指数能达到五★级.点评:本题考查的是条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.20.(10分)(2014•锦州)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转发盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一下区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?考点:列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数,找出乘积为负数的情况数,即可求出所求的概率;(2)找出乘积为无理数的情况数,即可求出一等奖的概率.解答:解:列表如下:1.5 ﹣3 ﹣0 0 0 0 01 1.5 ﹣3 ﹣﹣1 ﹣1.5 3 ﹣所有等可能的情况有12种,(1)乘积结果为负数的情况有4种,则P(乘积结果为负数)==;(2)乘积是无理数的情况有2种,则P(乘积为无理数)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=12 AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.考点:直角三角形斜边上的中线;等腰三角形的判定与性质;等腰直角三角形..分析:(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.解答:(1)证明:∵C D=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=12 AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+CM,CD=CB,∴BC=AM+DM.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质等腰直角三角形的判定与性质,难点在于(2)判断出EF垂直平分AC.22.(10分)(2014•锦州)如图,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)考点:解直角三角形的应用-方向角问题..分析:延长BC交AN于点D,则BC⊥AN于D.先解Rt△ACD,求出CD=AC=10,AD=CD=10,再解Rt△ABD,得到∠B=22°,AB=≈46.81,BD=AB•cos∠B≈43.53,则BC=BD﹣CD≈33.53,然后根据时间=路程÷速度即可求出救生船到达B处大约需要的时间.解答:解:如图,延长BC交AN于点D,则BC⊥AN于D.在Rt△ACD中,∵∠ADC=90°,∠DAC=30°,∴CD=AC=10,AD=CD=10.在Rt△ABD中,∵∠ADB=90°,∠DAB=68°,∴∠B=22°,∴AB=≈≈46.81,BD=AB•cos∠B≈46.81×0.93=43.53,∴BC=BD﹣CD≈43.53﹣10=33.53,∴救生船到达B处大约需要:33.53÷20≈1.7(小时).答:救生船到达B处大约需要1.7小时.点评:本题考查了解直角三角形的应用﹣方向角问题,准确作出辅助线构造直角三角形,进而求出BC的长度是解题的关键.23.(10分)(2014•锦州)如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.考点:切线的判定..分析:(1)连接OA,由OA=OB,GA=GE得出∠ABO=∠BAO,∠GEA=∠GAE;再由EF⊥BC,得出∠BFE=90°,进一步由∠ABO+∠BEF=90°,∠BEF=∠GEA,最后得出∠GAO=90°求得答案;(2)BC为直径得出∠BAC=90°,利用勾股定理得出BC=10,由△BEF∽△BCA,求得EF、BF的长,进一步在△OEF中利用勾股定理得出OE的长即可.解答:(1)证明:如图,连接OA,∵OA=OB,GA=GE∴∠ABO=∠BAO,∠GEA=∠GAE∵EF⊥BC,∴∠BFE=90°,∴∠ABO+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,即AG与⊙O相切.(2)解:∵BC为直径,∴∠BAC=90°,AC=6,AB=8,∴BC=10,∵∠EBF=∠CBA,∠BFE=∠BAC,∴△BEF∽△BCA,∴==∴EF=1.8,BF=2.4,∴0F=0B﹣BF=5﹣2.4=2.6,∴OE==.点评:本题考查了切线的判定:过半径的外端点与半径垂直的直线是圆的切线.也考查了勾股定理、相似三角形的判定与性质以及圆周角定理的推论.24.(12分)(2014•锦州)在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图象为折线OABC,y2的图象是过O、B、C三点的抛物线一部分.(1)根据图象回答: 调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是2<x<6 ; 说明线段AB的实际意义是从第二小时到第六小时甲的工作效率是3件.(2)求出调试过程中,当6≤x≤8(3)时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式.考点:二次函数的应用..分析:(1)根据y2图象在y1上方的部分,可得答案,根据线段AB的工作效率没变,可得答案案;(2)根据待定系数法,可得函数解析式;(3)根据根据甲的最大效率乘以时间,可得甲的产品,根据乙的最大效率乘以乙的时间,可得乙的产品,甲的产品加乙的产品,可得答案.解答:解:(1)y2图象在y1上方的部分,生产乙的效率高于甲的效率的时间x(小时)的取值范围是 2<x<6;线段AB的实际意义是从第二小时到第六小时甲的工作效率是3件;=kx+b,(2)设函数解析式是y1图象过点B(6,3)、C(8,0),解得,=﹣+12;故函数解析式为y1(3)Z=3m+4(6﹣m),即Z=﹣m+24.点评:本题考查了二次函数的应用,利用了函数图象,待定系数法,题目较为简单.25.(12分)(2014•锦州)(1)已知正方形ABCD中,对角线AC与BD相交于点O,如图① ,将△BOC绕点O逆时针方向旋转得到△B′OC′,OC′与CD交于点M,OB′与BC交于点N,请猜想线段CM与BN的数量关系,并证明你的猜想.(2)如图② ,将(1)中的△BOC绕点B逆时针旋转得到△BO′C′,连接AO′、DC′,请猜想线段AO′与DC′的数量关系,并证明你的猜想.(3)如图③ ,已知矩形ABCD和Rt△AEF有公共点A,且∠AEF=90°,。

2014年锦州市中考数学真题(附详细解析)

2014年锦州市中考数学真题(附详细解析)

2014年锦州市中考数学真题(附详细解析),于是得到CM=BN;(2)如图②,连接DC′,根据正方形的性质得AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,于是可判断△ABC和△OBC都是等腰直角三角形,则AC=AB,BC=BO,所以BD=AB;再根据旋转的性质得∠O′BC′=∠OBC=45°,OB=O′B,BC′=BC,则BC′=BO′,所以==,再证明∠1=∠2,则可根据相似的判定定理得到△BDC′∽△BAO′,利用相似比即可得到DC′=AO′;(3)如图③,根据余弦的定义,在Rt△AEF中得到cos∠EAF=;在Rt△DAC中得到cos∠DAC=,由于∠EAF=∠DAC=α,所以==cosα,∠EAD=∠FAC,则可根据相似的判定定理得到△AED∽△AFC,利用相似比即可得到=cosα.解答:解:(1)CM=BN.理由如下:如图①,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∠BOC=90°,∵△BOC绕点O逆时针方向旋转得到△B′OC′,∴∠B′OC′=∠BOC=90°,∴∠B′OC+∠COC′=90°,而∠BOB′+∠B′OC=90°,∴∠B′OB′=∠COC′,在△BON和△COM中,∴△BON≌△COM,∴CM=BN;(2)如图②,连接DC′,∵四边形ABCD为正方形,∴AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,∴△ABC和△OBC都是等腰直角三角形,∴AC=AB,BC=BO,∴BD=AB,∵△BOC绕点B逆时针方向旋转得到△B′OC′,∴∠O′BC′=∠OBC=45°,OB=O′B,BC′=BC,∴BC′=BO′,∴==,∵∠1+∠3=45°,∠2+∠3=45°,∴∠1=∠2,∴△BDC′∽△BAO′,∴==,∴DC′=AO′;(3)如图③,在Rt△AEF中,cos∠EAF=;在Rt△DAC中,cos∠DAC=,∵∠EAF=∠DAC=α,∴==cosα,∠EAF+∠FAD=∠FAD+∠DAC,即∠EAD=∠FAC,∴△AED∽△AFC,∴==cosα.点评:本题考查了四边形的综合题:熟练掌握矩形和正方形的性质;同时会运用等腰直角三角形的性质和旋转的性质;能灵活利用三角形全等或相似的判定与性质解决线段之间的关系.26.(14分)(2014•锦州)如图,平行四边形ABCD在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,4),抛物线y=﹣x2+mx+n 经过点A和C.(1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO分成两部分,对称轴左侧部分的图形面积记为S1,右侧部分图形的面积记为S2,求S1与S2的比.(3)在y轴上取一点D,坐标是(0,),将直线OC沿x轴平移到O′C′,点D关于直线O′C′的对称点记为D′,当点D′正好在抛物线上时,求出此时点D′坐标并直接写出直线O′C′的函数解析式.考点:二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;平行四边形的性质;锐角三角函数的定义..专题:综合题.分析:(1)由条件可求出点C的坐标,然后用待定系数法就可求出抛物线的解析式.(2)由抛物线的解析式可求出其对称轴,就可求出S2,从而求出S1,就可求出S1与S2的比.(3)由题可知DD′⊥O′C′,且DD′的中点在直线O′C′上.由OC∥O′C′可得DD′⊥OC.过点D作DM⊥CO,交x轴于点M,只需先求出直线DM的解析式,再求出直线DM与抛物线的交点,就得到点D′的坐标,然后求出DD′中点坐标就可求出对应的直线O′A′的解析式.解答:解:(1)如图1,∵四边形ABCO是平行四边形,∴BC=OA,BC∥OA.∵A的坐标为(﹣2,0),点B的坐标为(0,4),∴点C的坐标为(2,4).∵抛物线y=﹣x2+mx+n经过点A和C.∴.解得:.∴抛物线的解析式为y=﹣x2+x+6.(2)如图1,∵抛物线的解析式为y=﹣x2+x+6.∴对称轴x=﹣=,设OC所在直线的解析式为y=ax,∵点C的坐标为(2,4),∴2a=4,即a=2.∴OC所在直线的解析式为y=2x.当x=时,y=1,则点F为(,1).∴S2=EC•EF=×(2﹣)×(4﹣1)=.∴S1=S四边形ABCO﹣S2=2×4﹣=.∴S1:S2=:=23:9.∴S1与S2的比为23:9.(3)过点D作DM⊥CO,交x轴于点M,如图2,∵点C的坐标为(2,4),∴tan∠BOC=.∵∠OMD=90°﹣∠MOC=∠BOC,∴tan∠OMD==.∵点D的坐标是(0,),∴=,即OM=7.∴点M的坐标为(7,0).设直线DM的解析式为y=kx+b,则有,解得:∴直线DM的解析式为y=﹣x+.∵点D与点D′关于直线O′C′对称,∴DD′⊥O′C′,且DD′的中点在直线O′C′上.∵OC∥O′C′,∴DD′⊥OC.∴点D′是直线DM与抛物线的交点.联立解得:,,∴点D′的坐标为(﹣1,4)或(,).设直线O′C′的解析式为y=2x+c,①当点D′的坐标为(﹣1,4)时,如图3,线段DD′的中点为(,)即(﹣,),则有2×(﹣)+c=,解得:c=.此时直线O′C′的解析式为y=2x+.②当点D′的坐标为(,)时,如图4,同理可得:此时直线O′C′的解析式为y=2x+.综上所述:当点D′的坐标为(﹣1,4)时,直线O′C′的解析式为y=2x+;当点D′的坐标为(,)时,直线O′C′的解析式为y=2x+.点评:本题考查了用待定系数法求二次函数及一次函数的解析式、抛物线与直线的交点、平行四边形的性质、三角函数的定义、中点坐标公式等知识,有一定的综合性.。

