七年级数学:数轴(教学设计方案)

合集下载

人教版七年级上册数学数轴教案 七年级上册数学数轴教学设计(四篇)

人教版七年级上册数学数轴教案 七年级上册数学数轴教学设计(四篇)

人教版七年级上册数学数轴教案七年级上册数学数轴教学设计(四篇)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇一【学习目标】1.通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.2.借助数轴了解相反数的概念,认识互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小.【基础知识精讲】1.数轴三要素及数轴画法(1)数轴三要素:原点、单位长度、正方向.其中可以选取某一长度作为单位长度,规定直线上向右的方向为正方向.(2)取一直线,直线上具备了数轴的三要素,那么它就可以称为数轴了. 2.数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示.(反之则不成立.因为数轴上的点不仅可以表示有理数,还有一些点表示的数不在有理数的范围内)3.利用数轴比较两个有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.图2—1(2)正数大于0,负数小于0,正数大于负数.图2—2 由于数轴上正数在0的右边,0在负数的右边,所以正数>0,0>负数,正数>负数.如:+7>-10(正数大于负数)0>-3(0大于负数),0<+2(0小于正数)4.相反数的有关知识(1)定义:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.如:-3和3,11和-,-3.2和+3.2…… 77(2)在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.图2—3 如:-3和+3是一对互为相反数,它们在原点的左右两侧,且它们到原点的距离都是3个单位长度.(3)相反数是它本身的数是0.说明:数轴是数学中数与图形结合的典范.理解数轴及和数轴有关的知识都可以从几何和代数两方面入手.【学习方法指导】[例1]画一个数轴,并在数轴上表示出下列各数,并用“<”号连接起来.111,-3,-1,0,2 23点拨:①画数轴应必须具备数轴三要素:原点、单位长度、正方向.②用“<”号连接这些数,需要将这些数从小到大排列.而在数轴上右边的数总是大于左边的数,所以只要将数轴上的数从左到右用“<”号连接即可.解答:图2—4 -3<-111<0<1<2 32[例2]m,n在数轴上位置如图2—5,则下面结论正确的是…()图2—5 a.m>0,n<0 b.m>0,n>0 c.m<0,n<0 d.m <0,n>0 点拨:在数轴上的数,右边的总比左边的大.对于m和0,m在0的右边,即m>0,而n在0的左边,所以0>n 即n<0.解答:m>0,n<0.选a.[例3]数轴上距离原点3个单位长度的数是_____.点拨:先画出数轴,找到原点.从原点开始向左、向右各数3个单位长度,这两个点到原点的距离相等,且符合题意.记住:类似的题目答案一般会有两个数.解答:+3和-3 [例4]填空:(1)-5的相反数是_____ 2(2)b的相反数是_____(3)-m的相反数是_____ 点拨:不管是数字或是字母,互为相反数的两个数只有符号不同.解答:(1)5(2)-b(3)m 2[例5]数轴上表示互为相反数的两个点a和b,它们两点间的距离是5,则这两个数分别是_____和_____.点拨:画出数轴,表示出a和b.由于它们互为相反数,所以这两个点到原点的距离相等,则每个点距原点2.5个单位长度.在原点左边的点为-2.5,在原点右边则为+2.5.图2—6 解答:+2.5和-2.5.[例6]比较大小(1)0_____-(2)-1_____-(3)7_____-10 2点拨:若正数、负数、0互相比较,则用“正数>0>负数”进行比较.若两负数进行比较,将它们标注在数轴上,右边的数大于左边的数.解答:(1)>(0大于负数)(2)>(数轴上,-1所对应的点在-2所对应点的右侧)2图2—7(3)>(正数大于负数)【拓展训练】求下列各数的相反数.(1)-(+7)(2)+(-m)点拨:由于互为相反数的两个数只有一个符号不同:一个为正,一个为负.因为在此题中将括号里的数看做一个整体,括号外的才是它的符号.找相反数时,只要改变括号外的符号即可.解答:(1)-(+7)的相反数是+(+7)(2)+(-m)的相反数是-(-m)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇二人教版七年级数学上册数轴说课稿一:教材分析:本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。

最新人教版《数轴》七年级数学教学设计教案

最新人教版《数轴》七年级数学教学设计教案

第一章有理数1.2 有理数1.2.2 数轴一、教学目标【知识与技能】1.通过与温度计的类比,了解数轴的概念,会画数轴.2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.【过程与方法】1.从直观认识到理性认识,从而建立数轴概念。

2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

3.会利用数轴解决有关问题。

【情感态度与价值观】通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.数轴的概念.2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数.【教学难点】从直观认识到理性认识,从而建立数轴的概念五、课前准备教师:课件、直尺、温度计等。

