微电子工艺课件

合集下载

微电子工艺学课件_6

微电子工艺学课件_6

第六章物理气相淀积物理气相淀积(PVD-Physical Vapor Deposition): 利用某种物理方法使物质由源按一定化学计量比转移到衬底表 面并淀积形成薄膜的过程。

通常用于金属、金属氧化物或其它固 态化合物的淀积。

物理气相淀积一般以单质固态材料为源,采用各种物理方法将 源变为气态,并在衬底表面淀积成膜。

根据固体源气化方式不同, 可以把物理气相淀积技术分为真空蒸发和溅射两种最基本的方法。

物理方法 淀积在固态源气 态衬底表面薄 膜2011-03-2316.1 真空蒸发一、真空蒸发过程及设备真空蒸发:利用固体材料在高温时所具有的饱和蒸汽压进行 薄膜制备的物理气相淀积技术。

主要物理过程:在高真空环境中加热固体蒸发源,使其原子 或分子从蒸发源表面逸出,形成蒸气流并入射到衬底表面,凝结 形成固态薄膜。

真空蒸发又称为热蒸发。

主要应用:制作有源元件、器件的接触及金属互连,高精度 低温度系数薄膜电阻器和薄膜电容器的绝缘介质及电极等。

显著的优点:设备简单,操作简便,淀积薄膜纯度较高,厚 度控制比较精确,成膜速度快以及生长机理简单等等。

明显的缺点:淀积薄膜与衬底附着力较小,工艺重复性不够 理想,台阶覆盖能力较差等等。

2011-03-23 2淀积膜的台阶覆盖(step coverage)保形台阶覆盖:无论衬底表面有什么样的非平坦图形,淀积薄膜 都能保持均匀的厚度,反之称为非保形台阶覆盖。

Lθ膜厚正比于θ = arctanWW L保形覆盖:与淀积膜种类、反应系统类型、淀积条件、图形尺寸等有关。

三种机制:入射、再发射、表面迁移。

2011-03-23 3真空蒸发设备主要 由三部分组成:a. 真空系统:为蒸发 过程提供真空环境; b. 蒸发系统:放置蒸 发源以及对蒸发源加 热和测温的装置; c. 基板及加热系统: 放置衬底以及对衬底 加热和测温的装置。

真空蒸发法制备薄膜的过程包含以下几个连续的步骤: a. 加热蒸发过程:对蒸发源进行加热,使其温度接近或达到 蒸发材料的熔点,此时固态源表面原子容易逸出而转变为蒸气; b. 气化原子或分子在蒸发源与衬底之间的输运过程:原子或 分子在真空环境中由蒸发源飞向衬底,飞行过程中可能与真空室 内残余气体分子发生碰撞,碰撞次数取决于真空度以及源到衬底 间的距离; c. 被蒸发的原子或分子在衬底表面的淀积过程:飞到衬底表 面的原子发生凝结、成核、生长和成膜。