辽宁盘锦中考数学2014年试卷精品word版答案解析精编

辽宁盘锦中考数学2014年试卷精品word版答案解析精编

2014年辽宁省盘锦市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分)1.(3分)(2014•盘锦)﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.(3分)(2014•盘锦)病理学家研究发现,甲型H7N9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为()A.1.5×10﹣4B.1.5×10﹣5C.0.15×10﹣3D.1.5×10﹣33.(3分)(2014•盘锦)如图,下面几何体的左视图是()A.B.C.D.4.(3分)(2014•盘锦)不等式组的解集是()A.﹣2≤x<1 B.﹣2<x≤1C.﹣1<x≤2D.﹣1≤x<25.(3分)(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a66.(3分)(2014•盘锦)甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是()A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲7.(3分)(2014•盘锦)如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5 B.12 C.13 D.148.(3分)(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M 是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或29.(3分)(2014•盘锦)如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,DE=,∠EDF=90°,则DF长是()A.B.C.D.10.(3分)(2014•盘锦)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.二、填空题(每小题3分,共24分)11.(3分)(2014•盘锦)计算|﹣|+的值是.12.(3分)(2014•盘锦)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为.13.(3分)(2014•盘锦)某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是分.14.(3分)(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.15.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线y=(x>0)交AB于点E,AE:EB=1:3.则矩形OABC的面积是.16.(3分)(2014•盘锦)如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC 上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是.17.(3分)(2014•盘锦)已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是.18.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是.三、解答题(19、20每小题9分,共18分)19.(9分)(2014•盘锦)先化简,再求值.(﹣)÷,其中m=tan45°+2cos30°.20.(9分)(2014•盘锦)某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5:4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A商场和B商场的单价.四、解答题(本题14分)21.(14分)(2014•盘锦)某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数;(4)现有喜欢“新闻节目”(记为A)、“体育节目”(记为B)、“综艺节目”(记为C)、“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.五、解答题(22小题10分、23小题14分,共24分)22.(10分)(2014•盘锦)如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB 长.23.(14分)(2014•盘锦)如图,△ABC中,∠C=90°,点G是线段AC上的一动点(点G不与A、C重合),以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交BC于点E,连结DE.(1)求证:DE是⊙O的切线;(2)若cosA=,AB=8,AG=2,求BE的长;(3)若cosA=,AB=8,直接写出线段BE的取值范围.六、解答题(本题12分)24.(12分)(2014•盘锦)某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为y(人).(1)求y与x(x>20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入﹣接待成本)七、解答题(本题14分)25.(14分)(2014•盘锦)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG 绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.八、解答题(本题14分)26.(14分)(2014•盘锦)如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.(1)求抛物线的解析式;(2)求点C的坐标(用含m的代数式表示);(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.2014年辽宁省盘锦市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分)1.(3分)(2014•盘锦)﹣5的倒数是()A.5 B.﹣5 C.D.﹣【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣.故选:D.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.(3分)(2014•盘锦)病理学家研究发现,甲型H7N9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为()A.1.5×10﹣4B.1.5×10﹣5C.0.15×10﹣3D.1.5×10﹣3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00015=1.5×10﹣4;故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2014•盘锦)如图,下面几何体的左视图是()A.B.C.D.【分析】找到几何体从左面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看,得到左边3个正方形,右边1个正方形.故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)(2014•盘锦)不等式组的解集是()A.﹣2≤x<1 B.﹣2<x≤1C.﹣1<x≤2D.﹣1≤x<2【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组的解集的规律找出即可.【解答】解:由①得:x≥﹣2由②得:x<1,所以不等式组的解集为:﹣2≤x<1.故选:A.【点评】本题主要考查利用不等式的性质解一元一次不等式,根据找不等式组的解集的规律找出不等式组的解集是解此题的关键.5.(3分)(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a6【分析】根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.【解答】解:原式==4a7,故选:B.【点评】本题考查了同底数幂的乘法法则,同底数幂相乘,底数不变指数相加;幂的乘方的法则,幂的乘方,底数不变,指数相乘.6.(3分)(2014•盘锦)甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是()A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵甲的方差是8.5,乙的方差是60.5,∴甲的方差小于乙的方差,∴甲的成绩比乙稳定;∵甲、乙的平均成绩分别是145,146,∴平均分相当;故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(3分)(2014•盘锦)如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5 B.12 C.13 D.14【分析】首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【解答】解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高==12cm.故选:B.【点评】此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.8.(3分)(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M 是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或2【分析】分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程x2+bx+c=1的解的个数.【解答】解:分三种情况:点M的纵坐标小于1,方程x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程x2+bx+c=1的解的个数是0.故方程x2+bx+c=1的解的个数是0或2.故选:A.【点评】考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.(3分)(2014•盘锦)如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,DE=,∠EDF=90°,则DF长是()A.B.C.D.【分析】设DF和AE相交于O点,由矩形的性质和已知条件可证明∠E=∠F,∠ADE=∠FDC,进而可得到△ADE∽△CDF,由相似三角形的性质:对应边的比值相等即可求出DF的长.【解答】解:设DF和AE相交于O点,∵四边形ABCD是矩形,∴∠ADC=90°,∵∠EDF=90°,∴∠ADC+∠FDA=∠EDF+∠FDA,即∠FDC=∠ADE,∵AE⊥CF于点H,∴∠F+∠FOH=90°,∵∠E+∠EOD=90°,∠FOH=∠EOD,∴∠F=∠E,∴△ADE∽△CDF,∴AD:CD=DE:DF,∵AD=3,DC=4,DE=,∴DF=.故选:C.【点评】本题考查了矩形的性质、相似三角形的判断和性质以及等角的余角相等的性质,题目的综合性加强,难度中等.10.(3分)(2014•盘锦)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.【分析】根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而根据相遇前、相遇后两个阶段得出相应的分段函数,从而找出符合题意的图象.【解答】解:根据题意,两人同时相向出发,甲到达B地时间为:=6小时,乙到达A地:=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A 地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:法二:本题可无需列出方程,只需弄清楚题意,分清楚s与t的变化可分为几个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地,故求出各个时间点便可.∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是B.故选:B.【点评】此题主要考查了函数图象,根据题意得出关键转折点是解题关键.二、填空题(每小题3分,共24分)11.(3分)(2014•盘锦)计算|﹣|+的值是.【分析】原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:原式=﹣+=,故答案为:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.(3分)(2014•盘锦)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为.【分析】先求出盒子里红色球的个数,再让红色球的个数除以球的总个数即为所求的概率.【解答】解:∵盒子里装有白球和红球共14个,其中红球比白球多4个,∴红色球有9个,从中随机摸出一个球,它为红色球的概率是:.故答案为:.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)(2014•盘锦)某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是92 分.【分析】根据加权平均数的计算公式和面试成绩占20%,笔试成绩占80%,列出算式,再进行计算即可.【解答】解:根据题意得:80×20%+95×80%=92(分),答:该候选人的最终得分是92分;故答案为:92.【点评】本题考查的是加权平均数的求法,在计算过程中要弄清楚各数据的权.14.(3分)(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.【分析】设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.【解答】解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.【点评】此题考查从实际问题中抽出二元一次方程组,注意找出题目蕴含的数量关系.15.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线y=(x>0)交AB于点E,AE:EB=1:3.则矩形OABC的面积是24 .【分析】根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算.【解答】解:设E点坐标为(t,),∵AE:EB=1:3,∴B点坐标为(4t,),∴矩形OABC的面积=4t•=24.故答案为:24.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.(3分)(2014•盘锦)如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC 上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是 2 .【分析】设A′B=x,根据等边三角形的性质可得∠B=60°,根据直角三角形两锐角互余求出∠BDA′=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2A′B,然后利用勾股定理列式表示出A′D,再根据翻折的性质可得AD=A′D,最后根据AB=BD+AD列出方程求解即可.【解答】解:设A′B=x,∵△ABC是等边三角形,∴∠B=60°,∵DA′⊥BC,∴∠BDA′=90°﹣60°=30°,∴BD=2A′B=2x,由勾股定理得,A′D===x,由翻折的性质得,AD=A′D=x,所以,AB=BD+AD=2x+x=4+2,解得x=2,即A′B=2.故答案为:2.【点评】本题考查了翻折变换的性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记各性质并用A′B表示出相关的线段是解题的关键.17.(3分)(2014•盘锦)已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是23°或67°.【分析】按点D在直线OC左侧、右侧两种情形分类讨论,利用圆周角定理求解.【解答】解:由题意,①当点D在直线OC左侧时,如答图1所示.连接OD,则∠1=∠2=22°,∴∠COD=180°﹣∠1﹣∠2=136°,∴∠AOD=∠COD﹣∠AOC=136°﹣90°=46°,∴∠ABD=∠AOD=23°;②当点D在直线OC右侧时,如答图2所示.连接OD,则∠1=∠2=22°;并延长CO,则∠3=∠1+∠2=44°.∴∠AOD=90°+∠3=90°+44°=134°,∴∠ABD=∠AOD=67°.综上所述,∠ABD的度数是23°或67°,故答案为:23°或67°.【点评】此题考查圆周角定理及分类讨论的数学思想,画出图形,直观解决问题.18.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是a•2n﹣1.【分析】判断出△AOB是等腰直角三角形,根据等腰直角三角形的性质求出第一个正方形的边长AB,然后判断出△ADE是等腰直角三角形,再求出AD=DE,从而求出第二个正方形的边长等于第一个正方形的边长的2倍,同理可得后一个正方形的边长等于前一个正方形的边长的2倍,然后求解即可.【解答】解:∵OA=OB,∴△AOB是等腰直角三角形,∴第一个正方形的边长AB=a,∠OAB=45°,∴∠DAE=180°﹣45°﹣90°=45°,∴△ADE是等腰直角三角形,∴AD=DE,∴第二个正方形的边长CE=CD+DE=2AB,…,后一个正方形的边长等于前一个正方形的边长的2倍,所以,第n个正方形的边长=2n﹣1AB=a•2n﹣1.故答案为:a•2n﹣1.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,判断出后一个正方形的边长等于前一个正方形的边长的2倍是解题的关键.三、解答题(19、20每小题9分,共18分)19.(9分)(2014•盘锦)先化简,再求值.(﹣)÷,其中m=tan45°+2cos30°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出m的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=﹣,当m=1+时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(9分)(2014•盘锦)某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5:4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A商场和B商场的单价.【分析】设A商场该种电动玩具的单价是5x元,则B商场的该种电动玩具的单价是4x元.由等量关系:用120元在A商场买这种电动玩具比在B商场少买2个,列出方程.【解答】解:设A商场该种电动玩具的单价是5x元,则B商场的该种电动玩具的单价是4x元.则+2=,解得x=3,则4x=12,5x=15.答:这种电动玩具在A商场和B商场的单价分别是15元、12元.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.四、解答题(本题14分)21.(14分)(2014•盘锦)某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数;(4)现有喜欢“新闻节目”(记为A)、“体育节目”(记为B)、“综艺节目”(记为C)、“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.【分析】(1)根据题意得出喜欢新闻的人数÷所占百分比=总人数,进而得出答案;(2)利用(1)中所求得出喜欢体育的人数为:80﹣24﹣16﹣8,进而得出收看“综艺节目”的人数占调查总人数的百分比;(3)利用“科普节目”在扇形图中所占比例,进而得出所对应的圆心角的度数;(4)利用树状图得出所有可能,进而求出概率.【解答】解:(1)由条形图可得出:喜欢新闻的人数是24人,所占百分比为:30%,故本次问卷调查共调查的观众人数为:24÷30%=80(人);(2)由(1)得出:喜欢体育的人数为:80﹣24﹣16﹣8=32(人),收看“综艺节目”的人数占调查总人数的百分比为:16÷80×100%=20%,如图所示:(3)“科普节目”在扇形图中所对应的圆心角的度数为:360°×=36°;(4)如图所示:一共有12种可能,恰好抽到喜欢“新闻节目”和“体育节目”两位观众的有2种,故恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率为:=.【点评】此题主要考查了扇形统计图与条形统计图的综合应用以及利用列表法求概率等知识,利用条形统计图与扇形统计图得出正确信息是解题关键.五、解答题(22小题10分、23小题14分,共24分)22.(10分)(2014•盘锦)如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB 长.【分析】过B作BE⊥DC于E,设AB=x米,则CE=5.5﹣x,BC=6﹣x,根据30°角的正弦值即可求出x,则AB求出.【解答】解:过B作BE⊥DC于E,设AB=x米,∴CE=5.5﹣x,BC=6﹣x,∵∠ABC=120°,∴∠CBE=30°,∴sin30°==,解得:x=5,答:AB的长度为5米.【点评】考查了解直角三角形,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23.(14分)(2014•盘锦)如图,△ABC中,∠C=90°,点G是线段AC上的一动点(点G不与A、C重合),以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交BC于点E,连结DE.(1)求证:DE是⊙O的切线;(2)若cosA=,AB=8,AG=2,求BE的长;(3)若cosA=,AB=8,直接写出线段BE的取值范围.【分析】(1)连接OD,根据互余得∠A+∠B=90°,再根据线段垂直平分线的性质得ED=EB,则∠B=∠EDB,加上∠A=∠ODA,所以∠ODA+∠EDB=90°,利用平角的定义得∠ODE=90°,然后根据切线的判定定理得到DE是⊙O的切线;(2)连接GD,根据圆周角定理由AG为直径得∠ADG=90°,再根据特殊角的三角函数值得∠A=60°,则∠AGD=30°,根据含30度的直角三角形三边的关系,得AD=AG=,则BD=AB﹣AD=7,所以BF=BD=,在Rt△BEF中,可计算出EF=BF=,BE=2EF=7;(3)由于∠A=60°,则∠B=30°,所以AC=AB=4,由(2)得AD=AG,所以BF=(AB﹣AD)=4﹣AG,在Rt△BEF中,EF=BF,BE=2EF=BF=(4﹣AG)=8﹣AG,利用0<AG<AC即可得到6<BE<8.【解答】(1)证明:连接OD,如图,∵△ABC中,∠C=90°,∴∠A+∠B=90°,∵直线EF垂直平分BD,∴ED=EB,∴∠B=∠EDB,∵OA=OD,∴∠A=∠ODA,∴∠ODA+∠EDB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接GD,∵AG为直径,∴∠ADG=90°,∵cosA=,∴∠A=60°,∴∠AGD=30°,∴AD=AG=,∵AB=8,∴BD=AB﹣AD=8﹣=7,∵直线EF垂直平分BD,∴BF=BD=,在Rt△BEF中,∠B=30°,∴EF=BF=,∴BE=2EF=7;(3)解:∵cosA=,∴∠A=60°,∴∠B=30°,∴AC=AB=4,由(2)得AD=AG,BF=(AB﹣AD)=4﹣AG,在Rt△BEF中,∠B=30°,∴EF=BF,∴BE=2EF=BF=(4﹣AG)=8﹣AG,∵0<AG<AC,即0<AG<4,∴6<BE<8.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了线段垂直平分线的性质和含30度的直角三角形三边的关系.六、解答题(本题12分)24.(12分)(2014•盘锦)某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为y(人).(1)求y与x(x>20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入﹣接待成本)【分析】(1)根据门票价格每提高5元,日接待游客人数就会减少50人,可得价格与人数的关系;(2)根据成本与人数的关系式,可得函数解析式;(3)根据二次函数的性质,a<0,当自变量取﹣时,函数取最大值,可得答案.【解答】解:(1)由题意得y=500﹣50×,即y=﹣10x+700;(2)由z=100+10y,y=﹣10x+700,得z=﹣100x+7100;。

2014年中考数学试题(副卷)参考答案及评分标准

2014年中考数学试题(副卷)参考答案及评分标准

2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D 二、填空题(每小题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每小题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+⎡⎤÷+⎢⎥+++⎣⎦…………………………2分 =2(1)(1)432(2)22x x x x x x x ⎡⎤+--÷+⎢⎥+++⎣⎦…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+⋅++- …………………………5分=12x…………………………6分 当x = tan45°+2cos60°=1+1=2 时, …………………………8分 原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分 次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分 ∴P (A )=41164= ………………………10分 四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设身体状况 “良好”的学生有x 人, “及格”的学生有y 人.3463%200200x y xy -=⎧⎪⎨+=⎪⎩ ………2分 解得:8046x y =⎧⎨=⎩ ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000( 人)……………………10分 2000×56200=560(人) ……………………12分 五、解答题(22小题10分,23小题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分 第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分 ∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂足为F. ∵ ∠ABC=120°∴ ∠FBC=30° ……………1分 在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分 ) ∴DF=AB=8 ………5分∴x +8 …………………6分 在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分 第23题图 即3x 8-x ) …………………8分 解得x=6-………………9分∴CF=3x =3-=2………………10分 DC=CF+DF=6+≈9.5(米) ………………11分 答:路灯C 到地面的距离约为9.5米 …………………12分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分 ∴甲走完全程需4小时,∵甲出发3小时后乙开车追赶甲,两人同时到达目的地 ∴乙走完全程需1小时, ∴乙的速度是60601=(千米/时)………………2分 (2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100) 第24题图 ∴104100k b k b +=⎧⎨+=⎩ …………………4分C解得3020 kb=⎧⎨=-⎩∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2小时后两人第一次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=⎧⎨+=⎩…………………10分解得60140 mn=⎧⎨=-⎩∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6小时,2.4小时或3.6小时后两人相距12千米.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三角形∴AB=AC,∠B=∠CAF=60°又∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分又∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分又∵AE=CF=CG∴四边形AECG是平行四边形. ……………8分(2)四边形AECG是平行四边形………… 9分证明:如图2∵△ABC是等边三角形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°又∵AF=BE ∴ △ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分 又∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即 ∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分 第25题图2 又∵AE=CG∴四边形AECG 是平行四边形. ……………14分八、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=⎛⎫⨯- ⎪⎝⎭∴b=2. …………………2分 (2)解: 延长DC 交x 轴于点H , ∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上方时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代入21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平行四边形∴OE=CD=3, 第26题图1E∴21319228m m --+=3 ……………9分 解得152m =-,212m =- ……………10分 ∴B(2, 12-)或B(2, 52-) …………………11分当点D 在点C 下方时 ∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分 第26题图2 综上,当四边形OEDC 是平行四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。

辽宁省锦州市2013-2019年中考数学试题汇编(含参考答案与解析)

辽宁省锦州市2013-2019年中考数学试题汇编(含参考答案与解析)

【中考数学真题精编】辽宁省锦州市2013—2019年中考数学试题汇编(含参考答案与解析)1、辽宁省锦州市2013年中考数学试题及参考答案与解析 (2)2、辽宁省锦州市2014年中考数学试题及参考答案与解析 (27)3、辽宁省锦州市2015年中考数学试题及参考答案与解析 (56)4、辽宁省锦州市2016年中考数学试题及参考答案与解析 (78)5、辽宁省锦州市2017年中考数学试题及参考答案与解析 (104)6、2辽宁省锦州市018年中考数学试题及参考答案与解析 (127)7、辽宁省锦州市2019年中考数学试题及参考答案与解析 (152)辽宁省锦州市2013年中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣3的倒数是()A.13-B.﹣3 C.3 D.132.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x53.下列几何体中,主视图和左视图不同的是()A.B.C.D.圆柱正方体正三棱柱球4.为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.45.不等式组312114x xx-⎧⎪⎨≤⎪⎩<的解集在数轴上表示正确的是()A.B.C.D.6.如图,直线y=mx与双曲线kyx=交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为()A.﹣2 B.2 C.4 D.﹣4 7.有如下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有( )A .1个B .2个C .3个D .4个8.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x 人,那么x 满足的方程是( )A .4800500020x x =-B .4800500020x x =+C .4800500020x x=- D .4800500020x x =+ 二、填空题(本大题共8个小题,每小题3分,共24分)9.分解因式x 3﹣xy 2的结果是 .10.函数y =中,自变量x 的取值范围是 .11.据统计,2013锦州世界园林博览会6月1日共接待游客约154000人次,154000可用科学记数法表示为 .12.为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S 2甲=1.22,S 2乙=1.68,S 2丙=0.44,则应该选 参加全运会.13.计算:()101|1 3.142π-⎛⎫----= ⎪⎝⎭ . 14.在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是 .15.在△ABC 中,AB=AC ,AB 的垂直平分线DE 与AC 所在的直线相交于点E ,垂足为D ,连接BE .已知AE=5,tan ∠AED=34,则BE+CE= . 16.二次函数223y x =的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3…B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3…C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3…四边形A n ﹣1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 1=∠A 2B 3A 3…=∠A n ﹣1B n A n =60°,菱形A n ﹣1B n A n C n 的周长为 .三、解答题(本大题共2个小题,每小题8分,共16分)17.(8分)先将21112x x x x -⎛⎫-÷ ⎪⎝⎭+化简,然后请自选一个你喜欢的x 值代入求值.18.(8分)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图中信息解答下列问题:(1)求2013年全国普通高校毕业生数年增长率约是多少?(精确到0.1%)(2)求2011年全国普通高校毕业生数约是多少万人?(精确到万位)(3)补全折线统计图和条形统计图.20.(10分)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.五、解答题(本大题共2个小题,每小题10分,共20分)21.(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.22.(10分)如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)六、解答题(本大题共2个小题,每小题10分,共20分)23.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=求由劣弧BC、线段CE和BE所围成的图形面积S.24.(10分)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B 地的距离y (千米)与甲车出发时间x (小时)的函数关系式(写出自变量x 的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?七、解答题(本题12分)25.(12分)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC ,DC 于点E ,F ,连接EF .(1)猜想BE 、EF 、DF 三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A 作AM ⊥EF 于点M ,请直接写出AM 和AB 的数量关系;(3)如图2,将Rt △ABC 沿斜边AC 翻折得到Rt △ADC ,E ,F 分别是BC ,CD 边上的点,∠EAF=12∠BAD ,连接EF ,过点A 作AM ⊥EF 于点M ,试猜想AM 与AB 之间的数量关系.并证明你的猜想.八、解答题(本题14分)26.(14分)如图,抛物线218y x mx n =-++经过△ABC 的三个顶点,点A 坐标为(0,3),点B 坐标为(2,3),点C 在x 轴的正半轴上.(1)求该抛物线的函数关系表达式及点C 的坐标;(2)点E 为线段OC 上一动点,以OE 为边在第一象限内作正方形OEFG ,当正方形的顶点F 恰好落在线段AC 上时,求线段OE 的长;(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动.设平移的距离为t ,正方形DEFG 的边EF 与AC 交于点M ,DG 所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣3的倒数是()A.13-B.﹣3 C.3 D.13【知识考点】倒数.【思路分析】根据乘积是1的两个数互为倒数解答.【解答过程】解:∵﹣3×(13-)=1,∴﹣3的倒数是13 -.故选A.【总结归纳】本题考查了互为倒数的定义,是基础题,熟记概念是解题的关键.2.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x5【知识考点】完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【思路分析】A、利用完全平方公式展开得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用单项式乘单项式法则计算得到结果,即可做出判断.【解答过程】解:A、(a+b)2=a2+2ab+b2,本选项错误;B、x3+x3=2x3,本选项错误;。