学生:直尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课请读出下面温度计所表示的温度:(出示课件2-3)思考:一支温度计能够主观地读出温度的大小,其温度值有正数、0、负数,那么从外观上看,温度计具有哪些不可缺少的特征呢?师生共同解答如下:形状是直的、0刻度、单位刻度.(二)探索新知1.师生互动,探究数轴的概念在上新课之前,我们看下面的问题欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.教师问1:医生为什么通过体温计就可以读出任意一个人的体温?学生回答:体温计上的刻度教师问2:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?学生回答:正数、零、负数教师问3:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m 处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(出示课件5)学生回答:如下图:教师问4:图中没有表示出来东西方向,那我们怎样表示出东西方向呢?(出示课件6)学生讨论后回答:东西方向可以用前面我们学过的相反意义的量来表示.教师问5:怎样简明地表示这些树、电线杆与汽车站牌的相对位置关系(方向、距离)?(出示课件7)学生讨论后回答:为了使表达更清楚,我们规定向东为正,把汽车站牌左右两边的数分别用负数和正数表示.上边的问题表示如下:教师讲解:这样,我们就用负数、0、正数表示出了一条直线上的点.教师问6:观察右图的温度计,回答下列问题:(出示课件8)(1)点A表示多少摄氏度?点B呢?点C呢?(2)温度计刻度的正负是怎样规定的?以什么为基准?(3)每摄氏度两条刻度线之间的距离有什么特点?学生回答:(1)点A表示0摄氏度,点B表示20摄氏度,点C表示-5摄氏度.(2)0℃以上为正数,0℃以下为负数,以0℃为基准.(3)每摄氏度两条刻度线之间的距离都相等.教师问7:把温度计平放,我们能从中发现什么?(出示课件9)师生共同解答如下:教师问8:你能借鉴温度计,用一条直线上的点表示有理数吗?学生回答:可以.教师问9:可以表示有理数的直线必须满足什么条件?师生共同解答如下:原点、正方向、单位长度总结点拨:(出示课件10)画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.教师问10:如何画数轴呢?师生共同解答如下:(出示课件11)1. 画一条水平直线,定原点(如图),原点表示0.2. 规定从原点向右为正方向,那么相反的方向(从原点向左)则为负方向.3. 选择适当的长度为单位长度.总结点拨:(出示课件13)画数轴注意事项:(1)原点、单位长度和正方向三要素缺一不可;(2)直线一般画水平的;(3)正方向用箭头表示,一般取从左到右;(4)取单位长度应结合实际需要,但要做到刻度均匀.教师问11:观察下面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?(出示课件13)学生回答:负数在原点的左边,正数在原点的右边,负数小于0,正数大于0.教师问12:每个数到原点的距离是多少?由此你又有什么发现?师生共同解答如下:对于一个正数a,正数a到原点的距离是a,-a到原点的距离是a.总结点拨:(出示课件18)任何一个有理数都可以用数轴上的一个点来表示.一般地,设a是一个正数,则数轴上表示数a在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.教师问13:如何用数轴上的点来表示分数或小数,如1.5,……?学生回答:如下图所示:−21.53例1:在所给数轴上画出表示下列各数的点.(出示课件16)1,-5,-2.5,,0师生共同解答如下:解:如下图所示:总结点拨:①在数轴上用实心圆点表示所要表示的数;②把点标在线上;③把数标在点的上方,以便观看.例2:在下面数轴上,A、B、C、D各点分别表示什么数?(出示课件19)师生共同解答如下:解:(1)A点表示2;(2) B点表示0.25;(3)C点表示-0.75;(4) D点表示-1.5总结点拨:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A、D这种情况,要注意它们所表示的数是在哪两个数之间.例3:从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是_______,再向右移动5个单位长度到达点C,则点C表示的数是________.(出示课件21)师生共同解答如下:解析:如图,答案:-3, 2.(三)课堂练习(出示课件23-29)1. 如图,在数轴上,点A表示的数为-1,点B表示的数为4,点C是点B 关于点A的对称点,则点C表示的数为_______.2. 如图,数轴上点P对应的数为p,则数轴上与数对应的点为()A. 点AB. 点BC. 点CD. 点D3. 下列说法中正确的是( )A. 在数轴上的点表示的数不是正数就是负数B. 数轴的长度是有限的C. 一个有理数总可以在数轴上找到一个表示它的点D. 所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点4.与原点距离是2.5个单位长度的点所表示的有理数是( )A. 2.5 B.-2.5C.±2.5 D.这个数无法确定5.在数轴上表示数6的点在原点_____侧,到原点的距离是_____个单位长度,表示数-8的点在原点的_____侧,到原点的距离是_____个单位长度.表示数6的点到表示数-8的点的距离是______个单位长度.6. 在数轴上到表示-2的点相距8个单位长度的点表示的数为________.7. 如图,写出数轴上点A、B、C、D、E表示的数.8. 如图,已知数轴上的点A、B、C、D分别表示-2,1,2,3,则表示的点P应落在线段()A. AD上B.OB上C. BC上D. CD上9. 如图,已知A、B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是________.(2)经过几秒,点M、点N分别到原点O的距离相等?参考答案:1.-6 解析:∵数轴上A、B两点表示的数分别为-1和4,点B关于点A的对称点是点C,∴AB的长度是5个单位,根据题意AB=AC,∴AC的长度也是5个单位,也就是点A向左移动5个单位,∵点A表示-1,∴点C表示-6.2.B3.C4.C5.右,6;左,8;146. -10或67. 解:点A、B、C、D、E表示的数分别是0,-2,1,2.5,-3.8.B.9. 解:(1)∵OB=3OA=30,∴B对应的数是30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①当点M、点N在点O两侧时,则10﹣3x=2x,解得x=2;②当点M、点N重合时,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.(四)课堂小结今天我们学了哪些内容:数轴是非常重点的数学工具,它的出现对数学的发展起了重要作用,它揭示了数和形之间的内在联系,很多数学问题都可以以它为基础,借助图直观地表示,为研究问题提供了新方法.(五)课前预习预习下节课(1.2.3)的相关内容。

数轴教学设计方案 (1)

数轴教学设计方案 (1)

