统计和概率知识点总结
高中数学统计与概率知识点归纳
高中数学统计与概率知识点归纳高中数学中的统计与概率是两个非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。
本文将对这些知识点进行归纳和总结,以便读者更好地理解和掌握。
首先,让我们来看看统计。
统计是研究如何从数据中获取有用信息的学科。
在高中数学中,统计的主要内容包括以下三个方面:1、概率分布:这是统计的基础知识,它描述了各种可能结果出现的概率。
例如,投掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率为0.5。
2、参数估计:参数估计是通过样本数据来估计总体参数的方法。
例如,通过样本的平均值来估计总体的平均值。
3、假设检验:假设检验是用来检验一个假设是否成立的统计学方法。
例如,我们想要检验某种新药的疗效是否优于安慰剂,可以通过比较实验组和对照组的数据来进行假设检验。
接下来,让我们来看看概率。
概率是描述事件发生可能性大小的数学工具。
在高中数学中,概率的主要内容包括以下三个方面:1、事件的关系和运算:事件的关系包括互斥、独立、不独立等,事件之间的运算包括并、交、差等。
2、概率的性质和计算:概率的性质包括加法定理、乘法定理、全概率公式等,概率的计算方法包括直接计算、利用公式计算等。
3、概率分布:概率分布描述了随机变量的取值概率,例如伯努利分布、二项分布、正态分布等。
在应用方面,统计与概率的知识点可以应用于很多领域,例如金融、医学、工业、农业等。
例如,在金融领域,可以通过统计方法来分析股票数据的规律和趋势;在医学领域,可以通过概率方法来预测疾病的发病率和死亡率。
总之,统计与概率是高中数学中非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。
通过对这些知识点的归纳和总结,我们可以更好地理解和掌握它们,从而更好地应用于实际问题的解决中。
高中数学概率与统计知识点总结高中数学:概率与统计知识点总结一、前言在现实生活中,我们经常需要处理各种与概率和统计相关的问题。
例如,在掷骰子时计算点数、在班级中选取学生、或者在评估天气预报的准确性。
概率与统计知识点总结
概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
统计和概率小学知识点总结
统计和概率小学知识点总结1. 统计的概念统计是指收集、整理、分析和解释数据的过程。
在日常生活中,我们经常会遇到各种数据,比如身高、体重、年龄、成绩等,统计就是对这些数据进行收集和整理,然后分析并得出一定的结论。
统计是用来描述和分析现象的一种方法,它可以帮助我们更好地认识和理解世界。
2. 统计的方法统计有两种基本方法,一种是描述统计,另一种是推断统计。
描述统计是对已有数据进行整理和分析,通过图表、频数分布等方式展现数据的特征和规律。
而推断统计则是根据样本数据推断总体的性质和规律,比如进行民意调查时,只对一部分人进行调查,然后根据这部分人的回答推断出整个群体的意见。
3. 统计中的常用术语在学习统计的过程中,小学生需要了解一些常用的统计术语,比如频数、频数分布、中位数、平均数等。
频数是指某一数值在数据中出现的次数,频数分布是将数据按照不同数值进行分类并统计各类别频数的分布情况,中位数是按照大小顺序排列后中间位置的数值,平均数是所有数据的总和除以数据的个数。
4. 概率的概念概率是指某一事件发生的可能性,它是用来描述随机事件发生的规律性和不确定性的概念。
比如掷骰子、抽签、抛硬币等都是基于概率的随机实验。
5. 概率的计算在学习概率的过程中,小学生需要学会计算事件发生的概率。
概率的计算是通过对所有可能发生的结果进行统计,并计算出每种结果发生的可能性,然后将这些可能性相加得到最终的概率。
比如抛硬币的概率是1/2,掷骰子的概率是1/6等。
6. 概率事件的规律概率也有一些基本的规律,比如互斥事件、独立事件、互逆事件等。
互斥事件是指两个事件不能同时发生,比如掷骰子出现1和出现2是互斥事件;独立事件是指一个事件的发生不受另一个事件的影响,比如抛硬币的正反面是独立事件;互逆事件是指两个事件相加的概率为1,比如抛硬币的正反面相加的概率为1。
7. 统计和概率在日常生活中的应用统计和概率在日常生活中有着广泛的应用,比如天气预报就是基于历史数据对未来天气的概率进行预测,股市交易也是基于历史数据对股票价格的概率进行分析和预测,民意调查就是通过样本数据对整个群体的意见进行推断等。
高考复习概率与统计知识点归纳总结