微电子工艺课件资料

微电子工艺课件资料

三、起始材料--石英岩(高纯度硅砂--SiO2)
1. SiO2+SiC→Si(s)+SiO(g)+CO(g) 冶金级硅:98%;
300oC
2. Si(s)+3HCl(g) →SiHCl3(g)+H2 三氯硅烷室温下呈液态沸点为32℃,利用分馏法去 除杂质;
3. SiHCl3(g)+ H2→Si(s)+ 3HCl(g) 得到电子级硅(片状多晶硅)。
Si:
• 含量丰富,占地壳重量25%;
• 单晶Si 生长工艺简单,目前直径最大18英吋 (450mm)
• 氧化特性好, Si/SiO2界面性能理想,可做掩蔽膜、 钝化膜、介质隔离、绝缘栅等介质材料;
• 易于实现平面工艺技术;
• 直径
二、对衬底材料的要求
• 导电类型:N型与P型都易制备;
• 晶向:Si:双极器件--<111>;MOS--<100>;
4. 放肩
缩颈工艺完成后,略降低温度(15-40℃) ,让晶体逐 渐长大到所需的直径为止。这称为“放肩”。
5. 等径生长
当晶体直径到达所需尺寸后,提高拉速,使晶体直径不再 增大,称为收肩。收肩后保持晶体直径不变,就是等径生长。 此时要严格控制温度和拉速。
6. 收晶
晶体生长所需长度后,升高熔体温度或熔体温度不变, 加快拉速,使晶体脱离熔体液面。
有效分凝系数
当结晶速度大于杂质在熔体中的扩散速度时,杂质在界面 附近熔体中堆积,形成浓度梯度。
按照分凝系数定义:
k0
Cs Cl (0)
由于Cl(0)未知,然而为了描述 界面粘滞层中杂质浓度偏离对固 相中的杂质浓度的影响,引入有效 分凝系数ke:

微电子工艺PPT课件

微电子工艺PPT课件
集成电 路应用
.
5
半导体产业结构
.
6
我国集成电路产业在世界中的地位
1、中国目前进口第一多的商品不是原油,是芯片,一 年进口2500亿美元。 2、我国集成电路产业处在世界的中下端,属于集成电 路消费大国、制造大国,粗放型、高投入、低利润。 3、缺少高端设计,设备主要被国外垄断。 4、集成电路产业是国家的命脉,走到了危险的边缘, 不能再继续落后下去。
.
7
2014年6月,《国家集成电路产业发展推进纲要》
1、集成电路定位
它是信息技术产业的核心,是支撑经济社会发展和保障国家安全的战略性、基础性 和先导性产业,当前和今后一段时期是我国集成电路产业发展的重要战略机遇期和攻坚 期。
2、发展目标
到2015年,集成电路产业销售超3500亿元。移动智能终端、网络通信等部分重点 领域集成电路设计技术接近国际一流水平。32/28纳米(nm)制造工艺实现规模量产, 中高端封装测试销售收入占封装测试业总收入比例达到30%以上,65-45nm关键设备和 12英寸硅片等关键材料在生产线上得到应用。
1、2014年全球半导体市场规模达到3331亿美元,同比增长9%,为近四年增速之最。 2、从产业链结构看。制造业、IC设计业、封装和测试业分别占全球半导体产业整体营业收入 的50%、27%、和23%。 3、从产品结构看。模拟芯片、处理器芯片、逻辑芯片和存储芯片2014年销售额分别442.1 亿美元、622.1亿美元、859.3亿美元和786.1亿美元,分别占全球集成电路市场份额的 16.1%、22.6%、32.6%和28.6%。
电子工业出版社,2003
考核方式:考勤20+作业10+考试(闭卷)70
.
2
第0章 绪论

《微电子工艺实验》课件

《微电子工艺实验》课件

微电子基础
半导体材料
介绍半导体材料的特性和 用途。
PN结的特性
解释PN结在微电子中的重 要性和特征。
晶体管的基础知识
讲解晶体管的工作原理和 应用。
工艺流程
1
制程图
详细展示微电子工艺的流程和步骤。
2
工艺流程步骤
逐步介绍微电子工艺的各个步骤和操作。
3
介质与薄膜敷 deposition
Hale Waihona Puke 探讨介质材料和薄膜敷的工艺和应用。
工艺装备及材料
微细加工设备介绍
介绍常用的微细加工设备及其功能和用途。
典型微电子工艺材料
列举和解释一些常见的微电子工艺材料。
微电子工艺实验
实验一:制 作硅片测试 样品
详细描述制作硅片 测试样品的实验步 骤与要点。
实验二:光 刻制作器
介绍使用光刻制作 器进行微电子加工 的实验过程。
实验三:湿 法刻蚀
《微电子工艺实验》PPT 课件
在本课件中,将介绍《微电子工艺实验》课程的内容和目标,以及实验所需 的基础知识和工艺流程。通过该课程,您将深入了解微电子学的核心原理和 实践技巧。
绪论
课程简介
简要介绍《微电子工艺实验》的主题和内容。
实验教学要求
说明学生在实验中应遵守的规定和要求。
实验宗旨与目的
明确说明实验所追求的目标和意义。
实验现场注意事项
提醒学生在实验过程中需要注意的关键事项。
结论
课程总结
总结《微电子工艺实验》课程的重点和收获。
实验心得体会
分享学生参与实验后的体验和感悟。
参考文献
相关领域经典文献推荐
列出一些值得阅读的与微电子工艺实验相关的经典著作。