辽宁省锦州市中考数学试卷(答案+解析)

辽宁省锦州市中考数学试卷(答案+解析)

B . 12C . 16D . 202018年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题给岀的四个选项中,只有一项是符合题目要求的 )1 . (2分)下列实数为无理数的是()C . 04. (2分)为迎接中考体育加试,小刚和小亮分另U 统计了自己最近 是() A •平均数10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的D .方差5. (2分)如图,直线l i 〃 I 2,且分别与直线I 交于C , D 两点,把一块含30角的三角尺按如图所示的位置摆放,若/仁52 °(2分)下列运算正确的是( )2357a — a=6 B . a ^a =a(2分)如图,在△KBC 中,/ ACB=90°过B ,C 两点的O O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O O 于点F ,2 2连接 BF ,CF ,若/ EDC=135 ; CF=2 ,_则 AE +BE 的值为() 5个大小相同的正方体搭成的几何体,该几何体的左视图 ( )2 . (2分)如图,这是由 C .3. (2分)一元二次方程 A •两个不相等的实数根2x 2 - x+仁0根的情况是( )B •两个相等的实数根C .没有实数根D .无法判断B .中位数C .众数 C . 102°D . 108°C . (a 3)3=a 64 4D . (ab)=ab98 °8 . (2分)如图,在△ABC中,/ C=90° AC=BC=3cm,动点P从点A出发,以_cm/s的速度沿AB方向运动到点B,动点Q 同时从点A出发,以1cm/s的速度沿折线AC - CB方向运动到点B.设△APQ的面积为y(cm"),运动时间为x(s),则下列图象能反映y与x之间关系的是()二、填空题(本大题共8小题,每小题3分,共24分)9. (3分)因式分解:X3- 4x= ___ .10. (3分)上海合作组织青岛峰会期间,为推进一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为__________ 元.11. (3分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为__________ m2.C.△AOB与A A1OB1位似,位似中12 . (3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知B i的坐标为13. (3分)如图,直线y i=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,- 3),则关于x的不等式-x+a < bx-4的解14. (3分)如图,菱形ABCD的对角线AC, BD相交于点0,过点A作AH丄BC于点H,连接0H,若0B=4 , S菱形ABCD=24 , 则0H 的长为______________ .15. (3分)如图,矩形0ABC的顶点A, C分别在x轴,y轴上,顶点B在第一象限,AB=1,将线段0A饶点0按逆时针方向旋转60得到线段OP,连接AP,反比例函数y=-(k工0的图象经过P, B两点,贝U k的值为aC/V5/ \A J16. (3分)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°过点D(6 , 0)作DA丄OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长AQ交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在M2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为_______ .三、综合题17. (7分)先化简,再求值:(2 ------------ )H------- ,其中x=3 .18 . (7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:零花钱数额x元人数濒数) 频率0$ < 3060.1530 孝< 60120.3060 孝< 90160.40900 < 120b0.10120^< 1502a(1) 这次被调查的人数共有________ 人,a= _______ .(2) 计算并补全频数分布直方图;⑶请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,每小题8,共16分)19. (8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好. (1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为B乔治t»r…D倆奇爸爸(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率. 20. (8分)为迎接七?一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?五、解答题(本大题共2小题,每小题8分,共16分)21. (8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45和65。

2014-2015学年辽宁省锦州四中初二第一学期期中数学试卷(Word答案)

2014-2015学年辽宁省锦州四中初二第一学期期中数学试卷(Word答案)

2014-2015学年辽宁省锦州四中初二第一学期期中数学试卷一、选择题(每小題2分,共计16分)1.(2.00分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.(2.00分)如图是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()A.(C,5) B.(C,4) C.(4,C) D.(5,C)3.(2.00分)下列说法正确的是()A.﹣6是36的算术平方根B.±6是36的算术平方根C.是36的算术平方根D.是的算术平方根4.(2.00分)以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2),,;(3)32,42,52;(4)0.03,0.04,0.05.A.1个 B.2个 C.3个 D.4个5.(2.00分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与6.(2.00分)下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()A.3个 B.4个 C.5个 D.6个7.(2.00分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A 的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+8.(2.00分)如图,在三角形纸片ABC中,∠C=90°,AC=18,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,EC=5,则BC的长为()A.9 B.12 C.15 D.18二、填空题(每小题3分,共计24分)9.(3.00分)已知直角三角形的两边的长分别是3和4,则第三边长为.10.(3.00分)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)11.(3.00分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.12.(3.00分)若a<<b,且a,b为连续正整数,则b2﹣a2=.13.(3.00分)=,的算术平方根是,1﹣的相反数为.14.(3.00分)已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a=.15.(3.00分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.16.(3.00分)如图,已知点A(1,1),B(3,2),且P为x轴上一动点,则△ABP周长的最小值为.三、计算题(每题5分,共20分)17.(20.00分)计算:(1)(﹣2)×(2)﹣(3)()﹣(3﹣2)(4)(7+4)(2﹣)2+(2+)(2﹣)﹣.四、解答题(共40分)18.(5.00分)如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C (﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.19.(6.00分)如图,在四边形ABCD中,∠ABC=90°,,AD=13,求四边形ABCD的面积.20.(8.00分)(1)若|x﹣3|+(4+y)2+=0,求3x+y+z的值.(2)设2+的小数部分是a,求a(a+2)的值.21.(6.00分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)22.(7.00分)某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km的A,B两站之间E点修建一个土特产加工基地,如图,DA⊥AB于A,CB ⊥AB于B,已知DA=15km,CB=10km,现在要使C、D两村到E点的距离相等,那么基地E应建在离A站多少km的地方?23.(8.00分)在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x 轴上,且点B在点C的左侧,满足BC=OA,若﹣3a m﹣1b2与a n b2n﹣2是同类项且OA=m,OB=n.(1)m=;n=.(2)点C的坐标是.(3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.2014-2015学年辽宁省锦州四中初二第一学期期中数学试卷参考答案与试题解析一、选择题(每小題2分,共计16分)1.(2.00分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选:B.2.(2.00分)如图是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()A.(C,5) B.(C,4) C.(4,C) D.(5,C)【解答】解:∵黑棋的位置可记为(B,2),∴白棋⑨的位置应记为(C,4).故选:B.3.(2.00分)下列说法正确的是()A.﹣6是36的算术平方根B.±6是36的算术平方根C.是36的算术平方根D.是的算术平方根【解答】解:A、6是36的算术平方根,错误;B、6是36的算术平方根,错误;C、6是36的算术平方根,错误;D、是的算术平方根,正确,故选:D.4.(2.00分)以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2),,;(3)32,42,52;(4)0.03,0.04,0.05.A.1个 B.2个 C.3个 D.4个【解答】解:(1)∵32+42=52,∴是直角三角形,故(1)正确;(2)∵,∴不是直角三角形,故(2)错误;(3)∵,∴不是直角三角形,故(3)错误;(4)∵0.032+0.042=0.052,∴是直角三角形,故(4)正确.根据勾股定理的逆定理,只有(1)和(4)正确.故选:B.5.(2.00分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、是同一个数,故B错误;C、是同一个数,故C错误;D、是同一个数,故D错误;故选:A.6.(2.00分)下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()A.3个 B.4个 C.5个 D.6个【解答】解:无理数有:,,共有3个.故选:A.7.(2.00分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A 的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+【解答】解:∵对称的两点到对称中心的距离相等,∴CA=AB,|﹣1|+||=1+,∴OC=2+,而C点在原点左侧,∴C表示的数为:﹣2﹣.故选:A.8.(2.00分)如图,在三角形纸片ABC中,∠C=90°,AC=18,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,EC=5,则BC的长为()A.9 B.12 C.15 D.18【解答】解:∵AC=18,EC=5,∴AE=13,∵将∠A沿DE折叠,使点A与点B重合,∴BE=AE=5,在Rt△BCE中,由勾股定理得:BC=,故选:B.二、填空题(每小题3分,共计24分)9.(3.00分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.10.(3.00分)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是2.(结果保留根号)【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=2.∴AC===2,故答案为:2.11.(3.00分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.12.(3.00分)若a<<b,且a,b为连续正整数,则b2﹣a2=7.【解答】解:∵32<13<42,∴3<<4,即a=3,b=4,∴b2﹣a2=7.故答案为:7.13.(3.00分)=4,的算术平方根是2,1﹣的相反数为﹣1.【解答】解:∵43=64,∴=4,∵=4,4的算术平方根是2,1﹣的相反数为﹣(1﹣)=﹣1,故答案为:4,2,﹣1.14.(3.00分)已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a=﹣5.【解答】解:∵点P(5,a)在第二、四象限角平分线上,∴点P在第四象限上,且横坐标与纵坐标的长度相等,∴点P的纵坐标为负数,是﹣5.故答案为:﹣5.15.(3.00分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案为:25.16.(3.00分)如图,已知点A(1,1),B(3,2),且P为x轴上一动点,则△ABP周长的最小值为.【解答】解:做点B关于x轴的对称点B′,连接AB′,当点P运动到AB′与x轴的交点时,△ABP周长的最小值.∵A(1,1),B(3,2),′∴AB==,又∵P为x轴上一动点,当求△ABP周长的最小值时,∴A B′==,∴△ABP周长的最小值为:AB+AB′=.故答案为:.三、计算题(每题5分,共20分)17.(20.00分)计算:(1)(﹣2)×(2)﹣(3)()﹣(3﹣2)(4)(7+4)(2﹣)2+(2+)(2﹣)﹣.【解答】解:(1)原式=(﹣2)×=﹣6;(2)原式=﹣=4﹣3=1;(3)原式=4﹣﹣+=3;(4)原式=(7+4)(7﹣4)+4﹣3﹣=49﹣48+4﹣3﹣=2﹣.四、解答题(共40分)18.(5.00分)如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C (﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.【解答】解:(1)所作图形如图所示:;(2)点A1的坐标为(1,5),点C1的坐标为(4,3).19.(6.00分)如图,在四边形ABCD中,∠ABC=90°,,AD=13,求四边形ABCD的面积.【解答】解:连接AC,∵AB=3,BC=,∠ABC=90°,∴AC===5,∵DC=12,AD=13,∴△DCA为直角三角形,∴四边形ABCD的面积=S△DCA +S△ACB=AC•CD+AB•BC,=×5×12+3×,=30+,=.答:四边形ABCD的面积为.20.(8.00分)(1)若|x﹣3|+(4+y)2+=0,求3x+y+z的值.(2)设2+的小数部分是a,求a(a+2)的值.【解答】解:(1)∵|x﹣3|+(4+y)2+=0,∴x﹣3=0,4+y=0,z+2=0,∴x=3,y=﹣4,z=﹣2,∴3x+y+z=3×3﹣4﹣2=3;(2)∵2<<3,∴4<2+<5,∴a=2+﹣4=﹣2,∴a(a+2)=(﹣2)(﹣2+2)=7﹣2.21.(6.00分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.22.(7.00分)某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km的A,B两站之间E点修建一个土特产加工基地,如图,DA⊥AB于A,CB ⊥AB于B,已知DA=15km,CB=10km,现在要使C、D两村到E点的距离相等,那么基地E应建在离A站多少km的地方?【解答】解:设AE=x千米,则BE=(25﹣x)千米,在Rt△DAE中,DA2+AE2=DE2,在Rt△EBC中,BE2+BC2=CE2,∵CE=DE,∴DA2+AE2=BE2+BC2,∴152+x2=102+(25﹣x)2,解得,x=10千米.答:基地应建在离A站10千米的地方.23.(8.00分)在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x 轴上,且点B在点C的左侧,满足BC=OA,若﹣3a m﹣1b2与a n b2n﹣2是同类项且OA=m,OB=n.(1)m=3;n=2.(2)点C的坐标是(5,0)或(1,0).(3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.【解答】解:(1)∵﹣3a m﹣1b2与a n b2n﹣2是同类项,∴,解得.(2)∵OA=m,OB=n,∴B(2,0)或(﹣2,0),∵点B在点C的左侧,BC=OA,∴C(5,0)或(1,0);(3)当C(5,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(5,2)或(5,﹣2)或(2,2)或(2,﹣2);当C(1,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(1,2)或(1,﹣2)或(﹣2,2)或(﹣2,﹣2).所以D点的坐标为(5,2)或(5,﹣2)或(2,2)或(2,﹣2),(1,2)或(1,﹣2)或(﹣2,2)或(﹣2,﹣2).。

2014-2015年辽宁省锦州实验中学八年级上学期期中数学试卷和答案

2014-2015年辽宁省锦州实验中学八年级上学期期中数学试卷和答案

2014-2015学年辽宁省锦州实验中学八年级(上)期中数学试卷一、选择题(每题2分,共14分)1.(2.00分)在实数﹣3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是()A.2个 B.3个 C.4个 D.5个2.(2.00分)估算﹣2的值在()A.在5和6之间B.在4和5之间C.在3和4之间D.在2和3之间3.(2.00分)函数y=2x﹣5的图象一定过()A.(﹣2,1)B.(2,﹣1)C.(﹣1,2)D.(1,﹣2)4.(2.00分)如图图象可能是关于x的一次函数y=k(x﹣1)的图象的是()A.B.C.D.5.(2.00分)一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动()A.150cm B.90cm C.80cm D.40cm6.(2.00分)如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是()A.3 B.4 C.5 D.67.(2.00分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或33二、填空(每题2分,共14分)8.(2.00分)9的算术平方根是.9.(2.00分)1﹣的绝对值是.10.(2.00分)已知直角三角形的两边的长分别是3和4,则第三边长为.11.(2.00分)点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1y2(填“>”或“<”)12.(2.00分)已知点P在第四象限,且P到x轴和y轴的距离分别是3和4,则点P的坐标为.13.(2.00分)一个正数的平方根为2x﹣4和3x﹣1,则x=.14.(2.00分)关于x的一次函数y=kx﹣3的图象过点M(﹣2,1),则该图象与x轴交点坐标,与y轴交点坐标.三、计算(每小题20分,共20分)15.(20.00分)(1)﹣﹣﹣2(2)(1+)(2﹣)(3)÷22×(4)(4﹣4+3)÷2.四、作图题(6分)16.(6.00分)作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)五、解答题(20、21题各11分,22、23题各12分,共46分)17.(11.00分)如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线.18.(11.00分)如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积)19.(12.00分)某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.20.(12.00分)如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;(2)求△AOC的面积.2014-2015学年辽宁省锦州实验中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题2分,共14分)1.(2.00分)在实数﹣3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:无理数有:,π,1010010001…(每两个1之间的0的个数依次多1)共4个.故选:C.2.(2.00分)估算﹣2的值在()A.在5和6之间B.在4和5之间C.在3和4之间D.在2和3之间【解答】解:∵6<<7,∴4<﹣2<5,即﹣2在4和5之间,故选:B.3.(2.00分)函数y=2x﹣5的图象一定过()A.(﹣2,1)B.(2,﹣1)C.(﹣1,2)D.(1,﹣2)【解答】解:A、∵2×(﹣2)﹣5=﹣9≠1,∴此点不在该一次函数的图象上,故本选项错误;B、∵2×2﹣5=﹣1,∴此点在该一次函数的图象上,故本选项正确;C、∵2×(﹣1)﹣5=﹣7≠2,∴此点不在该一次函数的图象上,故本选项错误;D、∵2×1﹣5=﹣3≠﹣2,∴此点不在该一次函数的图象上,故本选项错误.故选:B.4.(2.00分)如图图象可能是关于x的一次函数y=k(x﹣1)的图象的是()A.B.C.D.【解答】解:y=k(x﹣1)=kx﹣k,当k>0时,﹣k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;当k<0时,﹣k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;故选:D.5.(2.00分)一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动()A.150cm B.90cm C.80cm D.40cm【解答】:解:在Rt△OAB中,根据勾股定理OA===240cm.则OA′=OA﹣40=240﹣40=200米.在Rt△A′OB′中,根据勾股定理得到:OB′===150cm.则梯子滑动的距离就是OB′﹣OB=150﹣70=80cm.故选:C.6.(2.00分)如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是()A.3 B.4 C.5 D.6【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD==3.故选:A.7.(2.00分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或33【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选:C.二、填空(每题2分,共14分)8.(2.00分)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.9.(2.00分)1﹣的绝对值是﹣1.【解答】解:1﹣的绝对值是﹣1.故答案为:﹣1.10.(2.00分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.11.(2.00分)点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1>y2(填“>”或“<”)【解答】解:因为直线y=﹣x+2中k=﹣<0,所以y随x的增大而减小.又因为﹣4<2,所以y1>y2.故答案为:>.12.(2.00分)已知点P在第四象限,且P到x轴和y轴的距离分别是3和4,则点P的坐标为(4,﹣3).【解答】解:因为点P在第四象限,所以其横、纵坐标分别为正数、负数,又因为点P到x轴和y轴的距离分别是3和4,所以点P的坐标为(4,﹣3).故答案为(4,﹣3).13.(2.00分)一个正数的平方根为2x﹣4和3x﹣1,则x=1.【解答】解:一个正数的平方根为2x﹣4和3x﹣1,得(2x﹣4)+(3x﹣1)=0.2x﹣4+3x﹣1=0.解得x=1,故答案为:1.14.(2.00分)关于x的一次函数y=kx﹣3的图象过点M(﹣2,1),则该图象与x轴交点坐标(﹣,0),与y轴交点坐标(0,﹣3).【解答】解:∵一次函数y=kx﹣3的图象经过点M(﹣2,1),∴﹣2k﹣3=1.解得:k=﹣2.∴此一次函数的解析式为y=﹣2x﹣3.令y=0,可得x=﹣.∴一次函数的图象与x轴的交点坐标为(﹣,0).令x=0,可得y=﹣3.∴一次函数的图象与y轴的交点坐标为(0,﹣3).故答案为(﹣,0),(0,﹣3).三、计算(每小题20分,共20分)15.(20.00分)(1)﹣﹣﹣2(2)(1+)(2﹣)(3)÷22×(4)(4﹣4+3)÷2.【解答】解:(1)原式=4﹣5﹣﹣=﹣;(2)原式=2﹣+2﹣5=﹣3+;(3)原式=1××=;(4)原式=2﹣1+3=2+2.四、作图题(6分)16.(6.00分)作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)【解答】解:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.五、解答题(20、21题各11分,22、23题各12分,共46分)17.(11.00分)如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线.【解答】解:如图1所示,AC1==5cm;如图2所示,AC1==cm,∵>5,∴按图1的爬行路线最短.18.(11.00分)如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积)【解答】解:在Rt△ADC中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.=AC×BC﹣AD×CD=×10×24﹣×8×6=96(米2).∴S阴影答:剩余土地(图中阴影部分)的面积为:96米2.19.(12.00分)某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.【解答】解:(1)y1=50+0.4x;y2=0.6x;(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250所以通话250分钟两种费用相同;(3)令x=300则y1=50+0.4×300=170;y2=0.6×300=180所以选择全球通合算.20.(12.00分)如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;(2)求△AOC的面积.【解答】解:(1)设正比例函数解析式为y=kx,∵图象经过点A(3,4),∴4=k×3,k=,∴正比例函数解析式为y=x;设一次函数解析式为y=kx+b,∵图象经过(3,4)(0,﹣5),∴,解得,∴一次函数解析式为y=3x﹣5.(2)∵一次函数解析式为y=3x﹣5.∴C(,0)=××4=.∴S△AOC赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