概率与统计知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1.用样本的数字特征估计总体的数字特征(1)样本本均值:nx x x x n +++= 21 (2)样本标准差:nx x x x x x s s n 222212)()()(-++-+-== (3)频率分布直方图估算样本众数、中位数、平均数①众数:最高小矩形中点值;②中位数:先确定中位数所在小组,设中位数为m ,由直线x=m 两侧小矩形面积之和等于0.5列方程求m . ③平均数:各小矩形中点值与其面积的积的和.2.随机事件的概率及概率的意义(1)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(2)概率定义:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A为事件A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.3.概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)4.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性.(2)公式P (A )=总的基本事件个数包含的基本事件数A 5.几何概型及均匀随机数的产生(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 6.随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示.7.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n .X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列分布列性质:∪ p i ≥0, i =1,2, … ;∪ p 1 + p 2 +…+p n = 1.9.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率公式:.0)(,)()()|(>=A P A P AB P A B P 10.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件,)()()(B P A P B A P ⋅=⋅12.数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 Eξ=x 1p 1+x 2p 2+…+x n p n 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量.13.方差:D(ξ)=(x 1-Eξ)2·P 1+(x 2-Eξ)2·P 2 +......+(x n -Eξ)2·P n 叫随机变量ξ的均方差,简称方差.14.正态分布:(1)定义:若概率密度曲线就是或近似地是函数 的图象,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差.则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线;(2)基本性质:∪曲线在x 轴的上方,与x 轴不相交;∪曲线关于直线x=对称,且在x=时位于最高点;∪当一定时,曲线的形状由确定.越大,曲线越“矮胖”;表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中;∪正态曲线下的总面积等于1.15.3原则:从上表看到,正态总体在 以外取值的概率只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.),(,21)(222)(+∞-∞∈=--x e x f x σμσπμμμσσσσ)2,2(σμσμ+-)3,3(σμσμ+-17.回归分析。
数学必修三统计和概率知识点总结
数学必修三统计和概率知识点总结
数学必修三统计和概率的主要知识点包括:
1. 统计:
- 样本调查与总体推断:样本的选择和调查方法,通过样本推断总体特征;
- 随机变量与概率分布:离散型和连续型随机变量的概念,概率质量函数和概率密度函数;
- 期望与方差:随机变量的期望值和方差;
- 离散型随机变量的分布:二项分布、泊松分布等离散型随机变量的性质;
- 连续型随机变量的分布:均匀分布、正态分布等连续型随机变量的性质;
- 多元随机变量与边缘分布:多个随机变量之间的关系与边缘分布;
- 相关与回归:随机变量之间的相关性和回归分析;
- 统计与误差:抽样误差和非抽样误差。
2. 概率:
- 随机事件与概率:样本空间、随机事件和概率的概念;
- 概率的运算:事件的和、积以及互斥事件的概率;
- 条件概率:在已知一事件发生的条件下,另一事件发生的概率;