数轴教学设计方案一、内容和内容解析1.内容数轴的概念,用数轴上的点表示有理数.2.内容解析数轴是初中数学的核心概念,它是数形结合思想的产物,学习数轴是把数和形统一起来的第一次尝试.数轴建立了直线上的点与实数的对应,是一维的坐标系.数轴使数的概念和运算可以与位置、方向、距离等统一起来,使数的语言得到了几何解释,数有了直观意义.这不仅有助于对数的概念的理解,而且还可以从中得到启发而提出新的问题或结论(例如,相反数、绝对值、大小比较等).用数轴上的点表示实数,就是要使任意一个实数能用唯一确定的点表示,同时,任意一个点只能表示一个实数(这样要求的意义需要学生逐渐体会).在这样的要求下,明确规定原点、方向和单位长度“三要素”是必须而且自然的.这时,我们有:原点0(原点是区分方向的“基准”,0是区分正负的基准)单位长度1(单位长度是度量线段长度的单位,1是实数单位,“单位”实际上给出了一个统一的标准.)方向符号(空间中,A,B两点“位置差别”的定量化定义,必须且只需“方向”和“长度”.数轴上,方向只有“左”“右”两种,可以理解为“相反方向”.正数与负数的实际意义就是描述现实中的“相反意义的量”.确定一个实数,需要“符号”和“绝对值”两个要素,它们正好对应了定量化定义A,B两点“位置差别”的“方向”和“长度”.)二、目标和目标解析1.目标(1)理解什么是数轴,如何画数轴;(2)能够将有理数在数轴上表示出来,能说出数轴上表示有理数的点所表示的数,知道任意一个有理数在数轴上都可以找到对应的点.2.目标解析达成目标(1)的标志是:学生知道数轴是一条规定了原点、正方向和单位长度的直线;能根据数轴“三要素”判断数轴画法的各种错误情况,并画出正确的数轴.目标(2)是“内容所蕴含的思想方法”,数轴“三要素”保证了点与实数的“一一对应”.学生目前能够体会的是任何有理数都可以用数轴上的点来表示.在本节课,只要学生能体会有理数与数轴上点的对应性,不要刻意强调“给一个点,不一定有一个有理数与之对应”.三、重点难点重点:正确掌握数轴的画法和用数轴上的点表示有理数.难点:正确理解有理数和数轴上的点的对应关系.四、教学过程设计1.问题情境问题1在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站牌西3m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.学生讨论后提问:(1)马路可以用什么几何图形代表?(直线)(2)你认为站牌起什么作用?(基准点)(3)你是怎么确定问题中各物体的位置的?(方向,与站牌的距离)说明:学生也可能只用与站牌的距离来表示.有不同表示最好,可以与下面的方法做比较,看哪个更方便.演示动画:演示教师版教材上的对应动画.师生活动:学生小组讨论解决问题的方法.设计意图:用直线、点、方向、距离等几何符号表示实际问题.这是实际问题的第一次数学抽象.问题2请分别读出下图中温度计所显示的温度.演示动画:利用学生版教材上对应的动画(温度计水平放置).师生活动:学生代表分别读出每个温度计所显示的温度.教师可以先解释0°C的含义(冰水混合物的温度规定为0°C——温度的基准点).设计意图:借用生活中的常用工具,说明正数、负数的作用.引导学生用“三要素”表达,为定义数轴概念提供又一个直观基础.2.探索新知问题3观察上面两个问题中的图,说说它们有哪些共同点?你能发现什么?师生活动:学生思考讨论,教师引导.(刻度对应的数都是有正、有负、也有0,都有一正一负两个方向等.)设计意图:进一步明确“三要素”的意义,体会“用数表示点”的思想方法,为定义数轴概念提供进一步的直观基础.指导学生阅读教科书相关内容,同时提出:问题4(1)什么叫做数轴?(2)数轴应具备哪些要素?得到:(1)规定了原点、正方向和单位长度的直线叫做数轴.(2)数轴的三要素:原点、正方向和单位长度.师生活动:学生阅读教科书相关内容,教师针对学生的回答进行点评并总结.设计意图:让学生带着问题阅读教材,培养学生自主探索新知的能力.3.动手操作(1)数轴的画法:①画直线;②在直线上任取一个点表示数0,把这个点定为原点;③取原点向右(或向上)的方向为正方向,并用箭头表示出来;④选取适当的长度为单位长度.(2)观察动画并回答问题.(利用教师版教材上的“数轴的错误画法”演示动画)师生活动:首先用PPT演示一次数轴的画法,然后带着学生一步一步画出数轴,接着学生观察动画并回答问题.设计意图:让学生学会正确地画出数轴.4.例题分析例1.画出一个单位长度是1厘米的数轴,并用刻度尺画出表示下列各数的点:-1.5,0,6,-3,2.5.演示动画:演示教师版教材上的对应动画.例2.如图所示.(1)写出数轴上的点A、B、C、D、E、F表示的有理数.(2)点G在数轴上,且线段GC的长度是2个单位长度,点H在数轴上,且线段HA的长度是单位长度的,试求出点G、H表示的有理数.答案:(1)点A、B、C、D、E、F表示的有理数分别是:-3,5.5,3,-1.5,-3.5,0.(2)点G表示1或5;点H表示或.例3.数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示数-2的点在原点的哪一侧?与原点的距离是多少个单位长度?解:数轴上表示3的点在原点的右侧,与原点的距离是3个单位长度;表示数-2的点在原点的左侧,与原点的距离是2个单位长度.设a是一个正数,对表示a的点和表示-a的点进行同样的讨论.结论:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a 个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.师生活动:教师引导并示范,学生思考并回答问题.设计意图:让学生学习用数轴上的点表示有理数,初步感受有理数都可以在数轴上表示出来;学习根据数轴上的点的位置写出有理数;通过从特殊到一般的方法归纳出数轴上不同位置(原点左右)点的特点.培养学生的抽象概括(由具体的数到字母表示的数)能力.5.课堂练习1.写出数轴上点A、B、C、D、E表示的数.2.在数轴上表示下列各数:-5,+3,-3.5,0,,,0.75.3.补充练习:(1)在数轴上标出-5和+5之间的所有整数;(2)在数轴上标出到原点的距离小于3的整数.答案:1.点A、B、C、D、E表示的有理数分别是:0,-2,1,2.5,-3.2.如下图:3.(1)如下图:(2)如下图:师生活动:学生练习,教师巡查指导,解题结束后讲评.设计意图:让学生根据数轴上的点的位置写出有理数;用数轴上的点表示有理数.进一步巩固数轴的概念.6.课堂小结提问:本节课我们学习了哪些内容?1.数轴的三要素:原点、正方向、单位长度;2.数轴是规定了原点、正方向和单位长度的直线;3.数轴的画法;4.用数轴上的点表示有理数.师生活动:学生讨论,教师归纳.设计意图:通过小结,帮助学生梳理本节课所学内容,掌握本节课的核心——数轴及其“三要素”.结束语:数轴的出现对数学的发展起了重要作用,以它为基础,可以借助图直观地表示很多与数相关的问题.7.布置作业教科书第14页的第2题、第3题.。

七年级数学《数轴》教案

七年级数学《数轴》教案
数轴是一个应用性很强的数学工具,是一个很直观的概念,能够将很多抽象的概念直观的表示出来,是培养学生“数形结合”的很好的例子。画图时要注意作图的规范,从而达到培养学生严谨的数学习惯的目的。做题时,要体会数形结合的思想。
2、学情分析
(1)知识掌握上,七年级学生刚刚学习了有理数中的正负数,对正负数的概念理解不一定深刻,所以应全面系统的去讲述。
(2)学生对数轴的概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中应予以简单明白、深入浅出的分析。
七年级学生年龄小,注意力易分散,教学中一方面要运用直观生动的形象,引发学生的兴趣;另一方面要创造条件和机会让学生发表见解,发挥学生学习的主动性。
案例名称
数轴
科目
数学
教学对象
七年级三班
主备人
课时
一课时
参与者
教材分析
1、教材的地位和作用
“数轴”是北师大版七年级上册第二章第二节“有理数及其运算”的重点内容之一,是在引进负数及分析了有理数的分类后给出的。数轴是理解有理数的概念和运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它解决一些实际问题:包括绝对值,有理数的运算等,非常直观的把数与点结合起来,渗透着初步的数形结合思想。还是以后学好不等式的解法,平面直角坐标系等打下良好的基础,起到承上启下的作用,可见地位之重要。
出示自学指导,要求学生按设问进行学习:
1、画出一条数轴可以分为哪几步?
2、什么是数轴?它有哪几个基本要素?
3、原点表示什么数?原点右边表示什么数?左边呢?
4、有理数与数轴上的点有什么关系?
5、数轴上两个点表示的数的大小如何确定?
6、正数、0、负数的大小关系在数轴上看出是怎样的?