微电子工艺学课件_4

微电子工艺学课件_4

第四章加工环境与基片清洗4.1概述4.2 环境净化4.3 硅片清洗4.4 吸杂4.5 测量方法2局部光散射栅氧化层完整性≫≫ITRS Roadmap成品率每百分之一的提升都有巨大价值!Y randomY systematic Y total 起步阶段20%80%16%上升阶段80%90%72%成熟阶段90%95%86%影响成品率的因素:5!!!......................................¾e负二项模型聚集因子¾微粒金属离子化学物质细菌污染物静电缺陷从哪里来?缺陷:Life time killers1. ¾所有可以落在硅片表面的微小颗粒1 μm2 μm 30μm 100 μm烟尘尘埃指纹印人类毛发最关心颗粒尺寸:可在空气中长时间悬浮¾可移动离子污染物Fe, Cu, Ni,Fe, Cu, Ni,每10亿单位中金属杂质Sodium(Na)50 Potassium(K)50 Iron(Fe)50 Copper(Cu)60 Nickel (Ni)60 Aluminium(Al)60 Magnesium(Mg)60 Lead(Pb)60 Zinc(Zn)60某光刻胶去除剂金属杂质含量与氢原子发生电荷交换,和硅结合而被束缚在其表面。

硅片表面氧化时,进入氧化例write, read 漏放电的峰值电流静电荷在两物体间未经控制地传递,可能损坏芯片;电荷积累产生的电场会吸引带电颗粒或极化并吸引如何控制污染、降低缺陷密度?4.2ISO, FS209E洁净度等级对照19个/M3≥0.5umISO14644-1(1999)US209E(1992)US209D(1988)EECGGMP(1989)FRANCEAFNOR(1981)GERMANYVDI2083(1990)JAPANJAOA(1989)13.520210.0M135.33M1.5113100M23534M2.51024 1,000M33,5305M3.5100A+B4,00035 10,000M435,3006M4.51,0001,00046 100,000M5353,0007M5.510,000C400,00057 1,000,000M63,530,0008M6.5100,000D4,000,00068 10,000,000M7空气洁净大于或等于表中粒径的最大浓度限值(pc/m3)度等级(N)0.1um0.2um0.3um0.5um1um5um11022 (光刻、制版)100241043 (扩散、CVD)10002371023584 (封装、测试)1000023701020352835 (单晶制备)1000002370010200352083229 61000000237000102000352008320293 7352000832002930 8352000083200029300 9352000008320000293000空气初级过滤器鼓风机亚高效过滤器高效过滤器排放口收集口出风口洁净环境洁净室局部净化垂直层流式水平层流式乱流式净化工作台净化通道局部微环境垂直层流式水平层流式乱流式净化工作台净化通道局部微环境洁净室(clean room):泛指集成电路和其它微电子22231、屋顶:复杂的封闭式结构,有两种类型:a. 轧制铝支架加现场制作的静压箱/风道;b. 预制的整体式静压箱/风道加支架。