【解析版】辽宁省锦州市2014-2015学年八年级上期末数学试卷

【解析版】辽宁省锦州市2014-2015学年八年级上期末数学试卷

2014-2015学年辽宁省锦州市八年级(上)期末数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,本大题共8个小题,每小题2分,共16分)1.4的算术平方根是()A.±2 B. 2 C.﹣2 D.2.下列语句是命题的是()A.两点能确定一条直线吗 B.在线段AB上任意取一点C.∠A的平分线AM D.对顶角相等一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据的()A.平均数 B.中位数 C.众数 D.方差4.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是()A.同位角相等,两直线平行 B.两直线平行,同位角相等C.内错角相等,两直线平行 D.两直线平行,内错角相等5.将△ABC的三个顶点坐标的横坐标保持不变,纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于y轴对称B.关于x轴对称C.将原图形向x轴负方向平移了1个单位D.关于原点对称6.下列各式中,正确的是()A. B. C. D.7.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b 等于()A. 7 B. 6 C. 5 D. 48.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种 B. 3种 C. 2种 D. 1种二、填空题(共8小题,每小题2分,满分16分)9.化简:= .10.某公司招收职员一名,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如表实数,如果将学历、经验和工作态度三项得分按1:2:3的比例确定各人的最终得分,并将此依据确定录用者,那么被录取的是测试项目测试成绩甲乙学历 7 10经验 8 7工作态度 9 811.如图,直线l是一次函数y=kx+b的图象,若点A(x1,y1)和B(x2,y2)在直线l上,且x1<x2,则y1与y2的大小关系是.12.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.如果设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,根据题意列方程组.13.等腰三角形的一个内角为100°,则它的底角为.14.如图,直线l1:y=ax,l2:y=kx+b相交于点A,则关于x,y的二元一次方程组的解为.15.如图,在△ABC中,∠A=80°,∠ABC与∠ACD的平分线交于点E,∠EBC与∠ECD的平分线相交于点F,则∠BFC= .16.如图,在平面直角坐标系中,动点P从(0,﹣2)位置开始,一次关于点A、B、C作循环对称的跳动,即第一次跳到点P关于点A对称点M处,第二次接着跳到点M关于点B的对称点N处,第三次跳到点N关于点C的对称点处,…,按如此方法继续跳下去,则经过第2015次跳动之后,动点P落点处的坐标为.三、解答题(共2小题,满分10分)17.计算:﹣(+2)(﹣2)18.用适当的方法解方程组:.四、解答题(共2小题,满分14分)19.某小组织了生活常识竞赛,每班选25名同学参加比赛,成绩分为A、B、C四个等级,其中相应等级的得分依次记为100分,90分,70分,学校将八年级一班和二班的成绩整理并绘制成统计图,根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)将下表补充完整:(3)请从以下两个方面对这次竞赛成绩的结果进行分析:①从平均数和中位数方面比较一班和二班的成绩②从平均数和方差方面比较一班和二班的成绩.20.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.五、解答题(共4小题,满分34分)21.已知:如图,∠1=∠ACB,∠2=∠3,求证:∠BOC+∠DGF=180°.请把下面证明过程及括号中的依据补充完整.证明:∵∠1=∠ACB(已知)∴()∴∠2= ()∵∠2=∠3(已知)∴∠3= (等量代换)∴()∴∠BDC+∠DGF=180°()22.已知:如图,点D、E分别在AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.23.在2015年元旦来临之际,某服装店用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如下表:求这两种服装各购进多少件?24.已知A、B两市相距200千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障不能行驶,立即通知技术人员乘乙车从A市赶去维修(通知时间忽略不计),乙车到达M地后用24分钟修好甲车后以原速度原路返回,同时甲车以原速1.5倍的速度前往B 市,如图是两车距A市的路程y(千米)与甲车的行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/小时,点C的坐标是,点C的实际意义是;(2)求乙车返回时y与x之间的函数关系式并写出自变量x的取值范围;(3)乙车返回A市多长时间后甲车到达B市.六、解答题(共1小题,满分10分)25.【问题情境】用同样大小的黑色棋子按如图1试试的规律摆放,则第2015个图形共有多少枚棋子?关于这个问题我们可以通过建立函数模型的方法求解【建立模型】上述图形的规律我们可以借助建立函数模型来探讨,具体步骤如下:第一步:确定变量,即确定自变量和函数(因变量)第二步:在直角坐标系中画出函数图象第三步:根据函数图象猜想并求函数关系式;第四步:把另外的其它点代入验证,若成立,则说明所求函数关系式能够反映图形摆放棋子的一班规律.【解决问题】根据以上步骤,完成下列问题:(1)上述问题情境中以为自变量,以为函数;(2)请在已知的直角坐标系中画出图象;(3)猜想它是什么函数?求这个函数的关系式;(4)求第2015个图形中有多少枚棋子.2014-2015学年辽宁省锦州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,本大题共8个小题,每小题2分,共16分)1.4的算术平方根是()A.±2 B. 2 C.﹣2 D.考点:算术平方根.分析:根据开方运算,可得一个数的算术平方根.解答:解:4的算术平方根是2,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.2.下列语句是命题的是()A.两点能确定一条直线吗 B.在线段AB上任意取一点C.∠A的平分线AM D.对顶角相等考点:命题与定理.分析:根据表示对一件事情进行判断的语句叫命题,分别对每一项进行分析即可.解答: A.两点能确定一条直线吗?不是命题,B.在线段AB上任意取一点,不是命题,C.∠A的平分线AM,不是命题,D.对顶角相等,是命题,故选:D.点评:此题考查了命题,用到的知识点是命题的定义,表示对一件事情进行判断的语句叫命题.3.一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据的()A.平均数 B.中位数 C.众数 D.方差考点:统计量的选择.分析:根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.解答:解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.故选:C.点评:此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是()A.同位角相等,两直线平行 B.两直线平行,同位角相等C.内错角相等,两直线平行 D.两直线平行,内错角相等考点:平行线的判定.专题:探究型.分析:根据∠BAC=∠EDC,由同位角相等,两直线平行,即可判定AB∥DE.解答:解:∵∠BAC=∠EDC,∴AB∥DE.故选A.点评:本题考查的是平行线的判定定理,即同位角相等,两直线平行.5.将△ABC的三个顶点坐标的横坐标保持不变,纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于y轴对称B.关于x轴对称C.将原图形向x轴负方向平移了1个单位D.关于原点对称考点:关于x轴、y轴对称的点的坐标.分析:利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵将△ABC的三个顶点坐标的横坐标保持不变,纵坐标都乘以﹣1,∴所得图形与原图形的关系是关于x轴对称.故选:B.点评:此题主要考查了关于x轴对称点的性质,正确把握横纵坐标关系是解题关键.6.下列各式中,正确的是()A. B. C. D.考点:立方根;平方根;算术平方根.分析: A、根据算术平方根的性质即可判定;B根据算术平方根的性质计算即可判定、C、根据立方根的定义即可判定;D、根据平方根的定义计算即可判定.解答:解:A、,应该=2,故选项错误;B、,应该等于3,故选项错误;C、,不能开立方,故选项错误;D、,故选项正确.故选D.点评:此题主要考查了算术平方根的性质、立方根的定义及立方根的定义,都是基础知识,比较简单.7.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b 等于()A. 7 B. 6 C. 5 D. 4考点:整式的加减.分析:设空白出的面积为x,根据题意列出关系式,相减即可求出a﹣b的值.解答:姐:设空白出图形的面积为x,根据题意得:a+x=16,b+x=9,则a﹣b=7.故选A.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种 B. 3种 C. 2种 D. 1种考点:一元一次不等式组的应用.专题:应用题;压轴题;方案型.分析:关键描述语:某旅行团20人准备同时租用这三种客房共7间,每个房间都住满,可先列出函数关系式,再根据已知条件确定所求未知量的范围,从而确定租房方案.解答:解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选C.点评:本题的关键是找出题中的隐藏条件,列出不等式进行求解.二、填空题(共8小题,每小题2分,满分16分)9.(2分)(2013•嘉定区二模)化简:= .考点:实数的性质.分析:先比较1与的大小,再根据绝对值的定义即可求解.解答:解:=﹣1.点评:此题主要考查了求实数的绝对值,其中非负数的绝对值等于他本身,负数的绝对值等于它的相反数.10.某公司招收职员一名,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如表实数,如果将学历、经验和工作态度三项得分按1:2:3的比例确定各人的最终得分,并将此依据确定录用者,那么被录取的是甲测试项目测试成绩甲乙学历 7 10经验 8 7工作态度 9 8考点:加权平均数.分析:根据加权平均数的计算公式,列出算式,分别求出甲、乙的最终得分,即可得出答案.解答:解:∵甲的最终得分是7×+8×+9×=,乙的最终得分是10×+7×+8×=8,∴被录取的是甲;故答案为:甲.点评:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式求出甲、乙的最终得分.11.如图,直线l是一次函数y=kx+b的图象,若点A(x1,y1)和B(x2,y2)在直线l上,且x1<x2,则y1与y2的大小关系是y1>y2.考点:一次函数图象上点的坐标特征.分析:先根据一次函数y=kx+b的图象判断出此函数的增减性,再根据x1>x2即可得出y1与y2的大小关系.解答:解:∵此函数中y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为y1>y2.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键.12.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.如果设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,根据题意列方程组.考点:由实际问题抽象出二元一次方程组.分析:设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,根据调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,列方程组即可.解答:解:设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,由题意得,.故答案为:.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.13.等腰三角形的一个内角为100°,则它的底角为40°.考点:等腰三角形的性质.专题:分类讨论.分析:由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.解答:解:①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.点评:本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.14.如图,直线l1:y=ax,l2:y=kx+b相交于点A,则关于x,y的二元一次方程组的解为.考点:一次函数与二元一次方程(组).分析:先利用待定系数法分别求出直线l1与l2的解析式,再解方程组即可求解.解答:解:将(2,2)代入直线l1:y=ax,得2a=2,解得a=1,所以直线l1:y=x.将(0,5),(1,3)代入l2:y=kx+b,得,解得,所以直线l2:y=﹣2x+5.由,解得,所以关于x,y的二元一次方程组的解为.故答案为.点评:本题考查了一次函数与二元一次方程组的关系,待定系数法求直线的解析式,二元一次方程组的解法,难度适中.15.如图,在△ABC中,∠A=80°,∠ABC与∠ACD的平分线交于点E,∠EBC与∠ECD的平分线相交于点F,则∠BFC= 20°.考点:三角形内角和定理;三角形的外角性质.分析:利用角平分线定义可知∠ECD=∠ACD.再利用外角性质,可得∠ACD=∠A+∠ABC①,∠ECD=∠E+∠ABC②,那么可利用∠ECA=∠ECD,可得相等关系:∠E=∠A,从而可求∠E,同理可得:,进而求出∠F的度数.解答:解:∵CE是∠ACD的角平分线,∴∠ECD=∠ACD,又∵∠ACD=∠A+∠ABC,∴∠ECD=A+∠ABC,又∵∠ECD=∠E+∠ABC,∴∠A+∠ABC=∠E+∠ABC,∴∠E=∠A=40°;同理:∠F=∠E=20°,即:∠BFC=20°.故答案为:20°.点评:本题利用了角平分线定义、三角形外角的性质.三角形的外角等于与它不相邻的两个内角之和.16.如图,在平面直角坐标系中,动点P从(0,﹣2)位置开始,一次关于点A、B、C作循环对称的跳动,即第一次跳到点P关于点A对称点M处,第二次接着跳到点M关于点B的对称点N处,第三次跳到点N关于点C的对称点处,…,按如此方法继续跳下去,则经过第2015次跳动之后,动点P落点处的坐标为(﹣2,0).考点:规律型:点的坐标.分析:连接PA延长到M使MA=PA,所以M的坐标是M(4,4),连接MB延长到N使BN=BM,所以N的坐标是N(﹣2,0),连接NC延长到P,则PC=NC,所以棋子跳动3次后又回点P 处,根据经过第2015次跳动后,棋子落在点N处,即可得出坐标.解答:解:∵棋子跳动3次后又回点P处,∴经过第2015次跳动后,即2015÷3=671余2,棋子落在点N处,其坐标为N(﹣2,0).故答案为:(﹣2,0).点评:本题考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.三、解答题(共2小题,满分10分)17.计算:﹣(+2)(﹣2)考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,再合并后根据二次根式的除法法则运算和利用平方差公式计算,然后进行加法运算.解答:解:原式=﹣(3﹣4)=+1=+1=.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.用适当的方法解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,②×4,得4x﹣8y=16③,①﹣③,得11y=﹣11,即y=﹣1,把y=﹣1代入②,得x=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.四、解答题(共2小题,满分14分)19.某小组织了生活常识竞赛,每班选25名同学参加比赛,成绩分为A、B、C四个等级,其中相应等级的得分依次记为100分,90分,70分,学校将八年级一班和二班的成绩整理并绘制成统计图,根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)将下表补充完整:①从平均数和中位数方面比较一班和二班的成绩②从平均数和方差方面比较一班和二班的成绩.考点:条形统计图;扇形统计图;加权平均数;中位数;众数;方差.专题:数形结合.分析:(1)用25分别减去A、B、D级人数即可得到C级人数;(2)根据平均数的定义计算一班的平均数,根据中位数和众数的定义分别求出一班的中位数和二班的众数;(3)①根据中位数的意义进行发现;②根据方差的意义进行分析.解答:解:(1)一班成绩为C等级的人数:25﹣6﹣12﹣5=2(人).统计图补充如图;(2)一班的平均数==87.6,一班第13个成绩为90(分),所以一班的中位数为90(分);二班中100分出现的次数最多,所以二班的众数为100(分),故答案为87.6,90,100;(3)①从平均数和中位数方面:两班成绩的平均数相等,一班成绩的中位数比二班成绩的中位数高,所以综合两者,一班成绩好于二班.…(6分)②从平均数和方差方面:两班成绩的平均数相等,二班成绩的方差比一班成绩的方差大,综合两者,一班成绩的离散程度比二班小,一班25名学生成绩稳定一些.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、中位数和众数.20.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.考点:勾股定理的应用.专题:计算题.分析:由题意知,△ABC为直角三角形,且AB是斜边,已知AB,AC根据勾股定理可以求BC,根据BC的长度和时间可以求小汽车在BC路程中的速度,若速度大于70千米/时,则小汽车超速;若速度小于70千米/时,则小汽车没有超速.解答:解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒=时,所以速度为=72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.点评:本题考查了勾股定理在实际生活中的应用,本题中准确的求出BC的长度,并计算小汽车的行驶速度是解题的关键.五、解答题(共4小题,满分34分)21.已知:如图,∠1=∠ACB,∠2=∠3,求证:∠BOC+∠DGF=180°.请把下面证明过程及括号中的依据补充完整.证明:∵∠1=∠ACB(已知)∴DE∥BC (同位角相等,两条直线平行)∴∠2= ∠BCD (两直线平行,内错角相等)∵∠2=∠3(已知)∴∠3= ∠BCD (等量代换)∴DC∥FG (同位角相等,两条直线平行)∴∠BDC+∠DGF=180°(两直线平行,同旁内角互补)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的判定推出DE∥BC,根据平行线的性质推出∠2=∠BCD,求出∠3=∠BCD,根据平行线的判定得出DC∥FG,根据平行线的性质得出即可.解答:证明:∵∠1=∠ACB,∴DE∥BC(同位角相等,两条直线平行),∴∠2=∠BCD(两直线平行,内错角相等),∵∠2=∠3,∴∠3=∠BCD(等量代换),∴DC∥FG(同位角相等,两条直线平行),∴∠BDC+∠DGF=180°(两直线平行,同旁内角互补),故答案为:DE∥BC,同位角相等,两条直线平行,∠BCD,两直线平行,内错角相等,∠BCD,DC∥FG,同位角相等,两条直线平行,两直线平行,同旁内角互补.点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.已知:如图,点D、E分别在AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.考点:三角形的外角性质;平行线的性质.专题:证明题.分析:(1)根据平行线的性质得出∠B=∠ADE,根据三角形的外角性质得出∠EGH>∠B,即可得出答案;(2)根据三角形的外角性质得出∠BFE=∠A+∠AEF,∠EGH=∠B+∠BFE,根据平行线的性质得出∠B=∠ADE,即可得出答案.解答:证明:(1)∵∠EGH是△FBG的外角,∴∠EGH>∠B,又∵DE∥BC,∴∠B=∠ADE.(两直线平行,同位角相等),∴∠EGH>∠ADE;(2)∵∠BFE是△AFE的外角,∴∠BFE=∠A+∠AEF,∵∠EGH是△BFG的外角,∴∠EGH=∠B+∠BFE.∴∠EGH=∠B+∠A+∠AEF,又∵DE∥BC,∴∠B=∠ADE(两直线平行,同位角相等),∴∠EGH=∠ADE+∠A+∠AEF.点评:本题考查了三角形的外角性质和平行线的性质的应用,能运用三角形外角性质进行推理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和,三角形的一个外角大于任何一个和它不相邻的内角.23.在2015年元旦来临之际,某服装店用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如下表:求这两种服装各购进多少件?考点:二元一次方程组的应用.分析:设A种服装购进x件,B种服装购进y件,根据用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元,列方程组求解.解答:解:设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进30件.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.24.已知A、B两市相距200千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障不能行驶,立即通知技术人员乘乙车从A市赶去维修(通知时间忽略不计),乙车到达M地后用24分钟修好甲车后以原速度原路返回,同时甲车以原速1.5倍的速度前往B 市,如图是两车距A市的路程y(千米)与甲车的行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60 千米/小时,点C的坐标是(2.8,80),点C的实际意义是乙车出发0.8小时到达距离A市80千米甲车出现故障的M地;(2)求乙车返回时y与x之间的函数关系式并写出自变量x的取值范围;(3)乙车返回A市多长时间后甲车到达B市.考点:一次函数的应用.分析:(1)求出乙车的速度就可以求出乙车到达故障地点的时间就可以求出C的坐标,得出C的坐标的含义;(2)先求出E的坐标,设线段EF的解析式为y=kx+b,由待定系数法求出其解即可;(3)求出甲车到达B市的时间就可以求出结论.解答:解:(1)由题意,得乙车的往返的时间为:120﹣24=96分钟=1.6小时.乙车的速度为:160÷1.6=100千米/时.∴乙车到达C地的时间为:80÷100=0.8小时.∴C(2.8,80).甲车提速前的速度为:80÷2=40千米/时,∴提速后的速度为:40×1.5=60千米/时.∴点C的实际意义是:乙车出发0.8小时到达距离A市80千米甲车出现故障的M地或技术人员在甲车出发2.8小时后到达离A市80千米的甲车出现故障的M地.故答案为:60,(2.8,80),乙车出发0.8小时到达距离A市80千米甲车出现故障的M地;(2)由题意,得E(3.2,80).设线段EF的解析式为y=kx+b,由题意,得,解得:.则y=﹣100x+400(3.2≤x≤4).(3)甲车到达B市的时间为:3.2+=5.2,则5.2﹣4=1.2(小时).答:乙车返回A市1.2小时后甲车才到达B市.点评:本题考查了一次函数图象的运用,待定系数法求一次函数的解析式的运用,行程问题的数量关系的运用,解答时分析清楚函数图象的意义,求出函数的解析式是关键.六、解答题(共1小题,满分10分)25.【问题情境】用同样大小的黑色棋子按如图1试试的规律摆放,则第2015个图形共有多少枚棋子?。