《数轴》教学设计

《数轴》教学设计

《数轴》教学设计一、教学目标:1.知识目标:了解数轴的概念和作用;掌握数轴上的整数表示方法;能够根据数轴上的位置进行简单的数学运算。

2.能力目标:培养学生观察、分析和解决问题的能力;培养学生合作学习和沟通交流的能力。

3.情感目标:激发学生对数学的兴趣,培养学生对数学的自信心和乐观态度。

二、教学重点与难点:1.教学重点:数轴的概念和作用;数轴上的整数表示方法;根据数轴上的位置进行简单的数学运算。

2.教学难点:学生如何理解并运用数轴进行问题解决;如何以合适的方式表示和比较数轴上的整数。

三、教学准备:1.教具准备:数轴模型、数字卡片、白板、彩色粉笔、学生课本、教师课件等。

2.教材准备:《数轴》相关知识点和练习题。

3.复习准备:师生共同回顾上一节课的知识内容,引入本节课的主题。

四、教学过程:1.导入新课(10分钟):教师出示数轴模型,让学生观察并回答以下问题:数轴是什么?数轴有什么作用?学生可以自由发表自己对数轴的认识和看法。

2.讲解数轴的概念和作用(15分钟):教师以简单明了的语言解释数轴的概念和作用,并通过示意图展示数轴上的整数表示方法,引导学生理解数轴的基本概念。

同时,教师还可以结合具体例子,让学生感受数轴的实际应用。

3.数轴的整数表示方法(15分钟):教师向学生介绍数轴上的整数表示方法,包括整数的正负性表示、整数之间的大小比较等内容。

通过数字卡片和白板演示,让学生掌握正确的表示方法。

4.数轴上的数学运算(20分钟):教师利用数轴模型和学生课本上的练习题,进行简单的数学运算演练,包括加减法运算、整数大小比较等。

通过实例训练,让学生掌握如何根据数轴上的位置进行数学运算。

5.练习巩固(20分钟):教师出示练习题,要求学生在数轴上标记整数,并进行相应的运算和比较。

学生可以在小组内讨论,共同解决问题,提高自己的解题能力。

教师在此过程中及时回答学生的疑问,帮助他们理解和掌握知识点。

6.课堂总结(10分钟):教师对本节课的主要内容进行总结,并强调数轴的重要性和实际应用价值。

初中 数轴 教案

初中  数轴 教案

初中数轴教案教学目标:1. 了解数轴的概念,能用数轴上的点准确地表示有理数。

2. 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

3. 在数与形结合的过程中,体会数学学习的乐趣。

教学重难点:1. 数轴的三要素,用数轴上的点表示有理数。

2. 数形结合的思想方法。

教学准备:1. 教师准备数轴的图片或实物模型。

2. 学生准备笔记本和笔。

教学过程:一、引入新课1. 教师通过展示温度计的图片,引导学生思考温度计上数字的意义。

2. 提出问题:在数学中,有没有像温度计一样可以用来表示数的轴呢?二、探索新知1. 教师引导学生小组讨论,用画图的形式表示东西向马路上杨树、柳树、汽车站牌三者之间的关系。

2. 学生画图表示后,教师提问:如何用数表示这些树、电线杆与汽车站牌的相对位置呢?3. 教师引导学生思考数的符号的实际意义,对照体温计进行解答。

4. 教师给出数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

三、教学数轴的三要素1. 教师引导学生观察数轴的图片,找出数轴的三要素:原点、正方向、单位长度。

2. 学生通过数轴的图片或实物模型,体会数轴的三要素。

四、用数轴表示有理数1. 教师引导学生理解数轴上的点与有理数的对应关系。

2. 学生通过数轴上的点,练习用数轴表示有理数。

五、数形结合的思想1. 教师引导学生观察数轴上的点与有理数的关系,体会数形结合的思想。

2. 学生通过实际操作,理解数形结合的思想。

六、总结与拓展1. 教师引导学生总结数轴的概念和数形结合的思想。

2. 学生通过数轴的图片或实物模型,进行拓展练习。

教学评价:1. 学生能准确地用数轴表示有理数。

2. 学生能理解数形结合的思想,并能在实际问题中运用。

教学反思:本节课通过引入温度计的例子,引导学生思考数轴的概念,激发学生的兴趣。

通过小组讨论和实际操作,学生能理解数轴的三要素和用数轴表示有理数的方法。

在教学过程中,注重培养学生的观察能力和思维能力,引导学生体会数形结合的思想。

数轴教学设计

数轴教学设计

数轴教学设计数轴教学设计1【学习目标】1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;3.感受点在数轴上左右运动时,所表示数的大小变化。

【导学提纲】1.观察数轴,比较右边的点表示的数与左边的点表示的'数的大小关系;并比较-3与-1,与1的大小关系。

2.观察数轴,比较正数、负数、0的大小关系。

【展示交流】活动一:1.在数轴上画出表示-5,3,-1,0,4的点。

你能将这些数从大到小排列吗?说说你这样排列的理由。

2.2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2;-1、0和-3,-4的点,它们的位置关系如何?3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?活动二:1.比较下列各组数的大小(1)5和0(2)-0.5和0(3)-3、0、1.5(4)-3.5和-0.52.在数轴上画出下列各数的点,并用“<”将它们连接起来。

4,-2.5,0,-4.5,【课堂反馈】1.课本P18-19练一练1、2、32.在数轴上,到原点距离不大于2的所有整数是;3.在数轴上有三个点A、B、C,请回答:(1)将点B向左移动3个单位后,三个点所表示的数谁最小?(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?(4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?【迁移创新】利用数轴回答:(1)写出所有不大于4且大于-3的整数:;(2)不小于-4的非正整数是;(3)比-2大的数是;-3比-6大。

【课堂作业】课本P19习题3 、4。

1.2.1数轴(教学设计)七年级数学上册(华东师大版2024)

1.2.1数轴(教学设计)七年级数学上册(华东师大版2024)