- 事件的独立性:事件之间的独立性和联合概率;
- 正态分布的应用:正态分布的特性、标准正态分布的应用;
- 抽样与抽样分布:抽样的概念,样本均值的分布;
- 参数估计:点估计和区间估计;
- 假设检验:零假设和备择假设的提出,检验统计量的构造。
以上是数学必修三统计和概率的主要知识点总结,具体内容可根据教材的要求进行深入学习和了解。
初中数学概率与统计知识点归纳
初中数学概率与统计知识点归纳概率和统计是数学领域中非常重要的分支,它们与现实生活密切相关,能够帮助我们更好地理解和解析事件发生的规律。
在初中数学教学中,概率和统计也是重要的内容。
下面将对初中数学中的概率和统计知识点进行归纳和总结。
一、概率1.概念和基本概率计算概率是研究随机现象的数学工具,是事件发生可能性大小的度量。
在初中阶段,学生需要掌握事件的可能性计算方法。
对于事件A发生的概率记作P(A),其计算公式为:P(A) = A的可能性数量 ÷总可能性数量在简单情况下,通过列举样本空间和事件发生的样本点就可以计算概率,例如,从一副扑克牌中抽取一张牌,求抽到红心的概率。
2.加法原理加法原理是计算多个事件并的概率的方法。
如果事件A和事件B互斥(即两个事件不可能同时发生),那么事件A和事件B的并的概率等于事件A的概率加上事件B的概率。
P(A∪B) = P(A) + P(B)例如,从一副扑克牌中抽一张牌,求抽到红心或方片的概率。
3.乘法原理乘法原理是计算多个事件交的概率的方法。
如果事件A和事件B是相互独立的(即一个事件的发生不影响另一个事件的发生),那么事件A和事件B的交的概率等于事件A的概率乘以事件B的概率。
P(A∩B) = P(A) × P(B)例如,从一副扑克牌中抽两张牌,求第一张牌是红心的概率,第二张牌是方片的概率。
4.有关性质和应用学生需要了解概率的一些基本性质和应用,例如:概率的范围在0到1之间,且概率为0的事件不会发生;概率可以用来预测事件的可能性大小;利用概率可以解决实际问题,如排列组合、生日悖论等。
二、统计1.数据收集与整理统计是收集、整理、分析和解释数据的方法和过程。
对于初中生而言,学会合理收集和整理数据是非常重要的。
收集数据可以通过实地观察、调查问卷、抽样等方式进行。
整理数据应注意选择适当的统计图表,如表格、条形图、折线图等。
2.频数和频率频数是指某项数据出现的次数,频率是指某项数据出现的次数与总数据量的比值。
高一数学统计与概率总结
高一数学统计与概率总结高一数学统计与概率的总结如下:1. 基本概率公式在概率论中,基本的概率公式包括:P(A) = %A / nP(B) = %B / nP(A|B) = %A / (%B + %A)P(B|A) = %B / (%A + %B)其中,%A表示所有可能事件的概率之和;%B表示事件A发生的概率;%B+%A表示事件A发生且事件B发生的概率,即它们发生的概率之和。
2. 独立性独立性是指两个事件之间相互独立的情况。
其中,相互独立的意思是,如果事件A发生,事件B发生的概率不受事件A发生前后发生情况的影响。
例如,抛一枚硬币正反面相互独立,因为它们的概率之和为1/2。
3. 条件概率公式条件概率公式用于描述两个事件之间相互依赖的情况。
其中,P(A|B)表示事件A发生的条件下事件B发生的概率。
例如,抛一枚硬币正反面的条件概率公式为:P(A|B) = P(B|A)P(A) / P(B),其中P(A)表示事件A发生的概率,P(B|A)表示事件B发生的条件下事件A发生的概率,P(A)表示事件A发生的概率。
4. 常用概率分布在概率论中,常见的分布包括:- 泊松分布:所有可能事件的概率之和等于常数的分布。
- 正态分布:连续型概率分布,它的参数为均值和标准差。
- 均匀分布:所有可能事件的概率之和相等的分布。
- 负二项分布:适用于从0到1连续可数个样本中,其中只有一部分样本的结果属于正态分布的情况。
5. 概率密度函数概率密度函数是描述随机变量分布的特征函数,它是概率分布的图形表示。
常见的概率密度函数包括:- 泊松分布的密度函数为:f(x) = C x^(-n) / (n * e^(-x)),其中C为常数,n为泊松分布的项数。
- 正态分布的密度函数为:f(x) = (1 /√(2 *pi)) * e^(-x^2 / 2),其中π为圆周率。
- 均匀分布的密度函数为:f(x) = 1 / (1 + x),其中x为样本容量。
概率与统计知识点总结
概率与统计知识点总结概率与统计是数学中的重要分支,广泛应用于各个领域。
它们是研究随机现象的规律性和统计规律的数学方法。
本文将对概率与统计的基础知识点进行总结,并介绍其应用领域。
一、概率1. 概率的基本概念概率是事件发生的可能性大小的度量。
其中,随机试验是指具有不确定性的实验,样本空间是指该实验的所有可能结果的集合,事件是样本空间的子集。