辽宁锦州中考数学试题.doc

辽宁锦州中考数学试题.doc

2014年辽宁锦州中考数学试题-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

北师大版数学2014-2015学年辽宁省锦州市九年级(上)期末数学试卷

北师大版数学2014-2015学年辽宁省锦州市九年级(上)期末数学试卷

2014-2015学年辽宁省锦州市九年级(上)期末数学试卷一、选择题:每小题2分,共16分.四个选项中只有一项是正确的.1.(2分)如图,所给三视图的几何体是( )A .球B .圆柱C .圆锥D .三棱锥2.(2分)下列一元二次方程中,有两个不相等实数根的是( )A .x 2﹣2x ﹣6=0B .x 2﹣4x +4=0C .3x 2+2x +1=0D .x 2+3x +6=03.(2分)根据下面表格中列出来的数据,你猜想方程x 2+2x ﹣100=0有一个根大约是( )x9.03 9.04 9.05 9.06 9.07 x 2+2x ﹣100﹣0.400 ﹣0.198 0.003 0.203 0.405A .9.025B .9.035C .9.045D .9.055 4.(2分)如图,晚上小亮在路灯下散步,在小亮由A 处走到B 处这一过程中,他在地上的影子( )A .逐渐变短B .逐渐变长C .先变短后变长D .先变长后变短5.(2分)随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )A .B .C .D .6.(2分)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.A .45B .48C .50D .557.(2分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=的图象经过点C,则这个反比例函数的表达式为()A.y=﹣B.y=﹣C.y= D.y=8.(2分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.二、填空题:每小题2分,共16分.9.(2分)方程x2=5x的根是.10.(2分)正比例函数y=6x的图象与反比例函数y=的图象的交点在象限.11.(2分)若==≠0,且a+3c﹣2b=16,则b=.12.(2分)收入倍增计划是2012年11月中国共产党第十八次全国代表大会报告中提出的.“2020年实现国内生产总值和城乡居民人均收入比2010年翻一番”,假设2010年某地城乡居民人均收入为4万元,到2020年该地城乡居民人均收入达到8万元.设每五年的平均增长率为a%,则可列方程为.13.(2分)如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.14.(2分)如图,在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,则点E的对应点E′的坐标为.15.(2分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,则EF的最小值为.16.(2分)已知△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2.要在这张纸板中剪取正方形.如图1所示的剪法称为第1次剪取,记所得正方形面积为s1;按照图1的剪法,在余下的△ADE和△BDF中,分别剪取两个全等的正方形,称为第2次剪取,并记这两个正方形面积之和为s2(如图2);再在余下的四个三角形中,用同样的方法分别剪去正方形,得到四个全等的正方形,成为第3次剪取,并记这四个正方形面积之和为S3(如图3);继续剪取下去…;则第n此剪取时,S n=.三、解答题:每题7分,共14分.17.(7分)解方程:x2+2x﹣5=0.18.(7分)如图,下列是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.四、解答题:每题8分,共16分.19.(8分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率.20.(8分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?五、解答题:每题9分,共18分.21.(9分)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求y与x之间的函数关系式;并写出自变量x的取值范围;(2)若每毫升血液中的含药量不低于2毫克时治疗有效,那么病人服药一次治疗疾病的有效时间是多长?22.(9分)如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=位于第一象限的图象上,OA=1,OC=6.(1)求反比例函数的表达式;(2)求正方形ADEF的边长;(3)根据图象直接写出直线BE对应的一次函数的函数值大于反比例函数y=的值时,自变量x的取值范围.六、解答题:每题10分,佛纳甘20分.23.(10分)如图1,在正方形ABCD中,E是BC边上的动点(点E不与端点B、C重合),以AE为边,在直线BC的上方作矩形AEFG.使顶点G恰好落在射线CD上,过点F作FH⊥BC,交BC的延长线于点H.(1)求证:①矩形AEFG是正方形;②BE=HC;(2)若题设中动点E在BC的延长线上,其他条件不变,请在图2中补全图形,猜想(1)中的两个结论是否成立,请直接写出结论,不需要证明.24.(10分)如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线EF交CB的延长线于点F,交AD于点E,交AC于点M.(1)△ACF与△BAF相似吗?请说明理由;(2)如果AF=6,BD=2,AC=4,求DC和AM的长.2014-2015学年辽宁省锦州市九年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题2分,共16分.四个选项中只有一项是正确的.1.(2分)(2014•湘潭)如图,所给三视图的几何体是()A.球B.圆柱C.圆锥D.三棱锥【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.【点评】本题考查了由三视图判断几何体的知识,解题的关键是了解主视图和左视图的大致轮廓为长方形的几何体为锥体.2.(2分)(2014秋•锦州期末)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣2x﹣6=0 B.x2﹣4x+4=0 C.3x2+2x+1=0 D.x2+3x+6=0【分析】判断上述四个方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:A、∵△=b2﹣4ac=(﹣2)2﹣4×1×(﹣6)=28>0,∴方程有两个不相等的实数根,故本选项正确;B、∵△=b2﹣4ac=(﹣4)2﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=b2﹣4ac=22﹣4×3×1=﹣8<0,∴方程没有实数根,故本选项错误;D、∵△=b2﹣4ac=32﹣4×1×6=﹣15<0,∴方程没有实数根,故本选项错误;故选A.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(2分)(2014秋•锦州期末)根据下面表格中列出来的数据,你猜想方程x 2+2x ﹣100=0有一个根大约是( )x9.03 9.04 9.05 9.06 9.07 x 2+2x ﹣1﹣0.400 ﹣0.1980.0030.23 0.405 A .9.025 B .9.035 C .9.045 D .9.055【分析】根据函数y=x 2+2x ﹣100的图象与x 轴的交点的横坐标就是方程x 2+2x ﹣100=0的根来解决此题.【解答】解:方程x 2+2x ﹣100=0的一个根就是函数y=x 2+2x ﹣100的图象与x 轴的一个交点, 即关于函数y=x 2+2x ﹣100,y=0时x 的值,由表格可得:当x 的值是9.05时,函数值y 与0最接近.因而方程的解介于9.04与9.05之间,故选C .【点评】本题考查了估算一元二次方程的近似解,属于基础题,掌握函数y=ax 2+bx +c 的图象与x 轴的交点与方程ax 2+bx +c=0的根的关系是解决此题的关键所在.4.(2分)(2009•庆阳)如图,晚上小亮在路灯下散步,在小亮由A 处走到B 处这一过程中,他在地上的影子( )A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短【分析】根据中心投影的特点:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.进行判断即可.【解答】解:因为小亮由A处走到B处这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选C.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.5.(2分)(2013•九龙坡区模拟)随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A. B. C. D.【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【解答】解:随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选D.【点评】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(2分)(2013•青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【解答】解:∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.7.(2分)(2014秋•锦州期末)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=的图象经过点C,则这个反比例函数的表达式为()A.y=﹣B.y=﹣C.y= D.y=【分析】根据菱形的性质得到OD=OB=2,CD=AC=3,CD⊥y轴,再利用k的几何意义得到|k|=×2×3,然后去绝对值即可得到满足条件的k的值,从而得到反比例函数解析式.【解答】解:∵菱形OABC的顶点O是原点,∴AC与OB互相垂直平分,∴OD=OB=2,CD=AC=3,CD⊥y轴,∴|k|=×2×3,而k<0,∴k=﹣6,∴反比例函数解析式为y=﹣.故选B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.8.(2分)(2014•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C 的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的对应边成比例的性质列出比例式整理得到y 与x的关系式,从而得解.【解答】解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选:B.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.二、填空题:每小题2分,共16分.9.(2分)(2014秋•锦州期末)方程x2=5x的根是x1=0,x2=5.【分析】先把方程变形为x2﹣5x=0,把方程左边因式分解得x(x﹣5)=0,则有x=0或x﹣5=0,然后解一元一次方程即可.【解答】解:x2﹣5x=0,∴x(x﹣5)=0,∴x=0或x﹣5=0,∴x1=0,x2=5.故答案为x1=0,x2=5.【点评】本题考查了利用因式分解法解一元二次方程:先把方程变形为一元二次方程的一般形式,然后把方程左边因式分解,这样就把方程转化为两个一元一次方程,再解一元一次方程即可.10.(2分)(2014秋•锦州期末)正比例函数y=6x的图象与反比例函数y=的图象的交点在一、三象限.【分析】根据两函数解析式可知两函数的图象在一、三象限,故可知其交点也在第一、三象限.【解答】解:∵y=6x,y=,∴正比例函数和反比例函数图象过一、三象限,∴两函数图象的交点在一、三象限,故答案为:一、三.【点评】本题主要考查函数图象,掌握正比例函数和反比例函数当比例系数大于0时图象过一、三象限,小于0时过二四象限是解题的关键.11.(2分)(2014秋•锦州期末)若==≠0,且a+3c﹣2b=16,则b=10.【分析】根据比例的性质,可用b表示a,用b表示c,再根据代入法,可得关于b的一元一次方程,根据解一元一次方程,可得答案.【解答】解:由==≠0,得a=,c=.把a=,c=代入方程,得+3×﹣2b=16.解得b=10,故答案为:10.【点评】本题考查了比例的性质,利用比例的性质:用b表示a,用b表示c是解题关键.12.(2分)(2014秋•锦州期末)收入倍增计划是2012年11月中国共产党第十八次全国代表大会报告中提出的.“2020年实现国内生产总值和城乡居民人均收入比2010年翻一番”,假设2010年某地城乡居民人均收入为4万元,到2020年该地城乡居民人均收入达到8万元.设每五年的平均增长率为a%,则可列方程为4(1+a%)2=8.【分析】利用一般用增长后的量=增长前的量×(1+增长率)求出即可.【解答】解:依题意得2020年人均收入为4(1+a%)2,∴4(1+a%)2=8.故答案为:4(1+a%)2=8.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.13.(2分)(2006•河北)如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为22.5米.【分析】根据题意,河两岸平行,故可根据平行线分线段成比例来解决问题,列出方程,求解即可.【解答】解:如图,设河宽为h,∵AB∥CD由平行线分线段成比例定理得:=,解得:h=22.5,∴河宽为22.5米.故答案为:22.5.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.14.(2分)(2015秋•丹东期末)如图,在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,则点E的对应点E′的坐标为(2,﹣1)或(﹣2,1).【分析】由在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,利用位似图形的性质,即可求得点E的对应点E′的坐标.【解答】解:∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,∴点E的对应点E′的坐标为:(2,﹣1)或(﹣2,1).故答案为:(2,﹣1)或(﹣2,1).【点评】此题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解此题的关键.15.(2分)(2015秋•丹东期末)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为 2.4.【分析】根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【解答】解:连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故答案为:2.4.【点评】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.16.(2分)(2014秋•锦州期末)已知△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2.要在这张纸板中剪取正方形.如图1所示的剪法称为第1次剪取,记所得正方形面积为s1;按照图1的剪法,在余下的△ADE和△BDF中,分别剪取两个全等的正方形,称为第2次剪取,并记这两个正方形面积之和为s2(如图2);再在余下的四个三角形中,用同样的方法分别剪去正方形,得到四个全等的正方形,成为第3次剪取,并记这四个正方形面积之和为S3(如图3);继续剪取下去…;则第n此剪取时,S n=()n﹣1.【分析】根据题意可求得△ABC的面积,且可得出每个正方形是所以三角形面积的一半,即为上一次剪得的正方形面积的一半,可得出S n与△ABC的面积之间的关系,可求得答案.【解答】解:∵AC=BC=2,∴∠A=∠B=45°,∵四边形CEDF为正方形,∴DE⊥AC,∴AE=DE=DF=BF,∴S正方形CEDF =CE•CF=AC•BC=S△ABC=1,同理每次剪得的正方形的面积都是所在三角形面积的一半,∴S2=S△AED+S△BDF=S正方形CEDF=S1,同理可得S3=S2=()2S1,依此类推可得S n=()n﹣1S1=()n﹣1,故答案为:()n﹣1.【点评】本题主要考查正方形的性质,根据条件找到S n与S1之间的关系是解题的关键.注意规律的总结与归纳.三、解答题:每题7分,共14分.17.(7分)(2015•福州模拟)解方程:x2+2x﹣5=0.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:∵x2+2x﹣5=0,∴x2+2x=5,∴x2+2x+1=5+1,∴(x+1)2=6,∴x+1=±,∴x=﹣1±.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.(7分)(2015秋•丹东期末)如图,下列是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.【分析】利用已知几何体的形状进而补全几何体的三视图.【解答】解:如图所示:【点评】此题主要考查了画几何体的三视图,注意三视图中实线与虚线.四、解答题:每题8分,共16分.19.(8分)(2013•青羊区一模)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x ,y )表示平面直角坐标系的点,求点(x ,y )在图象上的概率.【分析】(1)根据题意列出图表,即可表示(x ,y )所有可能出现的结果;(2)根据反比例函数的性质求出在图象上的点,即可得出答案.【解答】解:(1)用列表法表示(x ,y )所有可能出现的结果如下:﹣2 ﹣1 1﹣2 (﹣2,﹣2) (﹣1,﹣2)(1,﹣2)﹣1 (﹣2,﹣1) (﹣1,﹣1)(1,﹣1)1 (﹣2,1) (﹣1,1)(1,1)(2)∵点(x ,y )在图象上的只有(﹣2,1),(1,﹣2),∴点(x ,y )在图象上的概率.【点评】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•东明县一模)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?【分析】根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量列出一元二次方程求解即可.【解答】解:设每件玩具上涨x元,则售价为(30+x)元,则根据题意,得(30+x﹣20)(230﹣10x)=2520.整理方程,得x2﹣13x+22=0.解得:x1=11,x2=2,当x=11时,30+x=41>40,∴x=11 不合题意,舍去.∴x=2,∴每件玩具售价为:30+2=32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.【点评】考查了一元二次方程的应用,解题的关键是能够了解总利润的计算方法,难度不大.五、解答题:每题9分,共18分.21.(9分)(2014秋•锦州期末)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求y与x之间的函数关系式;并写出自变量x的取值范围;(2)若每毫升血液中的含药量不低于2毫克时治疗有效,那么病人服药一次治疗疾病的有效时间是多长?【分析】(1)根据点(2,4)利用待定系数法求正比例函数解形式;根据点(2,4)利用待定系数法求反比例函数解形式;(2)根据两函数解析式求出函数值是2时的自变量的值,即可求出有效时间.【解答】解:(1)设正比例函数的表达式为y=kx,根据图象知,正比例函数的图象经过点(2,4),则2k=4.解得k=2.所以正比例函数表达式为y=2x(0≤x≤2);设反比例函数的表达式为y=,根据图象知,反比例函数的图象经过点(2,4),则,解得k=8.所以,所求的反比例函数表达为y=(x>2).(2)由题意,当y=2时,即2x=2,解得x=1.=2,解得x=4.∴4﹣1=3(小时).答:病人服药一次,治疗疾病的有效时间是3小时.【点评】本题主要考查图象的识别能力和待定系数法求函数解形式,是近年中考的热点之一.22.(9分)(2014秋•锦州期末)如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=位于第一象限的图象上,OA=1,OC=6.(1)求反比例函数的表达式;(2)求正方形ADEF的边长;(3)根据图象直接写出直线BE对应的一次函数的函数值大于反比例函数y=的值时,自变量x的取值范围.【分析】(1)根据OA和OC的长即可求得B的坐标,利用待定系数法求得反比例函数解析式;(2)根据正方形的性质,设正方形ADEF的边长AD=t,则OD=1+t,则E点坐标为(1+t,t).代入反比例函数解析式即可求得t的值,得到正方形的边长;(3)直线BE对应的一次函数的函数值大于反比例函数y=的值,即对应相同的x的值时,一次函数对应的点在反比例函数的图象的点的上边,据此即可判断.【解答】解:(1)∵OA=1,OB=6,∴B点的坐标为(1,6).∵点B在反比例函数y=的图象上,∴k=1×6=6.∴所求的反比例函数表达式为y=.(2)设正方形ADEF的边长AD=t,则OD=1+t.∵四边形ADEF是正方形,∴DE=AD=t.∴E点坐标为(1+t,t).∵E点在反比例函数y=的图象上,∴(1+t)•t=6.整理,得t2+t﹣6=0.解得t1=﹣3,t2=2.∵t>0,∴t=2.∴正方形ADEF的边长为2.(3)1<x<3或x<0.【点评】本题主要考查了正方形的性质和待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.六、解答题:每题10分,佛纳甘20分.23.(10分)(2014秋•锦州期末)如图1,在正方形ABCD中,E是BC边上的动点(点E不与端点B、C重合),以AE为边,在直线BC的上方作矩形AEFG.使顶点G恰好落在射线CD 上,过点F作FH⊥BC,交BC的延长线于点H.(1)求证:①矩形AEFG是正方形;②BE=HC;(2)若题设中动点E在BC的延长线上,其他条件不变,请在图2中补全图形,猜想(1)中的两个结论是否成立,请直接写出结论,不需要证明.【分析】(1)①证明△ABE≌△ADG,即可解决问题.②证明△AEB≌△EFH,得到AB=EH,借助AB=BC,即可解决问题.(2)补全图2如图所示,(1)中的两个结论仍然成立.【解答】解:(1)证明:①∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠ADC=∠ADG=90°;∵四边形AEFG是矩形,∴∠EAG=90°,∴∠BAD=∠EAG=90°.∴∠BAD﹣∠EAD=∠EAG﹣∠EAD,即∠BAE=∠DAG;在△ABE与△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG.∴矩形AEFG是正方形.②∵矩形AEFG是正方形,∴AE=EF,∠AEF=90°,∴∠AEB+∠FEH=90°;又∵∠AEB+∠EAB=90°,∴∠EAB=∠FEH.在△AEB与△EFH中,,∴△AEB≌△EFH(AAS),∴AB=EH.∵AB=BC,∴BC=EH.∵BC=BE+EC,EH=HC+EC,∴BE=HC.(2)补全图2如图所示:(1)中的两个结论仍然成立.【点评】该题以正方形为载体,以考查正方形的性质、全等三角形的判定及其性质的应用为核心构造而成;牢固掌握正方形的性质、全等三角形的判定及其性质是灵活运用的基础和关键.24.(10分)(2014秋•锦州期末)如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线EF交CB的延长线于点F,交AD于点E,交AC于点M.(1)△ACF与△BAF相似吗?请说明理由;(2)如果AF=6,BD=2,AC=4,求DC和AM的长.【分析】(1)首先证明∠DAF=∠ADF,结合平分线的性质以及角角之间的数量关系得到∠BAF=∠C,再根据∠AFB=∠AFC即可判定△ACF与△BAF相似;(2)连接DM,首先求出BF的长度,利用△ACF与△BAF相似,得到,结合题干数据求出CF 的长度,进而求出CD的长度,由∠DAM=∠ADM,∠BAD=∠CAD,得到∠BAD=∠ADM,进而得到DM∥BA,即,结合线段之间的数量关系即求出AM的长.【解答】解:(1)△ACF∽△BAF.∵EF垂直平分AD,∴AF=DF,∴∠DAF=∠ADF.∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠DAF=∠BAF+∠BAD,∠ADF=∠C+∠CAD,∴∠BAF=∠C.又∵∠AFB=∠AFC,∴△ACF∽△BAF.(2)连接DM.∵EF垂直平分AD,∴DM=AM,DF=AF=6.∵BD=2.∴BF=6﹣2=4.由(1)知,△ACF∽△BAF,∴.∴AF2=BF•CF,即36=4CF.解得CF=9.∴CD=CF﹣FD=9﹣6=3.∵∠DAM=∠ADM,∠BAD=∠CAD,∴∠BAD=∠ADM.∴DM∥BA.∴.∴.∵BC=DC+BD=3+2=5.即.∴AM=.【点评】本题主要考查了相似三角形的判定与性质的知识,解答本题的(1)问需要熟练掌握两三角形相似的判断定理,第(2)问解答连接DM利用三角形相似的性质求线段CF的很关键,此题有一定的难度.。