1.2.1 数轴一、教学目标:1.掌握数轴的三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.二、教学重、难点:重点:理解数形结合的数学方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上的点的对应关系.三、教学准备:教师:课件,温度计.学生:提前预习本节内容.四、教学过程:【复习回顾】回顾上节课所学内容,简述有理数是如何分类的?【设计意图】培养学生概括的能力,使知识形成体系,巩固上节课所学内容.【新课导入】导入:温度计是我们日常生活中用来测量温度的重要的工具,你会读温度计吗?【问题二】观察如图的温度计,回答下列问题:1)温度计刻度的正负是怎样规定的?以什么为基准?基准刻度线表示多少摄氏度?温度计的正负是以零摄氏度为基准,零摄氏度以下的是负,以上的正.2)每摄氏度两条刻度线之间的距离有什么特点?相等3)你能读出右侧温度计显示的温度吗?32.5℃,-7.5℃【设计意图】创设问题情,激发学生学习热情,让学生发现生活中的数学.【问题三】在一条笔直的东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.提示:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(方向、距离) ?【问题四】观察这两个图,指出它们之间的相同点和不同点?教师归纳:相同点:都有一个0点,都有单位长度.不同点:正方向不同.【设计意图】由前面的两个设计让学生体会其中的共同点,引出数轴的定义.【思考】是否类似于温度计,我们可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零呢?课堂活动:学生回答,教师总结得出数轴的定义.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.数轴的画法1)画一条直线,取原点;2)规定正方向,通常取向右为正方向;3)选取适当的长度为单位长度【设计意图】明晰概念,加深对数轴“三要素”的理解.【针对练习】 例1下列图形哪些是数轴,哪些不是,为什么?答案:A,B,C,D,F,都不是数轴.1 判断下面所画数轴是否正确.答案:1-7不是数轴.【设计意图】通过练习,让学生充分认识到数轴的三要素:原点,正方向,单位长度一个也不能少.【问题五】你能在上述数轴上表示2.5和-1.5吗?【问题六】如图,填空:A 点表示的数是 -5 ;B 点表示的数是 -0.5 ;C 点表示的数是 2 ;D 点表示的数是 4.5 ;【问题七】任何有理数都可以用数轴上的点来表示吗?可以【问题八】观察上面数轴,哪些数在原点的左边,哪些数在原点的右边?一般是正数在原点右边,负数在原点的左侧课堂活动:学生观察数轴思考问题,并发表自己的意见,教师归纳总结,得出规律: 表示负数的点在原点的左边,表示正数的点在原点的右边.【设计意图】明晰概念,加深对数轴“三要素”理解.【问题九】如图,填空:1) A 点与原点的距离等于 5 ;B 点与原点的距离等于 0.5 ;C 点与原点的距离等于 2 ;D 点与原点的距离等于 4.5 ;2)【易错】在数轴上,与原点距离为4个单位的点有___2_____个,表示的数是 ±4 .3)每个数到原点的距离是多少?由此你又有什么发现?课堂活动:学生观察数轴思考问题,并发表自己的意见,教师归纳总结,得出规律:一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度; 表示数-a 的点在原点的左边,与原点的距离是a 个单位长度.【设计意图】通过从特殊到一般的方法的归纳出数轴上的不同位置(原点左右)123456789–1–2–3–4–50的点的特点,培养学生的抽象概念能力(由具体的数到字母表示的数)能力.【问题十】怎样移动A、B、C中的两点,才能使三个点所表示的数相同?移动的方法是唯一的吗?1)【易错】距离C点4个单位长度的数是______-2或6_____.2) A、C两点之间的距离是 7 .课堂活动:学生观察数轴思考问题,并发表自己的意见,教师归纳总结,得出解题方法:数轴上两点之间的距离=大数-小数=右数-左数;若两数大小未知,可加绝对值表示距离.即:数轴上数m所对应点和数n对应点之间的距离为|m-n|.【设计意图】让学生知晓在数轴到已知点距离相等的点有两个,注意分类讨论.【针对练习】(23-24六年级上·山东淄博·期中)在数轴上,表示-1.5与4.5之间的整数点有 6 个.例2.例3.(23-24七年级上·浙江宁波·期末)如图,数轴上被墨水遮盖的数可能是(D)A.-3.3B.-4.4C.1.1D.-2.2例4.(23-24七年级上·江苏无锡·期中)点A表示数-1,在数轴上原点右边与点A距离3个单位长度的点表示的数为 2 .例5.(23-24七年级上·江苏徐州·期中)数轴上将点A移动2个单位长度恰好到-2,则点A 表示的数是-4或0 .【设计意图】加深对所学知识的理解运用,灵活运用所学知识解决问题,巩固本节课所学知识.课后反馈1.你知道什么是数轴吗?这节课你学会了用什么来表示有理数?2.数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?【设计意图】通过小结,使学生梳理本节课所学的内容,掌握本节课的核心:数轴的三要素,感受通过数轴把数与形结合起来的好处.达标检测一、单选题1.如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.2.在数轴上表示3的点与表示4-的点之间的距离是()A.7B.7-C.3D.4-3.若数轴上点A表示的数是2-,则与点A相距5个单位长度的点表示的数是()A.3±B.1±C.7-或3D.7或3-4.下列说法错误的是()A.直线是数轴B.表示1-的点,离原点1个单位长度C.数轴上表示3-的点与表示1-的点相距2个单位长度D.距原点3个单位长度的点表-或3示35.数轴上的单位长度()A.只能取0.5cm作为一个单位长度B.只能取1cm作为一个单位长度C.可以取0.5cm作为一个单位长度,也可以根据需要任意选取D.同一数轴上的单位长度可以不相同二、填空题6.在如下所示的数轴上,点A点表示的数写成小数形式是,点B表示的数写成分数形式是.7.在数轴上距离原点4个单位长度的点有个,它们所表示的数是.三、解答题8.如图,D和B两点虽然分别在原点的左边和右边,它们与原点的距离相同吗?9.如图,写出数轴上点A,B,C,D,E表示的数.1.D 2.A 3.C 4.A 5.C 6.0.61137.2 4或48.相同,它们到原点的距离都是39.点A,B,C,D,E表示的数分别是0,-2,1,2.5,-3五、教学反思:。

数轴教案(最新8篇)

数轴教案(最新8篇)

数轴教案(最新8篇)初一数学数轴教案篇一教学目的:(一)知识点目标:1、了解正数和负数是怎样产生的。

2、知道什么是正数和负数。

3、理解数0表示的量的意义。

(二)能力训练目标:1、体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2、会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:引入新课:1、活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:1、自然数的产生、分数的产生。

2、章头图。

问题见教材。

让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。

根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。

展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

《数轴》七年级数学教案

《数轴》七年级数学教案

《数轴》七年级数学教案《数轴》七年级数学教案1一、教学目标1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;3、情感目标:向学生渗透数形结合的思想。