微电子工艺课件Chapter-9(zhang)b_图文_图文

微电子工艺课件Chapter-9(zhang)b_图文_图文

9.3 CMOS制作步骤—11通孔2和钨塞2的形成
9.3 CMOS制作步骤—11通孔2和钨塞2的形成
9.3 CMOS制作步骤—12第2层金属互连的形成
9.3 CMOS制作步骤—12第2层金属互连的形成
9.3 CMOS制作步骤—13金属3直到压焊点及合金
9.3 CMOS制作步骤—13金属3直到压焊点及合金
薄膜生长CVD Processing System
Process chamber
Gas inlet
Capacitivecoupled RF input
CVD cluster tool
Chemical vapor deposition
Wafer Susceptor
Heat lamps
Figure 9.7
9.3 CMOS制作步骤—14参数测试
第九章 作业(P 208)
2,3,4,6,11,15,16,17,18,19,24 ,
25,26,27,30,31
双极工艺举例
双极工艺举例
双极工艺举例
9.3 CMOS制作步骤—8局部互连工艺
9.3 CMOS制作步骤—8局部互连工艺
9.3 CMOS制作步骤—9通孔1和钨塞1的形成
9.3 CMOS制作步骤—9通孔1和钨塞1的形成
9.3 CMOS制作步骤—9通孔1和钨塞1的形成
LI 钨连线Tungsten LI
多晶硅栅Polysilicon
钨塞 Tungsten
SEM显微照片 M1 over Tungsten Vias
TiN metal cap
Metal 1, Al
Tungsten plug
Mag. 17,000 X
Photo 9.5

微电子工艺学课件_3

微电子工艺学课件_3

¾ 直径:由拉速决定;
φ200mm单晶, < 0.8mm/min
¾ 拉速:由远离结晶表面的加热
条件所限制;
¾ 氧含量:角色好坏参半;
¾ 碳含量:形成本征缺陷。
10
非惰性,可影响硅工艺过程,如杂质扩散
硅中的氧:10~20 ppm(5×1017~1018cm−3),定性而非定量模型
析出过程: 体积膨胀 (压应力), 消耗 V 或产生 I。 Si-Si → Si-O-Si
一级:温度、拉晶速度;
二级:单晶和坩埚转速、 气体流量。
EGS中杂质 < 1 ppb,晶体生长引入 O (≈ 1018 cm-3) 和 C (≈ 1016 cm-3), 融硅中掺杂杂质 P、B、As 等
Ar ambient
籽晶 单晶棒 石英坩埚 水冷腔 热屏蔽 碳加热器 石墨坩埚 坩埚基座
溢出托盘 电极
6
3.2 单晶生长
原材料 多晶半导体
单晶 晶片
Si/SiO2 蒸馏和还原
GaAs/Ga, As 合成
晶体生长
晶体生长
研磨、切割、 抛光
研磨、切割、 抛光
7
硅砂(SiO2ppb purity,最纯材料
电子级硅(EGS)
高温碳还原
高温氯化
高温氢还原
1600-1800°C
显然,
dS S
=
k0
−dM M0 − M
已知初始掺杂总量为C0M0,对上式积分:
=S M0 −
S dS S C0M0
M
= k0
解此方程,可得: Cs
=
k0C0 (1 −
M M0
)k0 −1
M −dM 0 M0 − M
18