辽宁省锦州市中考数学试题

辽宁省锦州市中考数学试题

锦州市年中等学校招生考试数学试题及参考答案、评分标准数学试题*考试时间120分钟,试卷满分120分.一、选择题(下列各题的备选答案中,只有一个是正确的,将正确答案的序号填入题后的括号内.每小题2分,本题共20分)1.下列根式不是最简二次根式的是( )A. B. C. D.2.设方程x2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A.-4B.-2C.0D.23.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )A.正方形与正三角形B.正五边形与正三角形C.正六边形与正三角形D.正八边形与正方形4.如图,⊙O和⊙O′都经过点A和点B,点P在BA的延长线上,过P作⊙O的割线PCD 交⊙O于C、D,作⊙O′的切线PE切⊙O′于E,若PC=4,CD=5,则PE等于( )A.6B.2C.20D.365.若反比例函数y=的图象在每一象限内,y随x的增大而增大,则有( )A.k≠0B.k≠3C.k<3D.k>36.抛物线=x2-4x+3的顶点坐标和对称轴分别是( )A.(1,2),x=1B.(-1,2),x=-1C.(-4,-5),x=-4D.(4,-5),x=47.已知在直角坐标系中,以点A(0,3)为圆心,以3为半径作⊙A,则直线y=kx+2(k≠0)与⊙A的位置关系是( )A.相切B.相交C.相离D.与k值有关8.如图,一个圆柱形笔筒,量得笔筒的高是20cm,底面圆的半径为5cm,那么笔筒的侧面积为( )A.200cm2B.100πcm2C.200πcm2D.500πcm29.用换元法解方程,若设,则原方程可化为( )A.y2-7y+6=0B.y2+6y-7=0C.6y2-7y+1=0D.6y2+7y+1=010.苹果熟了,从树上落下所经过的路程s与下落的时间t满足s=gt2(g是不为0的常数),则s与t的函数图象大致是( )二、填空题(每小题2分,本题共20分)11.函数y=中自变量x的取值范围是_____.12.若关于x的方程x2+5x+k=0有实数根,则k的取值范围是______.13.圆和圆有不同的位置关系.与下图不同的圆和圆的位置关系是_____.(只填一种)14.若点A(2,m)在函数y=x2-1的图象上,则点A关于x轴的对称点的坐标是_____.15.方程组的解是______.16.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是_____cm.17.如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为_____.18.如图,这是某市环境监测中心监测统计的年该市市区空气中二氧化硫各季节日均值的统计图,空气中二氧化硫含量最高的季节与最低的季节的浓度之差等于______毫克/立方米.19.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.20.已知⊙O的直径为6,弦AB的长为2,由这条弦及弦所对的弧组成的弓形的高是_____.三、解答题(21题6分,22题8分,23题10分,本题共24分)21.计算:.22.某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析式.23.某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总分相等.此时有学生建议,可以通过考查数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)估计两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠奖状发给哪一个班级?简述理由.四、解答题(本题共10分)24.某乡薄铁社厂的王师傅要在长为25cm,宽为18cm的薄铁板上裁出一个最大的圆和两个尽可能大的小圆.他先画出了如下的草图,但他在求小圆半径时遇到了困难,请你帮助王师傅计算出这两个小圆的半径.五、解答题(本题共10分)25.一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?六、解答题(本题共10分)26.某食品批发部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).(1)求所获销售利润y(元)与x(箱)之间的函数关系式;(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?七、解答题(本题共12分)27.如图,⊙O与⊙P相交于B、C两点,BC是⊙P的直径,且把⊙O分成度数的比为1:2的两条弧,A是上的动点(不与B、C重合),连结AB、AC分别交⊙P于D、E两点.(1)当△ABC是锐角三角形(图①)时,判断△PDE的形状,并证明你的结论;(2)当△ABC是直角三角形、钝角三角形时,请你分别在图②、图③中画出相应的图形(不要求尺规作图),并按图①标记字母;(3)在你所画的图形中,(1)的结论是否成立?请就钝角的情况加以证明.八、解答题(本题共14分)28.如图,点P是x轴上一点,以P为圆心的圆分别与x轴、y轴交于A、B、C、D四点,已知A(-3,0)、B(1,0),过点C作⊙P的切线交x轴于点E.(1)求直线CE的解析式;(2)若点F是线段CE上一动点,点F的横坐标为m,问m在什么范围时,直线FB与⊙P 相交?(3)若直线FB与⊙P的另一个交点为N,当点N是的中点时,求点F的坐标;(4)在(3)的条件下,CN交x轴于点M,求CM·CN的值.参考答案及评分标准(此答案仅供参考,如有其它不同答案,只要正确,可参照此标准赋分)一、选择题1.D2.C3.B4.A5.C6.D7.B8.C9.A 10.B二、填空题11.x≥-且x≠112.k≤13.内切或外切或相切14.(2,-3)15.16.717.y=-18.0.15119.2-20.3+和3-(注:15题写出一个解给1分,20题答对一个给1分)三、解答题21.解法一:原式=……3分=……5分=……6分解法二:原式====22.(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同;答对一条给2分(注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确请酌情给分)23.(1)甲班的优秀率是60%(或0.6);乙班的优秀率是40%(或0.4);……2分(2)甲班5名学生比赛成绩的中位数是100个,乙班5名学生的比赛成绩的中位数是97个;……4分(3)估计甲班5名学生比赛成绩的方差小;……6分(4)将冠奖状发给甲班,因为甲班5人比赛成绩的优秀率比乙班高、中位数比乙班大、方差比乙班小,综合评定甲班比较好. ……10分四、解答题24.解法一:如图(1)连结OO1、O1O2、O2O,则△OO1O2是等腰三角形.作OA⊥O1O2,垂足为A,则O1A=O2A. ……2分由图可知大圆的半径是9cm.设小圆的半径为xcm,在Rt△OAO1中,依题意,得(9+x)2=(9-x)2+(25-9-x)2. ……5分整理,得x2-68x+256=0.解得x1=4,x2=64. ……8分∵x2=64>9,不合题意,舍去.∴x=4.答:两个小圆的半径是4cm. ……10分解法二:如图(2)设⊙O1、⊙O2与长方形的一边相切于B、C,连结OB、O1C,作O1A⊥OB,垂足为A,则△OO1A是直角三角形,以下同解法一.五、解答题25.解法一:过点B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=5. ……2分过点C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°设CK=x,则BK=x. ……5分在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴x+5=5+x.解得x=5. ……8分∵5海里>4.8海里,∴渔船没有进入养殖场的危险. ……9分答:这艘渔船没有进入养殖场危险. ……10分解法二:过点C作CE⊥BD,垂足为E,∴CE∥GB∥FA.∴∠BCE=∠GBC=60°.∠ACE=∠FAC=45°.∴∠BCA=∠BCE-∠ACE=60°-45°=15°.又∠BAC=∠FAC-∠FAB=45°-30°=15°,∴∠BCA=∠BAC.∴BC=AB=10.在Rt△BC E中,CE=BC·cos∠BCE=BC·cos60°=10×=5(海里).∵5海里>4.8海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场的危险.六、解答题26.(1)解法一:根据题意,得y=16×20%·x+20×25%×=-0.8x+2500. ……4分解法二:y=16·x·20%+(10000-16x)·25%=-0.8x+2500.(2)解法一:由题意知,解得250≤x≤300.由(1)知y=-0.8x+2500,∵k=-0.8<0,∴y随x的增大而减小.∴当x=250时,y值最大,此时y=-0.8×250+2500=2300(元).∴==300(箱). ……9分答:当购进甲种酸奶250箱,乙种酸奶300箱时,所获销售利润最大,最大销售利润为2300元. ……10分解法二:因为16×20%<20×25%,即乙种酸奶每箱的销售利润大于甲种酸奶的销售利润,因此最大限度的购进乙种酸奶时所获销售利润最大,即购进乙种酸奶300箱,则x==250(箱).由(1)知y=-0.8x+2500,∴当x=250时,y值最大,此时y=-0.8×250+2500=2300(元).七、解答题27.(1)△PDE是等边三角形. ……1分证法一:连DC.∵弦BC把⊙O分成度数的比为1:2的两条弧,∴的度数为120°.∴∠BAC=60°.……3分又∵BC为⊙P的直径,∴∠BDC=90°.又∵∠A=60°,∴∠DCA=30°.∴∠DPE=60°.又PD=PE,∴△PDE是等边三角形. ……5分证法二:连DC.∵弦BC把⊙O分成度数的比为1:2的两条弧,∴的度数为120°.∴∠BAC=60°.∴∠ABC+∠ACB=120°.又∵PB=PD=PC=PE,∴∠BDP=∠ABC,∠CEP=∠ACB.∴∠BDP+∠CEP=120°.∴∠BPD+∠CPE=120°.∴∠DPE=60°.又PD=PE,∴△PDE是等边三角形.(2)如图②、图③即为所画图形.画出示意图且正确标记字母即可.画出直角三角形的情形给1分,画出钝角三角形的情形给2分. ……8分(3)图②和图③中△PDE仍为等边三角形.证明:如图③.连结BE、DC.∵BC为⊙P的直径,∴∠BDC=90°.又∵∠A=60°,∴∠ACD=30°.又∵四边形DBEC是⊙P的内接四边形,∴∠DBE=∠DCA=30°.∠DPE=60°.又∵PD=PE,∴△PDE是等边三角形. ……12分八、解答题28.解:(1)连PC.∵A(-3,0),B(1,0),∴⊙P的直径是4,∴半径R=2,OP=1.又∵CD⊥AB,AB是直径.∴OC2=OA·OB=3×1=3.∴OC=.∴C(0,). ……1分又∵⊙P的半径是2,OP=1.∴∠PCO=30°.又CE是⊙P的切线,∴PC⊥CE.∴∠PEC=30°.∴PE=2PC=4.EO=PE-MP=3.∴E(3,0).……2分设直线CE的解析式为y=kx+b,将C、E两点坐标代入解析式,得解得∴直线CE的解析式为y=-x+①.……4分(2)当0≤m≤3且m≠1时,直线FB与⊙P相交. ……6分(3)解法一:∵点N是的中点,∴N(-1,-2)设直线NB的解析式为y=kx+b,把N、B两点坐标代入解析式,得解得∴直线NB的解析式为y=x-1 ②由①,②式得解得∴F(,-1). ……10分解法二:过点F作FH⊥BE于H,∵N是的中点,则∠ABN=∠FBE=45°. ∴∠BFH=45°.∴BH=FH.由(1)知∠CEP=30°,∴HE=FH.∵OE=OB+BH+HE,∴1+FH+FH=3,FH=-1.∴OH=OB+BH=1+(-1)=.∴F(,-1).(4)连结AC、BC. ∵点N是的中点,∴∠NCB=∠CAN.又∠CAB=∠CNB, ∴△AMC∽△NBC.∴.∴MC·NC=BC·AC.∵OA=OE=3, ∴△ACE为等腰三角形.∴AC=CE=.BC=. ∴MC·NC=BC·AC=4. ……14分。