2. 概率的计算规则概率的计算通常使用频率来估计,频率是指在大量重复试验中某一事件发生的次数与总试验次数之比。
根据频率计算概率的规则有加法规则和乘法规则。
3. 条件概率与独立事件条件概率是指事件A在事件B发生条件下发生的概率,表示为P(A|B)。
独立事件是指两个事件互不影响,其概率的乘积等于各自概率的积。
4. 事件的组合与排列组合是指从n个不同元素中取出m个元素(m≤n)的方式数,用C(n,m)表示。
排列是指从n个不同元素中按一定顺序取出m个元素(m≤n)的方式数,用P(n,m)表示。
二、统计1. 统计的基本概念统计是指通过收集、整理和分析数据来描述和推断总体的方法。
其中,总体是指研究对象的全体,样本是从总体中抽取的一部分。
2. 数据的表示与整理数据可以使用表格、图表等形式进行表示。
常用的图表有条形图、饼图、折线图等。
数据的整理包括频数分布、频率分布等。
3. 统计指标统计指标是对数据进行度量和描述的工具,常用的统计指标有均值、中位数、众数、标准差等。
均值是指一组数据的算术平均值,中位数是指一组数据中居于中间位置的数值,众数是指一组数据中出现频次最高的数值。
4. 抽样与推断抽样是从总体中随机抽取样本的方法。
通过对样本的分析,可以对总体进行推断。
常用的推断方法有参数估计和假设检验。
三、概率与统计的应用领域1. 自然科学概率与统计在物理学、化学、生物学等自然科学中有广泛应用。
例如,在物理学中,概率与统计可以用来描述微粒的运动规律;在化学中,可以用来研究物质反应的速率与产率;在生物学中,可以用来研究生物种群的数量与分布。
概率与统计学总结
设 A, B,C 为事件,则有 交换律: A ∪ B = B ∪ A; A ∩ B = B ∩ A. 结合律: A∪ (B ∪ C) = (A∪ B) ∪C; A∩ (B ∩ C) = (A∩ B) ∩C. 分配律: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C); A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 德·摩根律: A∪ B = A ∩B; A∩ B = A ∪ B.
乘法定理: 设 P(A)>0,则有 P(AB)=P(B|A)P(A) 一般,设 A1, A2, … , An 为 n 个事件,n≥2,且 P( A1A2 ^ An−1) >0,则有
P( A1 A2 ^ An ) = P( An | A1 A2 ^ An−1)P( An−1 | A1A2 ^ An−2 )^ P( A2 | A1)P( A1)
设 A,B,C 是三个事件,如果满足等式: P( AB) = P( A)P(B) P( AC) = P( A)P(C) P(BC) = P(B)P(C) P( ABC) = P(A)P(B)P(C) 则称事件 A,B,C 相互独立。
一般,设 A1, A2, … , An 是 n(n≥2)个事件,如果对于其中任意 2 个,任意 3 个,……,
划分: 设 S 为试验 E 的样本空间, B1, B2, ^ Bn 为 E 的一组事件,若 1. Bi Bj = φ,i ≠ j,i, j = 1,2, ^ , n 2. B1 ∪ B2 ∪^ Bn = S , 则称 B1, B2, ^ Bn 为样本空间 S 的一个划分
全概率公式: 设 试验 E 的 样本空间 为 S , A 为 E 的 事件, B1, B2, ^ Bn 为 S 的 一个划分 ,且 P(Bi ) > 0(i = 1,2, ^ , n) ,则 P( A) = P( A | B1)P(B1) + P( A | B2 )P(B2 )+^+P( A | Bn )P(Bn )
高中数学概率与统计知识点总结
概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
高考复习概率与统计知识点归纳总结
高考复习概率与统计知识点归纳总结概率与统计是高中数学中的一大重点和难点。
在高考中,这一部分的知识点占有相当大的比重,因此学生需要在复习阶段集中精力,深入理解和掌握相关的知识点。
本文将对高考概率与统计的知识点进行归纳总结,以帮助学生们更好地复习和备考。
一、概率基本概念1. 随机事件与样本空间:随机事件是对某一随机试验的结果的一种描述,样本空间是一个随机试验中可能出现的所有结果的集合。
2. 事件的概率:事件A发生的概率用P(A)表示,其计算公式为P(A) = 事件A的可能结果数 / 样本空间的结果总数。
3. 事件的互斥与对立:互斥事件指的是两个事件不可能同时发生,对立事件指的是两个事件中一个必然发生,另一个必然不发生。
4. 事件的独立性:两个事件相互独立指的是一个事件的发生不受另一个事件的影响,它们的概率计算是相互独立的。