二、教学重难点教学重点:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程(一)创设情境激活思维1.学生观看钟祥二中相关背景视频意图:吸引学生注意力,激发学生自豪感。

2.联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:1.马路用什么几何图形代表?(直线)2.文中相关地点用什么代表?(直线上的点)3.学校大门起什么作用?(基准点、参照物)4.你是如何确定问题中各地点的位置的?(方向和距离)设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。

我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?师生活动:学生思考后回答解决方法,学生代表画图。

学生画图后提问:1.0代表什么?2.数的符号的实际意义是什么?3.-75表示什么?100表示什么?设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

人教版七年级数学上册1.2.2《数轴》教学设计

人教版七年级数学上册1.2.2《数轴》教学设计

人教版七年级数学上册1.2.2《数轴》教学设计一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的一部分,主要内容包括数轴的定义、特点、表示方法以及数轴上的基本运算。

这部分内容是学生学习数学的基础,对于培养学生的数学思维和解决实际问题的能力具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,但对于数轴这一概念可能较为抽象,需要通过具体实例和操作来理解和掌握。

同时,学生对于坐标系和图形的认识有所欠缺,需要在教学过程中进行引导和培养。

三. 教学目标1.了解数轴的定义和特点,掌握数轴上的表示方法。

2.能够运用数轴解决实际问题,提高解决问题的能力。

3.培养学生的数学思维和坐标系观念,提高学生的数学素养。

四. 教学重难点1.数轴的定义和特点2.数轴上的表示方法3.运用数轴解决实际问题五. 教学方法1.实例教学:通过具体实例引入数轴的概念,使学生更容易理解和接受。

2.操作教学:通过实际操作,让学生体验数轴的特点和运用方法。

3.问题解决:设计实际问题,引导学生运用数轴进行解决,提高学生的解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,包括数轴的定义、特点、表示方法以及实际问题的解决。

2.教学实例:准备一些实际问题,用于引导学生运用数轴进行解决。

3.教学工具:准备数轴的模型或者图片,方便学生进行观察和操作。

七. 教学过程1.导入(5分钟)通过一个实际问题引入数轴的概念,例如:“小明从家出发,向正北方向走了5公里,然后向正西方向走了3公里,请问小明现在在哪里?”让学生思考并尝试解答,引发学生对数轴的兴趣。

2.呈现(10分钟)通过PPT展示数轴的定义和特点,以及数轴上的表示方法。

同时,结合实例进行解释,让学生理解和掌握数轴的基本概念。

3.操练(10分钟)让学生进行实际操作,例如在数轴上表示不同的数,或者根据数轴上的点来确定物体的位置等。

通过操作,让学生更加熟悉数轴的特点和运用方法。

数轴的教学设计

数轴的教学设计

数轴的教学设计数轴的教学设计作为一位不辞辛劳的人民教师,总不可避免地需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

那么应当如何写教学设计呢?以下是店铺帮大家整理的数轴的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

数轴的教学设计1【教学重点与难点】教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形的结合的思方法是本节课的教学难点。

【教学目标】1、理解数轴的概念,会画数轴;2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;会利用数轴解决有关问题。

3、通过生活中的实例,由直观认识到理性认识,从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法,进而初步认识事物之间的联系性。

【教材处理】本节一课时完成,将从生活中的实例入手,引导学生由直观认识到理性认识,从而自然建立数轴概念,进而探究数轴的画法、作用、数与点的对应。

【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。

整节课以观察、动手、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,并教给学生“多观察、善动脑、大胆猜、勤钻研”的研讨式学习方法。

教学中给学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

【教学过程】一、问题解决引入实例(设计说明:从生活中的实例出发引出数轴,贴近生活,直观具体,易于学生接受,同时能够调动学生自主学习的兴趣和积极性。

)问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?学生会画一条直线表示马路,并在直线的左、右侧分别标上西、东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离点分别3个和7.5个单位的点A和点B,分别表示柳树和杨树的位置,点O的左边距离点3个和4.8个单位的点C和点D分别表示槐树和电线杆的位置。

七年级数学上册1.2.2 《数轴》教学设计2

七年级数学上册1.2.2 《数轴》教学设计2

七年级数学上册1.2.2 《数轴》教学设计2一. 教材分析《数轴》是七年级数学上册1.2.2的内容,数轴是数学中的一个重要概念,是实数与数轴上的点一一对应的基础知识。

通过数轴,可以直观地表示出数的大小、距离、相反数等概念。

本节课的内容为数轴的定义、表示方法以及数轴上的基本运算。

二. 学情分析学生在七年级之前已经学习了有理数的概念,对正负数、加减法、乘除法等运算有一定的掌握。

但是,对于数轴这个概念,学生可能比较陌生,需要通过具体的实例和操作来理解和掌握。

三. 教学目标1.知识与技能:理解数轴的定义,掌握数轴上的表示方法,能够进行数轴上的基本运算。

2.过程与方法:通过实例和操作,培养学生的观察能力、思考能力和动手能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。

四. 教学重难点1.数轴的定义和表示方法。

2.数轴上的基本运算。

五. 教学方法采用“问题驱动”的教学方法,通过实例和操作,引导学生主动思考和探索,培养学生的观察能力、思考能力和动手能力。

同时,采用小组合作的学习方式,培养学生的团队合作意识和解决问题的能力。

六. 教学准备1.教学PPT:包含数轴的定义、表示方法以及数轴上的基本运算的例子。

2.数轴教具:用于引导学生进行实际操作。

3.练习题:用于巩固所学内容。

七. 教学过程1.导入(5分钟)通过一个实际问题引入数轴的概念:小明从家出发,向正北方向走了3公里,然后又向正西方向走了2公里,请问小明现在在哪里?2.呈现(10分钟)呈现数轴的定义和表示方法,通过PPT和教具,解释数轴上的点与实数的一一对应关系。

3.操练(10分钟)学生分组进行数轴的操作,包括在数轴上表示给定的数,计算数轴上两点之间的距离等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成练习题,教师选取部分题目进行讲解和讨论。

5.拓展(5分钟)引导学生思考数轴在实际生活中的应用,例如计算两地之间的距离、确定物体的位置等。

《数轴》教学设计通用12篇

《数轴》教学设计通用12篇

《数轴》教学设计通用12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《数轴》教学设计通用12篇《数轴》教学设计篇1一、教学内容分析1.2有理数1.2.2数轴。

数轴--教学设计(张岚)