辽宁省锦州市中考数学试卷及答案

辽宁省锦州市中考数学试卷及答案

辽宁省锦州市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。

辽宁省锦州市中考数学试卷及答案

辽宁省锦州市中考数学试卷及答案

辽宁省锦州市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)1.在下列各组根式中,是同类二次根式的是()2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()5.已知2 是关于x 的方程的一个根,则2a- 1的值是()A.3 B.4 C.5 D.66.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥07.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()A.4π B.2π C.D.π8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定二、填空题(每小题2 分,共20 分)11.在函数中,自变量x 的取值范围是_______________ .12.若方程的两根分别为13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.17.用换元法解方程,若设,则原方程可化成关于y 的整式方程为__________.18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P,则BP 的长为__________ .19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是__________.20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度数为__________.三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)21.当x=2,y=3 时,求代数式的值.22.如图,已知:AB.求作:(1)确定AB 的圆心O.(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:_____________________________________________ .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:_____________________________________________ .(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?答:_____________________________________________ .四、(10 分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).五、(10 分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;(3)求第8 个月公司所获利润是多少万元?六、(12 分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?七、(12 分)27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明八、(14 分)28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:与y 轴交于P.(1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。

2014-2015年辽宁省锦州实验中学九年级上学期期中数学试卷及参考答案

2014-2015年辽宁省锦州实验中学九年级上学期期中数学试卷及参考答案

2014-2015学年辽宁省锦州实验中学九年级(上)期中数学试卷一、选择题(每题3分,共24分)1.(3分)正方形具有而矩形不一定具有的特征是()A.四个角都相等B.四边都相等C.对角线相等D.对角线互相平分2.(3分)公园中的儿童乐园是两个相似三角形地块,相似比为2:3,面积的差为30m2,它们的面积之和为()m2.A.56 B.65 C.78 D.803.(3分)如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2﹣4ac≥0 B.b2﹣4ac≤0 C.b2﹣4ac>0 D.b2﹣4ac<04.(3分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率5.(3分)如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE ⊥DF交DF的延长线于点E,已知∠A=30°,DF=1,AF=BF,则四边形BCDE的面积为()A.2 B.4 C.4 D.26.(3分)如图,顺次连接四边形AB的各边的中点,得到四边形EFGH,在下列条件中,可使四边形EFGH为矩形的是()A.AB=CD B.AC=BD C.AC⊥BD D.AD∥BC7.(3分)在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是()A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=08.(3分)手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.二、填空题(每题3分,共24分)9.(3分)菱形ABCD的对角线长分别为12cm和16cm,则菱形ABCD的周长为.10.(3分)已知2+是方程x2﹣4x+c=0的一个根,求方程的另一个根.11.(3分)如图,BD,CE分别为△ABC的两条高线,F为BC的中点,则△DEF 是三角形.12.(3分)如图,圆桌正上方的灯光发出的光照射到桌面后在地面上形成圆形,已知桌面的直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面上阴影部分的直径为.13.(3分)求作关于x的一个一元二次方程,一根为0,另一根为﹣5,则这个一元二次方程为.14.(3分)某市2011年底自然保护区覆盖率仅为4%,经过两年的努力,该市2013年年底自然保护区覆盖率达到9%,设该市这两年自然保护区的年均增长率为x,所列方程为.15.(3分)如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC 于点E,若∠CAE=15°,则∠AOE=.16.(3分)如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.三.计算题(17,18每题4分,共8分)17.(4分)(x﹣3)2+2x(x﹣3)=0.18.(4分)2x2﹣7x=3.四.解答题(19,20,21每题8分;22,23每题10分,共44分)19.(8分)某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg.经市场调查,销售单价每涨1元,月销售量就减少10kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?20.(8分)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出两张牌,用树状图或列表求摸出的两张牌牌面图形既是轴对称图形又是中心对称图形的概率.21.(8分)如图,在同一平面内,将等腰直角三角形ABC和等腰直角三角形AFG 摆放在一起,A为公共顶点,∠BAC=∠AGF=90°.若△ABC固定不动,△AFG绕点A旋转.(1)如图(1)在旋转过程中,当AF、AG与边BC的交点分别为D、E(点D不与点B 重合,点E不与点C重合)时,图中相似三角形有哪几对,请逐一写出;并选择一对加以证明.(2)如图(2)在旋转过程中,当G点在BC边上,AF与BC边交于点D,(1)中的结论是否有变化?若有,请直接写出图中新得出的相似三角形是.22.(10分)如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)试说明∠BAE=∠DAF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形,并说明你的理由.23.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM、PN,设移动时间为t秒(0<t<2.5).(1)当t为何值时,以A、P、M为顶点三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积为4.4cm2?2014-2015学年辽宁省锦州实验中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.(3分)正方形具有而矩形不一定具有的特征是()A.四个角都相等B.四边都相等C.对角线相等D.对角线互相平分【解答】解:根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对角线都相等、对角线互相平分,但矩形的长和宽不相等.故选:B.2.(3分)公园中的儿童乐园是两个相似三角形地块,相似比为2:3,面积的差为30m2,它们的面积之和为()m2.A.56 B.65 C.78 D.80【解答】解:∵两个相似三角形地块,相似比为2:3,∴面积比为:4:9,∵面积的差为30m2,∴设较小三角形面积为xm2,则较大三角形面积为:(x+30)m2,故=,解得:x=24,故x+30=54,即它们的面积之和为78m2.故选:C.3.(3分)如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2﹣4ac≥0 B.b2﹣4ac≤0 C.b2﹣4ac>0 D.b2﹣4ac<0【解答】解:若一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,则b2﹣4ac ≥0;故选A.4.(3分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率【解答】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:=≈0.33;故此选项正确;C、掷一枚硬币,出现正面朝上的概率为,故此选项错误;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:B.5.(3分)如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE ⊥DF交DF的延长线于点E,已知∠A=30°,DF=1,AF=BF,则四边形BCDE的面积为()A.2 B.4 C.4 D.2【解答】解:∵D,F是AC,AB中点,∴DF是△ABC中位线,∴DF∥BC,BC=2DF,∴∠C=90°,∴四边形BCDE为矩形,∵在△ADF和△BEF中,,∴△ADF≌△BEF,(AAS)∴BE=AD,DF=EF=1,∴DE=2,∵∠A=30°,DF=1,∴AD=,∴矩形BCDE面积=BC•BE=2.故选:A.6.(3分)如图,顺次连接四边形AB的各边的中点,得到四边形EFGH,在下列条件中,可使四边形EFGH为矩形的是()A.AB=CD B.AC=BD C.AC⊥BD D.AD∥BC【解答】解:新四边形的各边垂直,都平行于原四边形对角线,那么原四边形的对角线也应垂直.故选:C.7.(3分)在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是()A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0【解答】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400,整理得出:x2+65x﹣350=0.故选:B.8.(3分)手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.【解答】解:A:形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A选项不符合要求;B:形状相同,符合相似形的定义,故B选项不符合要求;C:形状相同,符合相似形的定义,故C选项不符合要求;D:两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.二、填空题(每题3分,共24分)9.(3分)菱形ABCD的对角线长分别为12cm和16cm,则菱形ABCD的周长为40cm.【解答】解:如图,∵菱形ABCD的对角线长分别为12cm和16cm,∴OA=×16=8cm,OB=×12=6cm,由勾股定理得,AB===10cm,∴菱形ABCD的周长=4×10=40cm.故答案为:40cm.10.(3分)已知2+是方程x2﹣4x+c=0的一个根,求方程的另一个根x=2﹣.【解答】解:设方程的两根为x1,x2,设x1=2+由题意知x1+x2=2++x2=4,∴x2=2﹣.故答案为:x=2﹣.11.(3分)如图,BD,CE分别为△ABC的两条高线,F为BC的中点,则△DEF 是等腰三角形.【解答】解:∵BD,CE分别为△ABC的两条高线,F为BC的中点,∴EF=DF=BC,∴△DEF是等腰三角形.故答案为:等腰.12.(3分)如图,圆桌正上方的灯光发出的光照射到桌面后在地面上形成圆形,已知桌面的直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面上阴影部分的直径为 1.8m.【解答】解:如图,CD=1,AC=0.6,SD=3,∵AC∥BD,∴△SCA∽△SDB,∴=,即=,解得BD=0.9,∴地面上阴影部分的直径为2×0.9=1.8(m).故答案为1.8m.13.(3分)求作关于x的一个一元二次方程,一根为0,另一根为﹣5,则这个一元二次方程为x2+5x=0.【解答】解:∵关于x的一个一元二次方程,一根为0,另一根为﹣5,∴两根之和是﹣5,一次项系数为5,两根之积是0,常数项为0,所以,所求作的方程是x2+5x=0.故答案为:x2+5x=0(答案不唯一).14.(3分)某市2011年底自然保护区覆盖率仅为4%,经过两年的努力,该市2013年年底自然保护区覆盖率达到9%,设该市这两年自然保护区的年均增长率为x,所列方程为4%(1+x)2=9%.【解答】解:设该市总面积为1,该市这两年自然保护区的年均增长率为x,根据题意得1×4%×(1+x)2=1×9%,即4%(1+x)2=9%.故答案为4%(1+x)2=9%.15.(3分)如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC 于点E,若∠CAE=15°,则∠AOE=135°.【解答】解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=90°﹣30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故答案为:135°.16.(3分)如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是(﹣2,0)或(,).【解答】解:两个图形位似时,①位似中心就是CF与x轴的交点,设直线CF解析式为y=kx+b,将C(4,2),F(1,1)代入,得,解得,即y=x+,令y=0得x=﹣2,∴O′坐标是(﹣2,0).②OC和BG的交点也是位似中心,直线BG的解析式为y=﹣x+1,直线OC的解析式为y=x,由解得,∴位似中心的坐标(,),故答案为(﹣2,0)或(,).三.计算题(17,18每题4分,共8分)17.(4分)(x﹣3)2+2x(x﹣3)=0.【解答】解:由原方程,得3(x﹣3)(x﹣1)=0,所以,x﹣3=0或x﹣1=0,解得,x1=3,x2=1.18.(4分)2x2﹣7x=3.【解答】解:方程整理得:2x2﹣7x﹣3=0,这里a=2,b=﹣7,c=﹣3,∵△=49+24=73,∴x=.四.解答题(19,20,21每题8分;22,23每题10分,共44分)19.(8分)某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg.经市场调查,销售单价每涨1元,月销售量就减少10kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?【解答】解:设销售单价定为x元,根据题意得:(x﹣40)[500﹣(x﹣50)×10]=8000.解得:x1=60(舍去),x2=80,所以x=80.答:销售单价定为80元.20.(8分)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出两张牌,用树状图或列表求摸出的两张牌牌面图形既是轴对称图形又是中心对称图形的概率.【解答】解:画树状图得:∵共有12种等可能的结果,摸出的两张牌牌面图形既是轴对称图形又是中心对称图形的有2种情况,∴摸出的两张牌牌面图形既是轴对称图形又是中心对称图形的概率为:=.21.(8分)如图,在同一平面内,将等腰直角三角形ABC和等腰直角三角形AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°.若△ABC固定不动,△AFG绕点A旋转.(1)如图(1)在旋转过程中,当AF、AG与边BC的交点分别为D、E(点D不与点B 重合,点E不与点C重合)时,图中相似三角形有哪几对,请逐一写出;并选择一对加以证明.(2)如图(2)在旋转过程中,当G点在BC边上,AF与BC边交于点D,(1)中的结论是否有变化?若有,请直接写出图中新得出的相似三角形是△DCA∽△DAG,△ABG∽△DCA,△ABC∽△GAF,△ABG∽△DAG.【解答】解:(1)△DCA∽△DAE,△ABE∽△DCA,△ABC∽△GAF,△ABE∽△DAE,△ABD∽△GFD;∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA又∠B=∠BAE=45°∴△ABE∽△DAE.(2)由图示知,点E与点G重合了,则图中相似三角形有:△DCA∽△DAG,△ABG∽△DCA,△ABC∽△GAF,△ABG∽△DAG,△ABD∽△GFD;故答案是:△DCA∽△DAG,△ABG∽△DCA,△ABC∽△GAF,△ABG∽△DAG.22.(10分)如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)试说明∠BAE=∠DAF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形,并说明你的理由.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴∠BAE=∠DAF;(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC﹣BE=DC﹣DF(等式的性质),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF,∴平行四边形AEMF是菱形.23.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM、PN,设移动时间为t秒(0<t<2.5).(1)当t为何值时,以A、P、M为顶点三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积为4.4cm2?【解答】解:∵在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,∴AB2=AC2+BC2,即AB2=42+32,∴AB=5.(1)以A、P、M为顶点三角形与△ABC相似分两种情况.①当△AMP∽△ABC时,=,即=,解得t=;②当△APM∽△ABC时,=,即=,解得t=0(舍去).综上所述,当t=秒时,以A、P、M为顶点三角形与△ABC相似;(2)存在.过点P作PH⊥BC于点H,则∠PHB=90°,∵∠B=∠B,∴△BPH∽△BAC,∴=,即=,解得PH=t.∵四边形APNC的面积为4.4cm2,∴×4×3﹣×(3﹣t)•t=4.4,解得t1=1,t2=2.答:1秒或2秒时,四边形APNC的面积为4.4cm2.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

【精选试卷】辽宁锦州市中考数学解答题专项练习复习题(含答案)

【精选试卷】辽宁锦州市中考数学解答题专项练习复习题(含答案)