二、排列与组合1. 排列:排列是从n个不同元素中取出m(m≤n)个元素,按一定的顺序排列成一列。
公式为An^m = n(n-1)(n-2)...(n-m+1)。
2. 组合:组合是从n个不同元素中取出m(m≤n)个元素,不考虑排列顺序。
公式为Cn^m = n! / (m!(n-m)!)。
三、事件概率的计算1. 加法定理:对于两个事件A和B,其和事件A∪B的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 乘法定理:对于两个独立事件A和B,其积事件A∩B的概率为P(A∩B) = P(A) × P(B)。
3. 全概率公式:对于一组互斥事件A1、A2、...、An,其和事件A的概率为P(A) = P(A1) + P(A2) + ... +P(An)。
4. 条件概率公式:对于两个事件A和B,已知事件B发生的条件下事件A发生的概率为P(A|B) = P(A∩B) / P(B)。
四、随机变量与概率分布1. 随机变量:随机变量是随机试验结果的函数,它的取值是随机的。
高中数学《统计》与《概率》知识点
高中数学《统计》与《概率》知识点高中数学的《统计》和《概率》是数学领域中的两个重要分支,它们是数据分析、预测和决策制定等实际问题中必不可少的工具。
下面将详细介绍这两个知识点。
一、统计学是研究数据收集、整理、分析和解释的学科。
统计学的主要任务是从已有的数据中得出结论,进而得到有关总体的信息。
统计学的主要内容包括:1.描述统计:通过数值特征描述数据的中心位置、离散程度等。
描述统计包括以下几个方面:(1)集中趋势:主要有均值、中位数和众数。
均值是一组数据的平均值,中位数是一组数据中处于中间位置的数值,众数是一组数据中出现频率最高的数值。
(2)离散程度:主要有极差、方差和标准差。
极差是一组数据中最大数与最小数的差值,方差是各个数据与均值的差值的平方的平均值,标准差是方差的平方根。
(3)分布形状:主要有正态分布、偏态分布和峰态分布等类型。
2.探索性数据分析:根据数据特征进行初步探索,主要包括绘制直方图、饼图、箱线图等工具来分析数据分布和异常值。
3.概率论:概率是描述随机事件发生可能性的数值,涉及到概率的计算、随机变量及其分布、大数定律和中心极限定理等概念。
(1)概率的定义与性质:概率的定义有经典概率和条件概率等。
经典概率是指在等可能的情况下,一些事件发生的概率。
条件概率是指在已知一事件发生的条件下,另一事件发生的概率。
(2)随机变量与概率分布:随机变量是具有随机性的数值,可分为离散随机变量和连续随机变量。
离散随机变量取有限或可数个数值,其概率分布函数称为概率分布列;连续随机变量在一些区间上取值,其概率分布函数称为概率密度函数。
(3)大数定律与中心极限定理:大数定律是指随着试验次数的增加,频率逼近概率。
中心极限定理是指多个独立随机变量之和的分布近似于正态分布。
4.统计推断:通过样本数据推断总体特征,主要有参数估计和假设检验。
(1)参数估计:根据样本数据估计总体参数,主要有点估计和区间估计。
点估计是用一个数值来估计总体参数,区间估计是用一个区间来估计总体参数,有置信水平的概念。
总结概率与统计的考点梳理
总结概率与统计的考点梳理概率与统计是一门重要的数学学科,在各个领域都有广泛的应用。
为了帮助大家更好地理解和掌握概率与统计的知识,本文将对其考点进行梳理和总结。
一、概率基础知识概率是研究随机事件发生可能性的数学工具,它是数学中的一种测度。
概率的基础知识包括样本空间、随机事件、事件的概率、事件的互斥与独立等。
掌握这些基本概念是理解和运用概率原理的基础。
二、概率统计的基本原理概率统计是通过观察样本数据来推断总体的性质和规律。
它包括参数和统计量、抽样分布和估计等内容。
熟悉概率统计的基本原理对于进行实证研究和数据分析至关重要。
三、概率分布概率分布是概率统计中的重要内容,常见的概率分布有离散概率分布和连续概率分布。
离散概率分布包括二项分布、泊松分布等,而连续概率分布则包括正态分布、指数分布等。
对于每种概率分布,了解其概率密度函数或概率质量函数的性质和特点,并能正确地运用相应的分布进行问题求解是非常重要的。
四、参数估计参数估计是指通过样本数据对总体参数进行估计。
常用的参数估计方法有矩估计和最大似然估计。
在实际问题中,我们需要根据给定的样本数据来估计总体的参数,从而做出合理的推断和决策。
五、假设检验假设检验是概率统计的重要工具,用于判断总体参数是否符合某种假设。
在假设检验中,我们需要先提出原假设和备择假设,然后根据样本数据推断总体参数,最后对原假设进行接受或拒绝的判断。
熟练掌握假设检验的方法和步骤对于进行科学研究和数据分析具有重要意义。