数轴--教学设计(张岚)

义务教育教科书数学七年级上〔北京师范大学出版社〕2.2 数轴教学设计陕西师范大学附属中学张岚一、内容与内容分析1.内容:数轴2.内容解析数轴是北师大版数学七年级上册第二章第2节的内容. 本节是在引进了负数及分析了有理数的分类后给出的。

从知识上讲,数轴是初中数学学习和研究的重要工具,它主要应用于有理数的大小比较、相反数、绝对值概念的理解,有理数运算法那么的推导及不等式的求解.同时,也是以后学习二维的平面直角坐标系的根底。

从思想方法上讲,数轴是初中数形结合的重要表达,而数形结合是学生理解数学,学好数学的重要思想方法. 数轴是直观表示数的一种方法,在数字问题和生活实际中有着广泛应用,掌握好本节内容对今后学习和生活有着积极意义。

所以,本节课的教学重点是:数轴的概念和画法,并能利用数轴比较有理数的大小.二、目标与目标解析1.教学目标:〔1〕通过实际问题情境类比抽象出数轴,理解数轴的三要素,并能正确画出数轴;〔2〕能用数轴上的点表示有理数,初步感受数形结合的思想方法;〔3〕能利用数轴直观比较有理数的大小.2.教学目标解析:〔2〕通过学生动手画数轴,来深刻理解数轴的概念,同时培养学生的分析问题能力和动手操作的能力;〔3〕通过逐类研究引导学生分析有理数与数轴上的点的对应关系,从而渗透数形结合的思想方法,通过数轴上两点的位置关系判断对应两数的大小,培养学生的数学应用意识,感受数轴的工具魅力.三、教学问题诊断分析从知识上看,学生已经学习了有理数,为学习数轴已经做好知识上的准备。

从七年级学生的理解能力、思维特征和心理特征上看,学生刚刚进入中学,理性思维的开展还很有限,他们在知识经验、心理品质等方面,依然保存着小学生的特点,天真活泼、对新生事物很感兴趣、具有强烈的求知欲,形象思维能力已比较成熟,但抽象思维能力还比较薄弱。

所以在教学中,为了让学生感受引入数轴的意义,形成数轴的概念,一方面要运用直观生动的形象素材和问题情境,引发学生的探究兴趣;另一方面要创造条件和时机,让学生发表见解并及时的表扬鼓励,充分发挥学生学习的学习主动性。

七年级数学上册《数轴》教案、教学设计

七年级数学上册《数轴》教案、教学设计
1.创设情境,引入新课:
-通过实际问题或趣味数学故事,激发学生的学习兴趣,引导学生进入数轴的学习;
-利用直观教具或多媒体展示数轴,让学生感知数轴的实际意义。
2.自主探究,合作交流:
-设计具有挑战性的探究任务,鼓励学生独立思考、自主探究;
-组织学生进行小组合作、讨论交流,共同解决探究过程中遇到的问题;
1.注重启发式教学,引导学生从形象思维向抽象思维过渡;
2.结合学生的生活实际,设计有趣、富有挑战性的教学活动,激发学生的学习兴趣;
3.针对学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高;
4.加强师生互动,关注学生的思维过程,及时发现并解决学生在学习过程中遇到的问题。
三、教学重பைடு நூலகம்点和教学设想
4.讲解数轴上的运算:利用数轴,引导学生掌握加减运算的几何意义,例如,从点1向右移动2个单位长度,表示1+2=3。
(三)学生小组讨论,500字
在学生小组讨论阶段,我将组织学生进行合作学习,共同探讨数轴的相关问题。
1.分组讨论:让学生分成若干小组,讨论以下问题:
-数轴上如何表示正数、负数和0?
-如何利用数轴比较两个数的大小?
(二)过程与方法
在本章节的教学过程中,教师应关注以下过程与方法目标:
1.通过引导学生观察、思考、实践,培养学生发现问题、分析问题、解决问题的能力;
2.利用数轴这一工具,帮助学生掌握数与形的关系,提高学生的数学思维能力;
3.通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神;
4.引导学生运用数轴进行数学探究,培养学生自主学习、探究学习的能力;
2.提高练习:设置一些综合性的题目,如利用数轴解决实际问题、数轴上的距离和绝对值等,让学生进行思考和解答。

人教版七年级数学上册:1.2.2《数轴》教学设计1

人教版七年级数学上册:1.2.2《数轴》教学设计1

人教版七年级数学上册:1.2.2《数轴》教学设计1一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的一部分,主要内容包括数轴的定义、性质及其应用。

数轴是数学中一种重要的工具,可以帮助学生直观地理解实数的大小关系,解决绝对值、不等式等问题。

本节课的内容为学生深入学习数学知识奠定了基础。

二. 学情分析七年级的学生已经掌握了实数的基本概念,具备了一定的逻辑思维能力。

但部分学生在理解数轴时,可能会受到空间想象能力的限制。

因此,在教学过程中,教师需要注重引导学生建立数轴表象,培养学生运用数轴解决问题的能力。

三. 教学目标1.知识与技能:使学生了解数轴的定义、性质,学会在数轴上表示实数,理解数轴在解决绝对值、不等式等问题中的作用。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生运用数轴解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生感受数学在生活中的应用。

四. 教学重难点1.重点:数轴的定义、性质及其应用。

2.难点:数轴在解决绝对值、不等式等问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入数轴概念,激发学生的学习兴趣。