一、解答题1.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.2.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?3.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?4.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.5.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.6.将A B C D(1)A在甲组的概率是多少?,都在甲组的概率是多少?(2)A B7.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.8.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?9.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)10.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.11.解分式方程:232 11xx x+= +-12.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.13.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?14.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为83,求AC的长.15.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?16.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240017.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)18.数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.活动一如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.数学思考(1)设CD=x cm,点B到OF的距离GB=y cm.①用含x的代数式表示:AD的长是_________cm,BD的长是________cm;②y与x的函数关系式是_____________,自变量x的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.x(cm)654 3.53 2.5210.50 y(cm)00.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点(x,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.19.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.20.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?21.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).22.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.23.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.24.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A ,B 两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A ,B 两种型号的机器可以各安排多少台?25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.26.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.27.如图,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向上,港口A 位于B 的北偏西30°的方向上.求A 、C 之间的距离.(结果精确到0.12≈1.41328.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C 地,再下坡到B 地.若打通穿山隧道,建成直达A ,B 两地的公路,可以缩短从A 地到B 地的路程.已知:从A 到C 坡面的坡度1:3i =,从B 到C 坡面的坡角45CBA ∠=︒,42BC =公里.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A 地到B 地的路程约缩短多少公里?(结果精确到0.012 1.414≈3 1.732) 29.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1) (2)(1﹣1x+2)÷x 2−1x+230.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈)【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、解答题1.(1)12,32-;(2)证明见解析. 【解析】 试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 2.(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x -得()5321x +-=-解得 0x =经检验,0x =是原分式方程的解.(2)设?为m ,方程两边同时乘以()2x -得()321m x +-=-由于2x =是原分式方程的增根,所以把2x=代入上面的等式得()3221m+-=-1m=-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图4.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣50)、(3,0)、(50).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N 的坐标为(n ,0),则BN=n+2,过M 点作MD ⊥x 轴于点D ,∴MD ∥OA ,∴△BMD ∽△BAO , ∴=,∵MN ∥AC ∴=, ∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S △AMN =S △ABN ﹣S △BMN =BN•OA﹣BN•MD =(n+2)×4﹣×(n+2)2=﹣(n ﹣3)2+5,当n=3时,△AMN 面积最大是5,∴N 点坐标为(3,0).∴当△AMN 面积最大时,N 点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 5.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.6.(1)12(2)16【解析】解:所有可能出现的结果如下:甲组乙组结果(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162, A B ,都在甲组的概率=167.(1)200;(2)52;(3)840人;(4)16【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m 的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人); (2)非常好的频数是:200×0.21=42(人), 一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21=126. 点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103,∴当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣13)=50,解得:x=1,10+1=11=11点,∴小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他11点遇见小慧.9.(1)BC与⊙O相切,理由见解析;(2)①⊙O的半径为2.②S阴影=2 233π- .【解析】【分析】(1)根据题意得:连接OD,先根据角平分线的性质,求得∠BAD=∠CAD,进而证得OD∥AC,然后证明OD⊥BC即可;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得结果.【详解】(1)相切.理由如下:如图,连接OD.∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠ODA=∠BAD,∴∠ODA=∠CAD,∴OD∥AC.又∠C=90°,∴OD⊥BC,∴BC与⊙O相切(2)①在Rt△ACB和Rt△ODB中,∵AC=3,∠B=30°,∴AB=6,OB=2OD.又OA=OD=r,∴OB=2r,∴2r+r=6,解得r=2,即⊙O的半径是2②由①得OD=2,则OB=4,BD=23,S阴影=S△BDO-S扇形ODE=12×23×2-2602360π⨯=23-23π10.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)11.x=-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x+1)( x-1),化为整式方程求解,求出x的值后不要忘记检验.【详解】解:方程两边同时乘以(x+1)( x-1)得: 2x (x-1)+3(x+1)=2(x+1)( x-1)整理化简,得x=-5经检验,x =-5是原方程的根 ∴原方程的解为:x =-5.12.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛. 【解析】 【分析】 【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a 的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a 的值是25; (2)、观察条形统计图得: 1.502 1.554 1.605 1.656 1.70324563x ⨯+⨯+⨯+⨯+⨯=++++=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65; 将这组数据从小到大排列为,其中处于中间的两个数都是1.60, 则这组数据的中位数是1.60.(3)、能; ∵共有20个人,中位数是第10、11个数的平均数, ∴根据中位数可以判断出能否进入前9名; ∵1.65m >1.60m , ∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数13.(1)原来每小时处理污水量是40m 2;(2)需要16小时. 【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可.()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意, 则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时), 则需要16小时.14.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.15.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.16.(1)2000;(2)A型车17辆,B型车33辆【解析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程17.(1)证明见解析;(2)6πcm2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年辽宁省锦州市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014辽宁锦州,1,3分)-1.5的绝对值是()A .0B .-1.5C .1.5D .23答案:C2. (2014辽宁锦州,2,3分)如图,在一水平面上摆放两个几何体,它的主视图是( )A .B .C D .答案:B3.下列计算正确的是()A.3x+3y=6xyB.a 2×a 3=a 6C.b 6÷b 3=b 2D.(m 2)3=m 6答案:D4. (2014辽宁锦州,4,3分)已知a >b >0,下列结论错误的是( )A .a m b m ++>B a b >.22a b ->- D .22a b>答案:C(第2题图)5. (2014辽宁锦州,5,3分)如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°答案:A6. (2014辽宁锦州,6,3分)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示: 每人销售件数 1800510250210150120人数113532那么这15位销售人员该月销售量的平均数、众数、中位数分别是( ) A.320,210,230 B. 320,210,210 C. 206,210,210 D. 206,210,230 答案:B7. (2014辽宁锦州,7,3分)二次函数2y ax bx c =++(a ≠0,a ,b ,c 为常数)的图象如图所示,2ax bx c m ++=有实数根的条件是( )A.2m ≤-B. 2m ≥-C. 0m ≥D. 4m >(第7题图)4-2O 5y xEDC21 ba (第5题图)答案:A8. (2014辽宁锦州,8,3分)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁,”如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A.1818x y y x y =-⎧⎨-=-⎩B. 1818y x x y y -=⎧⎨-=+⎩C. 1818x y y x y +=⎧⎨-=+⎩D. 1818y x y y x =-⎧⎨-=-⎩答案:D二、填空题(本大题共6小题,每小题3分,满分18分.)9.(2014辽宁锦州,11,3分)分解因式2242x x -+ 的结果是__________.答案:22(1x -)10.(2014辽宁锦州,11,3分)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10-9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为_________米. 答案:6×10-511.(2014辽宁锦州,11,3分)计算:tan45°-)1313=________.答案:2312. (2014辽宁锦州,12,3分)方程13144x x x +-=-- 的解是________. 答案:x=013. (2014辽宁锦州,13,3分)如图,在一张正方形纸片上剪下一个半径为r 的圆形和一个半径为R 的扇形,使之恰好围成图中所示范的圆锥,则R 与r 之间的关系是________.(第13题图)答案:R=4r .14. (2014辽宁锦州,14,3分)某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是_________.答案:1315. (2014辽宁锦州,15,3分)菱形ABCD 的边长为2,60ABC ∠=︒,E 是AD 边中点,点P 是对角线BD 上的动点,当AP+PE 的值最小时,PC 的长是__________.(第14题图)16. (2014辽宁锦州,16,3分)如图,点B 1在反比例函数2y x=(x >0)的图象上,过点B 1分别作x 轴和y 轴的垂线,垂足为C 1和A ,点C 1的坐标为(1,0)取x 轴上一点C 2(32,0),过点C 2分别作x 轴的垂线交反比例函数图象于点B 2,过B 2作线段B 1C 1的垂线交B 1C 1于点A 1,依次在x 轴上取点C 3(2,0),C ,4(52,0)…按此规律作矩形,则第n ( 2,n n ≥为整数)个矩形)A n-1C n-1C ,n B n 的面积为________.BD(第15题图)答案:21 n三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2014辽宁锦州,21,8分)已知53nm=,求式子222()m m nm n m n m m-?+--的值.答案:解:222 ()m m nm n m n m m-?+--=22222 ()()m m n m m nmnmn m-+¸---=22 2222mn m n m n n--×-=2mn -.∵53nm=,∴35 mn=.∴原式=-2×35=-65.18.(2014辽宁锦州,21,8分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)(2)在网格中,△ABC的下方..,直接画出△EBC,使△EBC与△ABC全等.CBA答案:解:(1)如图,点D 即为所求.(2)如图,1BCE V 和2BCE V 即为所求.E 2E 1D19.(2014辽宁锦州,21,10分)对某市中学生的幸福指数进行调查,从中抽取部分学生的调查表问卷进行统计,并绘制出不完整的统计表和条形统计图. (1)直接补全统计表.(2)补全条形统计图(不要求写出计算过程).(3)抽查的学生约占全市中学生的5℅,估计全市约有多少名中学生的幸福指数能达到五★级?3★1★3008060人数4003002001000等级 频数 频率 ★ 60 ★★ 80 ★★★0.16 ★★★★ 0.30 ★★★★★答案:解:(1)补全的统计表如下图所示:(每空0.5分,共3分)(2)补全的统计图如下图所示:(每个条形1分,共5分)等级频数频率★600.06★★800.08★★★1600.16★★★★3000.30★★★★★4000.40人数6080300160400(3)∵被抽查的学生总数为:300÷0.3=1000(人)∴全市的中学生总数约为:1000÷5%=20000(人)∴幸福指数能达到五★级的全市学生约有20000×0.40=8000(人)……………10分20.(2014辽宁锦州,21,10分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都飘浮相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转发盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一下区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?答案:解:(1)解法一:根据题意画树状图如下:-1.532-121.5-3-212积BA1.51.51.5-3-3-3-2-2-2121212- 11解法二:根据题意列表得:(A)-11(B)1 122-3- 1.5-1 -122 3 -1.5由表(图)可知,所有可能结果共有12种,且每种结果发生的可能性相同,其中积结果为负数的结果有4种,分别是(1,-2),(1,-3),(-1,12),(-1,1.5),乘积结果为负数的概率为41 123=.(2)乘积是无理数的结果有2种,分别是(1,-2),(-1,-2),所以获得一等奖的概率为21 126=.21. j(2014辽宁锦州,22,10分)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=12 AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.M FEDCBA答案:解:(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12 AC.(2)解:∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM=CD.又∵CD=CB,∴AM+DM=BC.22. (2014辽宁锦州,22,10分)如图所示,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79, sin22°≈0.37,cos22°≈0.93, sin37°≈0.60,cos37°≈0.80)东答案:解:过点C作CD⊥AB,垂足为D.由题意知∠NAC=30°,∠NAB=68°,AC=20,∴∠CAB=38°,∠BAM=90°—68°=22°,∵BC∥AM,∴∠CBA=∠BAM=22°.∵CD⊥AB,∴∠ADC=∠CDB=90°.在Rt△BCD中,sin∠CBD=CD CB,∴CB=12412433.51 sin sin220.37CDCBD°=换Ð,∴t =33.5120=1.7(小时). 答:救生船到达B 处大约需要1.7小时.23. (2014辽宁锦州,23,10分)已知,⊙O 为∆ABC 的外接圆,BC 为直径,点E 在AB 上,过点E 作EF ⊥BC ,点G 在FE 的延长线上,且GA=GE . (1)求证:AG 与⊙O 相切.(2)若AC=6,AB=8,BE=3,求线段OE 的长.答案:解:(1)连接OA ,∵OA=OB ,∴∠B=∠BAO ,又∵EF ⊥BC ,∴∠BFE=900,∴∠B+∠BE F=900,…………2分 ∵AG=GE ,∴∠GAE=∠GEA ,∵∠GEA=∠BEF ,∴∠BAO+∠GAE=900,……………………4分 ∴GA ⊥AO ,又OA 为⊙O 的半径,∴ AG 与⊙O 相切…………………………………………5分(2)过点O 作OH ⊥AB ,垂足为H ,BAC OE FG BACOEFGHBACOE FG由垂径定理得,BH=AH=21AB=21×8=4.………………6分 ∵BC 是直径,∴∠BAC=900,又∵AB=8,AC=6,∴AB=2268+=10,……………………8分 ∴OA=5,OH=3,又∵BH=4,BE=3,∴EH=1,∴OE=2213+=10……………………………………10分24. (2014辽宁锦州,24,10分)在机器调试过程中,生产甲、乙两种产品的效率分别为y 1、y 2(单位:件/时),y 1、y 2与工作时间x (小时)之间大致满足如图所示的函数关系,y 1的图像为折线OABC ,y 2的图像是过O 、B 、C 三点的抛物线一部分.(1)根据图像回答:①调试过程中,生产乙的效率高于甲的效率的时间x (小时)的取值范围是_________________________;②说明线段AB 的实际意义是___________________. (2)求出调试过程中,当8x 6≤≤时,生产甲种产品的效率y 1(件/时)与工作时间x (小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m 小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z (件)与生产甲所用时间m (小时)之间的函数关系式.OABCx (时y (件/答案:解:(1)①6x 8x 2≠<<且,(或866x 2<<<<x ,)……………………2分 ②从第1小时到底6小时乙的生产效率保持3件/时,…………………………4分 (2)当8x 6≤≤时,图像呈直线,故可设解析式为y=kx+b , ∵过点(6,3),(8,0),∴6380k b k b +=⎧⎨+=⎩,解得⎪⎩⎪⎨⎧==12b 23k ,…………………………………………6分 当8x 6≤≤时,y 1与x 之间的函数关系式为12x 23y +=.………………7分 (3)由题意可知,Z=3m+4(6-m )=m+24,………………………………9分 ∴Z 与m 之间的函数关系式为:Z=m+24.……………………………10分25. (2014辽宁锦州,25,12分)(1)已知正方形ABCD 中,对角线AC 与BD 相交于点O ,如图①,将∆BOC 绕点O 逆时针方向旋转得到∆B ’OC ’,OC ’与CD 交于点M ,OB ’与BC 交于点N ,请猜想线段CM 与BN 的数量关系,并证明你的猜想.(2)如图②,将(1)中的∆BOC 绕点B 逆时针旋转得到∆BO ’C ’,连接AO ’、DC ’,请猜想线段AO ’与DC ’的数量关系,并证明你的猜想.(3)如图③,已知矩形ABCD 和Rt ∆AEF 有公共点A ,且∠AEF=900,∠EAF=∠DAC=α,连接DE 、CF ,请求出CFDE的值(用α的三角函数表示).图① 图② 图③ 答案:解:(1)BN=CM 理由如下:……………………………………………………1分 ∵四边形ABCD 是正方形,A B CD C'B 'OMNABC D C 'O ' OE ABCDOF∴BO=CO ,∠BOC=900,∠OBC=∠OCD=21×900=450.……………………2分 由旋转可知,∠B ’OC ’=900,∠BON=∠COM,…………………………3分 ∴∆BON ≌∆COM ,∴BN=CM .……………………………………4分 (2)AO ’=22DC ’.………………………………………………5分 由旋转可知,∠O ’BC ’=∠OBC=450,∠BO ’C ’=∠BOC=900.∴BO'BC' 又∵四边形ABCD 是正方形, ∴∠ABO=21×900=450,∴22BD AB =,………………6分 ∴ ∠ABO ’=∠OBC ’,=BC'BO'22BDAB=…………………………………………7分 ∴∆ABO ’∽∆OBC ’,∴22DC'AO'=,即AO ’=22DC ’,……………………8分(3)在矩形ABCD 中,∠ADC=900, ∵∠AEF=900,∴∠AEF=∠ADC ∵∠EAF=∠DAC=α,∴∆AEF ∽∆ADC ,∴ACAFAD AE =,…………………………10分 又∵∠EAF+∠FAD=∠DAC+∠FAD ,∴∠EAD=∠FAC , ∴∆AED ∽∆AFC ,∴αcos AFAECF DE ==……………………………………12分 26. (2014辽宁锦州,26,14分)如图,平行四边形ABCD 在平面直角坐标系中,点A 的坐标为(-2,0),点B 的坐标为(0,4),抛物线2y x mx n =-++经过点A 和C . (1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO 分成两部分,对称轴左侧部分的图形面积记为1S ,右侧部分图形的面积记为2S ,求1S 与2S 的比.(3)在y 轴上取一点D ,坐标是(0,72),将直线OC 沿x 轴平移到O C '',点D 关于直线O C ''的对称点记为D ',当点D '正好在抛物线上时,求出此时点D '坐标并直接写出直线O C ''的函数解析式.答案:解:(1)∵四边形ABCO 为平行四边形, ∴BC ∥AO ,且BC=AO ,由题意知,A (-2,0),C (2,4),将其代入抛物线n mx x y ++-=2中,有⎩⎨⎧=++-=+--424024n m n m ,解得⎩⎨⎧==61n m ,∴抛物线解析式为62++-=x x y …………4分 (2)由(1)知,抛物线对称轴为直线21=x , 设它交BC 于点E ,交OC 于点F ,则BE=21,CE=23. 又∵∠A=∠C ,∴∆CEF ∽∆AOB , ∴EF BO 2CE AO==, ∴EF=3,∴4932321S 2=⨯⨯=,……………………6分 又∵S □ABCD =2×4=8,∴423498S 1=-=,∴S 1:S 2=23:9.…………………………………………………………8分y xABCO yx ABCO(3)如图,设过DD ’的直线交x 轴于点M ,交OC 于点P , ∵DM ⊥OC ,∴∠DOP=∠DMO ,∵AB ∥OC ,∴∠DOC=∠ABO ,∴∆ABO ∽∆DMO ,∴2OAOBOD OM ==,∴OM=7………………………………………………10分 设直线DM 的解析式为b kx y +=,将点D (0,27),M (7,0)代入,得⎪⎩⎪⎨⎧=+=027727k b ,解得⎪⎩⎪⎨⎧=-=2721b k , ∴直线DM 的解析式为2721+-=x y ,由题意得⎪⎩⎪⎨⎧++-=+-=627212x x y x y ,解得⎩⎨⎧=-=4111y x ,⎪⎩⎪⎨⎧==492522y x ,……………………12分 ∴点D ’坐标为(-1,4)或(25,49).直线O ’C ’的解析式为:832+=x y (如图1)或4192+=x y (如图2)………………………………14分yx ABCOEF图1 图2。

相关文档
最新文档