集成电路制造工艺(微电子)PPT课件

集成电路制造工艺(微电子)PPT课件
光刻5#版(发射区版),利用光刻胶将基极接触 孔保护起来,暴露出发射极和集电极接触孔
进行低能量、高剂量的砷离子注入,形成发射 区和集电区
26
金属化
淀积金属,一般是铝或Al-Si、Pt-Si合金等 光刻6#版(连线版),形成金属互连线
合金:使Al与接触孔中的硅形成良好的欧 姆接触,一般是在450℃、N2-H2气氛下处 理20~30分钟
19
生长n型外延层
利用HF腐蚀掉硅片表面的氧化层 将硅片放入外延炉中进行外延,外延层的厚度和掺杂
浓度一般由器件的用途决定
20
形成横向氧化物隔离区
热生长一层薄氧化层,厚度约50nm 淀积一层氮化硅,厚度约100nm 光刻2#版(场区隔离版
21
形成横向氧化物隔离区
利用反应离子刻蚀技术
22
形成横向氧化物隔离区
去掉光刻胶,把硅片放入氧化炉氧化,形成 厚的场氧化层隔离区
去掉氮化硅层
23
形成基区
光刻3#版(基区版),利用光刻胶将收集区遮挡 住,暴露出基区
基区离子注入硼
24
形成接触孔:
光刻4#版(基区接触孔版) 进行大剂量硼离子注入 刻蚀掉接触孔中的氧化层
25
形成发射区
形成P管源漏区
光刻,利用光刻胶将NMOS区保护起来 离子注入硼,形成P管源漏区
10
形成接触孔
化学气相淀积磷硅玻璃层 退火和致密 光刻接触孔版 反应离子刻蚀磷硅玻璃,形成接触孔
11
形成第一层金属
淀积金属钨(W),形成钨塞
12
形成第一层金属
淀积金属层,如Al-Si、Al-Si-Cu合金等 光刻第一层金属版,定义出连线图形 反应离子刻蚀金属层,形成互连图形

微电子工艺课件

微电子工艺课件

直拉法生长单晶的特点
优点:所生长单晶的直径较大成本相对较低;
通过热场调整及晶转,埚转等工艺参数的优化,可较好 控制电阻率径向均匀性。
缺点:石英坩埚内壁被熔硅侵蚀及石墨保温加热元件的影响, 易引入氧碳杂质,不易生长高电阻率单晶(含氧量通常 10-40ppm)。
二、悬浮区熔法(float-zone,FZ法)
利用分凝现象将物料局部熔化形成狭窄的熔区,并令其沿 锭长从一端缓慢地移动到另一端,重复多次(多次区熔)使杂 质被集中在尾部或头部,进而达到使中部材料被提纯。
一次区熔提纯与直拉法后的杂质浓度分布的比较(K=0.01) 单就一次提纯的效果而言,直拉法的去杂质效果好。
多次区熔提纯
硅片制备基本工艺步骤
晶体生长 整型 切片
拉晶过程
1. 熔硅 将坩埚内多晶料全部熔化 ;注意事项:熔硅时间不易长;
2. 引晶 将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤
晶”,以除去表面挥发性杂质同时可减少热冲击。当温度稳 定时,可将籽晶与熔体接触,籽晶向上拉,
控制温度使熔体在籽晶上结晶;
3. 收颈
指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶 细的部分。其目的是排除接触不良引起的多晶和尽量消除籽晶 内原有位错的延伸。颈一般要长于20mm。
单晶制备
一、直拉法(CZ法)
CZ 拉晶仪 1. 熔炉 石英坩埚:盛熔融硅液; 石墨基座:支撑石英坩埚;加热坩埚; 旋转装置:顺时针转; 加热装置:RF线圈; 2. 拉晶装置 籽晶夹持器:夹持籽晶(单晶); 旋转提拉装置:逆时针; 3. 环境控制系统 气路供应系统 流量控制器 排气系统 4. 电子控制反馈系统
缺点: 单晶直径不及CZ法
掺杂分布
假设多晶硅棒上的杂质掺杂浓度为C0(质量浓度),d为硅

微电子工艺学课件_8

微电子工艺学课件_8

2离子注入优点掺杂浓度不受杂质源纯度的影响,工艺过程无污染注入晶片中的掺杂原子数精确可控(离子束电流&注入时间)结深(入射离子能量)、杂质分布可控,突变型杂质分布、浅结非平衡过程,不受杂质固溶度限制,原则上对各种材料均可掺杂低温工艺,掩蔽膜选择余地大、易于实施化合物半导体掺杂垂直入射,横向扩散几乎不存在,有利于器件特征尺寸的缩小缺点会在晶体中引入晶格损伤产率低设备复杂,投资大VVIon sourceAnalyzing magnetPump Resolving aperatureAcceleratorFocusNeutral beam gateNeutral trapX & Y scan platesWaferFaraday cupQ0-30keV0-200keV8.2 离子注入系统离子注入系统:应具备合适的可调能量范围和束流强度,能满足多种离子的注入,有好的注入均匀性以及无污染等性能。