六、回归分析回归分析是利用统计模型研究自变量与因变量之间关系的方法。
简单线性回归、多元线性回归、逻辑回归等是常见的回归分析方法。
通过回归分析可以得出自变量对因变量的影响程度和方向,为实证研究提供有力的依据。
七、抽样与抽样分布抽样是指从总体中取得样本的过程,它是概率统计的基础。
抽样分布是指统计量的概率分布。
通过抽样与抽样分布的理论,我们可以利用样本数据对总体进行推断和研究。
以上是概率与统计的一些重要考点的梳理和总结。
初中统计与概率知识点总结
初中统计与概率知识点总结统计与概率是初中数学中的一个重要部分,主要涉及数据的收集、整理、分析和概率的计算。
在这篇文章中,我将为您总结初中统计与概率的主要知识点。
一、统计学知识点1. 数据的收集与整理统计学的基础是数据的收集与整理。
在实际生活中,我们可以通过问卷调查、实地观察、实验等方式收集数据。
然后,我们需要用表格、图表等工具对数据进行整理和呈现,以便更好地进行后续的分析和推理。
2. 统计属性统计属性是一组描述数据特征的度量,包括平均数、中位数、众数、极差等。
平均数是指一组数据的总和除以数据个数,中位数是将一组数据按照大小排列,找出中间的数值,众数是一组数据中出现次数最多的数值,极差是一组数据中最大值与最小值之间的差距。
3. 图表与统计图图表与统计图是用来展示数据的重要工具。
常见的统计图包括条形图、折线图、饼图等。
条形图适用于比较不同类别的数据,折线图适用于表示数据随时间变化的趋势,饼图适用于显示不同类别数据在整体中的占比。
4. 概率统计概率统计是统计学的核心内容之一。
它研究事件发生的可能性大小。
概率可以用分数、小数或百分比表示,范围从0到1。
事件的概率越大,就越有可能发生。
二、概率学知识点1. 随机事件随机事件是指在一定条件下,不确定性和不可预测性的事件。
例如,掷硬币的结果、抽取扑克牌的花色等都属于随机事件。
为了描述事件的概率,我们可以使用等可能原则,即每个结果发生的可能性相等。
2. 事件的概率事件的概率是指事件发生的可能性大小。
概率的计算可以使用频率法、古典概率法、几何概率法等多种方法。
频率法是通过实验统计事件发生的次数,再除以总实验次数得到。
古典概率法是基于事件的样本空间中各个事件发生的可能性相等的假设。
几何概率法是通过几何形状计算事件发生的概率。
3. 事件的互斥与独立互斥事件是指两个事件不能同时发生的情况,即它们的交集为空。
独立事件是指两个事件之间没有相互影响的情况,即一个事件的发生与另一个事件的发生无关。
概率统计知识点全面总结
Mister.D知识点总结:统计与概率I 统计1三大抽样 (1) 基本定义:① 总体:在统计中,所有考查对象的全体叫做全体. ② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2) 抽样方法:① 简单随机抽样: 逐个不放回、等可能性、有限性。
=======★适用于总体较少★抽签法:整体编号(1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为 n 的样本。
随机数表法:整体编号(等位数,如 001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机(上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。
② 系统抽样:容量大•等距,等可能。
=======★适用于总体多^N用随机方法编号,若 N 无法被整除,则剔除后再分组,k。
再用简单随机抽样法来抽取一个n个体,设为I ,则编号为I , k+l , 2k+l ……(n-1) k ,抽出容量为n 的样本。
(每组编号相同)。
③ 分层抽样:总体差异明显•按所占比例抽取•等可能.=======★适用于由差异明显的几部分构成的总体★总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样•抽样比为:3. 总体分布的估计: (1) 一表二图:★注:总体分布的密度曲线与横轴围成的面积为 1(2)茎叶图:样本容量抽样比=总体个数=各层样本容量 各层个体数量②频率分布直方图③频率分布折线图便于观察总体分布趋势11 m Il lift n 冲 11 11=7MIF①频率分布表——数据详实①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数•众位数等。
②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。
(1)在频率直方图中计算众数•平均数.中位数众数 在样本数据的频率分布直方图中,就是 最高矩形的中点的横坐标。
统计和概率知识点总结
第一章数据的收集、整理与描述1、全面调查:考察全体对象的调查方式叫做全面调查。
2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3、总体:要考察的全体对象称为总体。
4、个体:组成总体的每一个考察对象称为个体。
5、样本:被抽取的所有个体组成一个样本。
6、样本容量:样本中个体的数目称为样本容量。
7、样本平均数:样本中所有个体的平均数叫做样本平均数。
8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
10、频率:频数与数据总数的比为频率。
11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
第二章 数据的分析1、平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。
2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里nf f f k =++ 21)。
那么,根据平均数的定义,这n 个数的平均数可以表示为n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。
5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
初中概率与统计知识点总结
1 2 3 4 5 6 7 8 9 10-环78 9 10初中概率与统计知识点总结一、统计的基础知识1、统计调查的两种基本形式:调查方式 概念 适用范围 备注 全面调查(普查) 对调查对象的全体进行调查; 零错误、零失误或对象较少 抽样调查 对调查对象的部分进行调查; 调查具有破坏性或对象较多 保证随机性 2.各基础统计量总体:所有考察对象的全体叫做总体。
个体:总体中每一个考察对象叫做个体。
样本:从总体中所抽取的一部分个体叫做总体的一个样本。
样本容量:样本中个体的数目叫做样本容量。
样本平均数:样本中所有个体的平均数叫做样本平均数。
总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
(1)平均数的概念①平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++=叫做这n 个数的平均数,x 读作“x 拔”。
②加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x kk ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
(2)平均数的计算方法①定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=②加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。
③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
概率与统计基本知识点总结
概率与统计基本知识点总结1.概率理论:概率的定义:概率是描述随机事件发生可能性的数值,通常用介于0和1之间的数表示。
概率的基本性质:概率值在0到1之间,且所有可能事件的概率之和为1事件的独立性:两个或多个事件相互独立,意味着一个事件的发生不受其他事件发生与否的影响。
加法法则:若A和B是两个事件,则它们联合发生的概率等于它们各自发生的概率之和减去它们同时发生的概率。
乘法法则:对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率之积。
条件概率:事件A在事件B发生的条件下发生的概率,表示为P(A,B)。
贝叶斯定理:根据已知的条件概率,求解另一个条件概率的计算公式。
2.随机变量与概率分布:随机变量:将随机事件的结果映射到实数上的变量。
离散型随机变量:取有限个或可数个值的随机变量。
连续型随机变量:取任意实数值的随机变量。
概率分布:描述随机变量取各个值的概率的函数。
离散型概率分布:包括离散均匀分布、二项分布、泊松分布等。
连续型概率分布:包括连续均匀分布、正态分布、指数分布等。
期望:随机变量的平均值,反映其分布的中心位置。
方差:随机变量偏离其均值的程度,反映其分布的离散程度。
3.统计推断:总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
参数与统计量:总体的数值特征称为参数,样本的数值特征称为统计量。
抽样分布:样本统计量的概率分布。
中心极限定理:在一定条件下,样本容量足够大时,样本的均值近似服从正态分布。
置信区间:用样本统计量作为总体参数的估计范围。