离子注入系统通常分为三部分:离子源、加速器和终端台。

5AsH 3 PH 3 BF 2in 15% H 2, all very toxicFor low E implant no acceleration1. 离子发生器:将含有注入杂质的化合物或单质元素,以气态、光微波射频一、离子源& 提供多大束流强度钨针引出极液态金属(LMIS)低熔点低蒸汽压67磁分析器如果D 大于离子束的宽度加出口狭缝的宽度,则两种质量的离子被分辨开。

当r 大而m 小时,分辨率最高。

⎣⎦m r 2R ~ 1mBF 32线性加速器例如,如果一个正电荷离子经过电势差加速管温度:室温四极透镜结构及场分布静电离子束扫描大束流机机械扫描2. 扫描系统:通常离子流截面较小(约在mm2 量级),且密度和能量分布不均匀。

因此,必须利用扫描方式,使离子流均匀地扫过晶片表面,以达到均匀注入的目的。

3. 靶室:实际的离子注入发生在靶室内,也称为终端舱室。

微电子工艺学课件_11

微电子工艺学课件_11
微电子工艺学
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 第十一章
绪论 现代 CMOS 工艺技术 晶体生长与衬底制备 加工环境与基片清洗 光刻 热氧化 扩散掺杂 离子注入掺杂 薄膜淀积 刻蚀 后段工艺与集成
1
第十一章 工艺集成
后段工艺(backend of the line technology,BEOL)
¾ 深槽隔离:采用固定宽度的深槽进行器件隔离,较
窄的槽宽度对存储器电路特别有吸引力,很适合器件
密度超过107 cm−2 的应用。 沟槽隔离工艺的特点:
LOCOS、PBL可用于技 术节点 ≥ 0.35~0.5 μm;
• 能实现高密度隔离;
< 0.35 μm 必须使用STI
• 一般在器件制备之前进行,热预算小;
108 12 1.8 >20 7.9 2.2 <2.1
2013 2016 2018
32 nm 22 nm 18 nm
18 nm 13 nm 10 nm
76
54
42
12
14
14
1.9
2.0
2.0
>20 >20 >20
10.3
14
16.4
2.2
2.2
2.2
<1.9 <1.7 <1.7
• Reduce metal resistivity - use Cu instead of Al. • Aspect ratio - advanced deposition, etching and planarization methods. • Reduce dielectric constant - use low-K materials.

微电子工艺PPT课件

微电子工艺PPT课件
1833年,英国科学家电子学之父法拉第最先发现硫化银的 电阻随着温度的变化情况不同于一般金属,一般情况下, 金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料 的电阻是随着温度的上升而降低。这是半导体现象的首次 发现。
1874年,电报机、电话和无线电相继发明等早期电子仪器 亦造就了一项新兴的工业──电子业的诞生。
如今,渝德科技被中航集团收购,更名为中航微电子。我市已有西南集 成电路、中航微电子、奥特斯集成电路基板、台晶(重庆)电子、重庆石墨 烯科技公司、SK海力士、中电24所、四联微电子等集成电路生产和研发机构, 形成了设计-制造-封装的完备产业链,重庆大学和重庆邮电大学成立了半导 体学院培养集成电路人才。
.
20
1958年:仙童公司Robert Noyce与德仪公司基尔比间隔 数月分别发明了集成电路,开创了世界微电子学的历史;
1960年:H H Loor和E Castellani发明了光刻工艺;1962年:美国RCA 公司研制出MOS场效应晶体管。
1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天, 95%以上的集成电路芯片都是基于CMOS工艺
1971年:全球第一个微处理器4004由Intel公司推出,这是一个里程碑 式的发明; 1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了 14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临;
1979年:Intel推出5MHz 8088微处理器,之后,IBM基 于8088推出全球第一台PC
.
115
本课程内容结构?
集成电路制造技术—原理与工艺
硅材料
集成电路工艺
集成和封装测试
第1单元
1 单晶硅结 构
2 硅锭及圆 片制备
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉晶过程
1. 熔硅 将坩埚内多晶料全部熔化 ;注意事项:熔硅时间不易长;
2. 引晶 将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤
晶”,以除去表面挥发性杂质同时可减少热冲击。当温度稳 定时,可将籽晶与熔体接触,籽晶向上拉,
控制温度使熔体在籽晶上结晶;
3. 收颈
指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶 细的部分。其目的是排除接触不良引起的多晶和尽量消除籽晶 内原有位错的延伸。颈一般要长于20mm。
硅片掺杂
目的:使硅片具有一定电阻率 (比如: N/P型硅片 1-100 ·cm)
分凝现象:由于杂质在固体与液体中的溶解度不一样,所以,杂 质在固-液界面两边材料中分布的浓度是不同的,这就 是所谓杂质的分凝现象。
分凝系数:
k0
Cs Cl
Cs 和 Cl分别是固体和液体界面附近的平衡掺杂浓度
一般情况下k0<1。
单晶制备
一、直拉法(CZ法)
CZ 拉晶仪 1. 熔炉 石英坩埚:盛熔融硅液; 石墨基座:支撑石英坩埚;加热坩埚; 旋转装置:顺时针转; 加热装置:RF线圈; 2. 拉晶装置 籽晶夹持器:夹持籽晶(单晶); 旋转提拉装置:逆时针; 3. 环境控制系统 气路供应系统 流量控制器 排气系统 4. 电子控制反馈系统
二、悬浮区熔法(float-zone,FZ法)
方法: 依靠熔体表面张力,使熔区悬浮于多晶Si与下方长出 的单晶之间,通过熔区的移动而进行提纯和生长单晶。
区熔晶体生长
卡盘 多晶棒 (硅)
气体入口 (惰性) 熔融区
可移动RF
RF
线圈
籽晶 惰性气体出口
卡盘
悬浮区熔法(float-zone,FZ法)
特点:可重复生长、提纯单晶,单晶纯度较CZ法高; 无需坩埚、石墨托,污染少; FZ单晶:高纯、高阻、低氧、低碳;
缺点: 单晶直径不及CZ法
掺杂分布
假设多晶硅棒上的杂质掺杂浓度为C0(质量浓度),d为硅
有效分凝系数
当结晶速度大于杂质在熔体中的扩散速度时,杂质在界面 附近熔体中堆积,形成浓度梯度。