假设检验:通过对样本数据的分析,判断总体参数是否满足其中一种假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的收集、整理与描述
1、全面调查:考察全体对象的调查方式叫做全面调查。
2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3、总体:要考察的全体对象称为总体。
4、个体:组成总体的每一个考察对象称为个体。
5、样本:被抽取的所有个体组成一个样本。
6、样本容量:样本中个体的数目称为样本容量。
7、样本平均数:样本中所有个体的平均数叫做样本平均数。
8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
10、频率:频数与数据总数的比为频率。
11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
数据的分析
1、平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++= 叫
做这n 个数的平均数,x 读作“x 拔”。
2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次
(这里n
f f f k =++ 21)。
那么,根据平均数的定义,这n 个数的平均数可以表示为n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。
5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,
叫做这组数据的方差。
通常用“2s ”表示,即
])()()[(1222212x x x x x x n
s n -++-+-= 7、标准差:方差的算数平方根叫做这组数据的标准差,用“s ”表示,即
])()()[(1222212x x x x x x n
s s n -++-+-== 8、方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
概率
1、确定事件:必然发生的事件。
在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
P (A )=1
2、不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
P (A )=0
3、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
4、概率:一般地,在大量重复试验中,如果事件A 发生的频率
m
n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
5.两种模型的概率
(1) 等可能性事件的概率:
在一次试验中,如果不确定现象的可能结果只有有限个,且每一个结果都是等可能的,求这种类型事件的概率称为等可能事件的概率型.如摸球、掷硬币、掷骰子等都属于等可能性.
在等可能事件中, 如果所有等可能的结果为n ,而其中所包含的事件A 可
能出现的结果数是m ,那么事件A 的概率P (A )=n
m . (2) 区域事件发生的概率:在与图形有关的概率问题中,概率的大小往往与面积有关,这种类型的概率称为区域型概率.在区域事件中,某一事件发生的概率等于这一事件所有可能结果组成的图形的面积除以所有可能结果组成的图形的面积.如P (小猫停留在黑砖上)=
地板砖总面积黑砖总面积. 6.确定事件概率
(1)当A是必然发生的事件时,P(A)=1
(2)当A是不可能发生的事件时,P(A)=0
7.列表法求概率
(1)、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(2)、列表法的应用场合
当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
8.树状图法求概率
(1)、树状图法
就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(2)、运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
9.利用频率估计概率
(1)、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
(2)、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
(3)、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。