按照分凝系数定义:
k0
Cs Cl (0)
由于Cl(0)未知,然而为了描述 界面粘滞层中杂质浓度偏离对固 相中的杂质浓度的影响,引入有效 分凝系数ke:
ke
Cs Cl
ke
k0
k0 (1 k0 )ev / D
D: 熔液中掺杂的扩散系数
当/D>>1,ke 1, 为了得到均匀的掺杂分布, 可以通 过较高的拉晶速率和较低的旋转速率。
直拉法生长单晶的特点
优点:所生长单晶的直径较大成本相对较低;
通过热场调整及晶转,埚转等工艺参数的优化,可较好 控制电阻率径向均匀性。
缺点:石英坩埚内壁被熔硅侵蚀及石墨保温加热元件的影响, 易引入氧碳杂质,不易生长高电阻率单晶(含氧量通常 10-40ppm)。
微电子工艺
第二章
晶体生长
第一章 引言 第二章 晶体生长 第三章 工艺中的气体、化试、水、环境和硅片的清洗 第四章 硅的氧化 第五章 光刻 第六章 刻蚀 第七章 扩散 第八章 离子注入 第九章 薄膜淀积 第十章 工艺集成 第十一章 集成电路制造
目标
通过本章的学习,你将能够:
1. 掌握用直拉单晶法制备硅片所用的原料,以及提纯的过程 和制造单晶硅锭的步骤。
4. 放肩
缩颈工艺完成后,略降低温度(15-40℃) ,让晶体逐 渐长大到所需的直径为止。这称为“放肩”。
5. 等径生长
当晶体直径到达所需尺寸后,提高拉速,使晶体直径不再 增大,称为收肩。收肩后保持晶体直径不变,就是等径生长。 此时要严格控制温度和拉速。
6. 收晶
晶体生长所需长度后,升高熔体温度或熔体温度不变, 加快拉速,使晶体脱离熔体液面。
掺杂分布
假设熔融液初始质量为M0,杂质掺杂浓度为C0(质量浓度), 生长过程中晶体的质量为M,杂质在晶体中的浓度为Cs,留在熔液 中杂质的质量为S,那么熔液中杂质的浓度Cl为:
Cl
S M0
பைடு நூலகம்
M
当晶体增加dM的重量: dS CsdM
dS S
k0
dM M0 M
Cs
k0C0 1
M M0
k0 1
Si:
• 含量丰富,占地壳重量25%;
• 单晶Si 生长工艺简单,目前直径最大18英吋 (450mm)
• 氧化特性好, Si/SiO2界面性能理想,可做掩蔽膜、 钝化膜、介质隔离、绝缘栅等介质材料;
• 易于实现平面工艺技术;
• 直径
二、对衬底材料的要求
• 导电类型:N型与P型都易制备;
• 晶向:Si:双极器件--<111>;MOS--<100>;
三、起始材料--石英岩(高纯度硅砂--SiO2)
1. SiO2+SiC→Si(s)+SiO(g)+CO(g) 冶金级硅:98%;
300oC
2. Si(s)+3HCl(g) →SiHCl3(g)+H2 三氯硅烷室温下呈液态沸点为32℃,利用分馏法去 除杂质;
3. SiHCl3(g)+ H2→Si(s)+ 3HCl(g) 得到电子级硅(片状多晶硅)。
2. 了解区熔单晶法制备单晶硅锭的过程。 3. 了解两种制备方法各自的特点。 5. 从单晶锭到单晶硅片的步骤。 6. 硅片质量检测的指标。
一、衬底材料的类型
1. 元素半导体 Si、Ge…. 2. 化合物半导体 GaAs、SiC 、GaN…
Ge:
• 漏电流大,禁带宽度窄,仅0.66eV(Si:1.1eV); • 工作温度低,75℃(Si:150℃); • GeO2易水解(SiO2稳定); • 本征电阻率低:47 ·cm(Si: 2.3x105 ·cm); • 成本高。
• 电阻率:0.01-105·cm,均匀性好(纵向、横向、微区)、可
靠性高(稳定、真实);
• 寿命(少数载流子):晶体管—长寿命; 开关器件—短寿命;
• 晶格完整性:低位错(<1000个/cm2);
• 平整度、禁带宽度、迁移率等。
Si 的基本特性:
• FCC 金刚石结构,晶格常数a=5.431 Å • 间接带隙半导体, 禁带宽度 Eg=1.12eV • 相对介电常数, r=11.9 • 熔点: 1417oC • 原子密度: 5x1022 cm-3 • 本征载流子浓度:ni=1.45x1010 cm-3 • 本征电阻率 =2.3x105 ·cm • 电子迁移率 e=1500 cm2/Vs, 空穴迁移率h=450 cm2/Vs
相关文档
最新文档