2.启发式教学法:引导学生主动探究数轴的性质,培养学生的问题解决能力。

3.合作学习法:学生进行小组讨论,培养学生的团队协作精神。

4.实践操作法:让学生亲自动手画数轴,提高学生的动手能力。

六. 教学准备1.教具:数轴模型、黑板、粉笔。

2.学具:练习本、铅笔、直尺。

3.教学素材:与数轴相关的案例、图片等。

七. 教学过程1.导入(5分钟)教师通过一个生活实例(如出租车行驶问题)引入数轴的概念,激发学生的学习兴趣。

然后简要介绍数轴的定义,引导学生思考数轴的性质。

2.呈现(10分钟)教师利用数轴模型、图片等教学素材,呈现数轴的性质,如原点、正方向、单位长度等。

同时,引导学生观察数轴,发现实数与数轴上的点一一对应的关系。

3.操练(10分钟)教师学生进行小组讨论,探讨如何利用数轴表示实数,以及如何通过数轴解决绝对值、不等式等问题。

苏科版数学七年级上册2.3.1《数轴》教学设计

苏科版数学七年级上册2.3.1《数轴》教学设计

苏科版数学七年级上册2.3.1《数轴》教学设计一. 教材分析《数轴》是苏科版数学七年级上册第2章3节1课时的一节课程。

数轴是数学中的重要概念,是实数与几何相结合的桥梁。

通过数轴,学生可以直观地理解实数的大小关系,掌握绝对值的概念,以及解决不等式和方程等问题。

本节课的内容为数轴的定义、特点、表示方法以及数轴上的基本运算。

二. 学情分析七年级的学生已经具备了一定的几何知识和代数知识,但对数轴的理解还需要通过具体的实例和操作来逐步建立。

学生在学习本节课时,需要具备观察、思考、操作和表达的能力。

同时,学生应能够通过数轴解决实际问题,培养运用数学解决问题的能力。

三. 教学目标1.理解数轴的定义和特点,掌握数轴上的表示方法。

2.掌握数轴上的基本运算,包括绝对值、加减法、比较大小等。

3.能够运用数轴解决实际问题,培养运用数学解决问题的能力。

4.培养学生的观察、思考、操作和表达的能力。

四. 教学重难点1.数轴的定义和特点。

2.数轴上的基本运算,包括绝对值、加减法、比较大小等。

3.运用数轴解决实际问题。

五. 教学方法1.情境教学法:通过具体的情境和实例,让学生直观地理解数轴的概念和应用。

2.操作教学法:让学生通过实际的操作,如画数轴、标数值等,加深对数轴的理解。

3.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的解决问题能力。

六. 教学准备1.教学课件:制作数轴的图片和动画,帮助学生直观地理解数轴的概念。

2.练习题:准备一些数轴相关的练习题,用于巩固所学知识。

3.教学用具:如直尺、铅笔等,用于学生实际操作。

七. 教学过程1.导入(5分钟)利用数轴的图片和动画,引导学生思考数轴是什么,数轴有什么特点。

通过引导学生观察和描述,激发学生的学习兴趣。

2.呈现(10分钟)介绍数轴的定义和特点,如数轴是一条直线,有一个原点,有一个正方向和一个负方向等。

同时,介绍数轴上的表示方法,如数值的表示、符号的表示等。

3.操练(10分钟)让学生实际操作,如画数轴、标数值等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 七年级数学教案编订:XX文讯教育机构数轴(教学设计方案)教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中七年级数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

教学目标1.了解的概念和的画法,掌握的三要素;2.会用上的点表示有理数,会利用比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。

的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。

另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。

通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.二、知识结构有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫原点正方向单位长度帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数比较有理数大小,上右边的数总比左边的数要大在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。

三、教法建议小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。

与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。

要注意原点位置选择的任意性。

关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。

根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。

通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、的相关知识点1.的概念(1)规定了原点、正方向和单位长度的直线叫做.这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.2.的画法(1)画直线(一般画成水平的)、定原点,标出原点“O”.(2)取原点向右方向为正方向,并标出箭头.(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。

具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用比较有理数的大小(1)在上表示的两数,右边的数总比左边的数大。

(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、定义的理解1.规定了原点、正方向和单位长度的直线叫做,如图1所示.2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).A点表示-4; B点表示-1.5;O点表示0; C点表示3.5;D点表示6.从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:正数都大于0,负数都小于0,正数大于一切负数.因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

同理,,表示是负数;反之是负数也可以表示为。

3.正常见几种错误1)没有方向2)没有原点3)单位长度不统一教学设计示例(一)教学目标1.使学生正确理解的意义,掌握的三要素;2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.难点:正确理解有理数与上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——.二、讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1 画一个,并在上画出表示下列各数的点:例2 指出上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.五、作业1.在下面上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};课堂教学设计说明从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.教学中,的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在上对应一亿万分之一的点,你能画出来吗?它是不是存在等.数轴(二)一、素质教育目标(一)知识教学点1.掌握的三要素,能正确画出.2.能将已知数在上表示出来,能说出上已知点所表示的数.(二)能力训练点1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.对学生渗透数形结合的思想方法.(三)德育渗透点使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.(四)美育渗透点通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.二、学法引导1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.三、重点、难点、疑点及解决办法1.重点:正确掌握画法和用上的点表示有理数.2.难点:有理数和上的点的对应关系。

四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计师生同步画,学生概括三要素,师出示投影,生动手动脑练习七、教学步骤(一)创设情境,引入新课师:大家知识温度计的用途是什么?生:温度计可以测量温度(出示投影1)三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.师:三个温度计所表示的温度是多少?生:2℃,-5℃,0℃.我们能否用类似温度计的图形表示有理数呢?这种表示数的图形就是今天我们要学的内容—(板书课题).【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.(二)探索新知,讲授新课1.的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:第一步:画直线定原点原点表示0(相当于温度计上的0℃).第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.让学生观察画好的直线,思考以下问题:(出示投影1)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义.学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.教师根据学生回答给予肯定或否定,纠正后板书.2.的定义:规定了原点、正方向和单位长度的直线叫做.向学生提出问题:上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是的依据.学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.3.尝试反馈,巩固练习请大家回答下列问题:(出示投影2)(1)有人说一条直线是一条,对不对?为什么?(2)下列所画对不对?如果不对,指出错在哪里?学生活动:学生思考,不准讨论,想好后举手回答.让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.【教法说明】此组练习的目的是巩固的概念.答案:(2)①缺原点,②缺正方向,③不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是,同时⑦为学习平面直角坐标系打基础.4.有理数与上点的关系通过刚才的学习我们知道所有的有理数都可以用上的点来表示.例1 画一条,并画出表示下列各数的点:1,5,0,-2.5,.学生练习:同学们在练习本上画一条,然后在上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.【教法说明】让学生动手自己画,有助于培养学生实际操作能力.例1是把给定的有理数用上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对概念的理解.(出示投影4)例2 指出上 A、B、C、D、E各点分别表示什么数?先让学生思考一会,然后学生举手回答解:A表示-3;B表示; C表示3;D表示;E表.【教法说明】例2是让学生说出上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.5.尝试反馈,巩固练习(出示投影5)①说出下面上A、B、C、D、O、M各点表示什么数?②将-3,,1.5,-6,,2.25,,-5,1各数用上的点表示出来.【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.(三)归纳小结师:①是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合进行的.②掌握三要素,正确地画出,提醒同学们,所有的有理数都可用上的各点来表示,但是反过来不成立,即上的各点,并不是都表示有理数.以后再研究.八、随堂练习1.判断题(1)直线就是()(2)是直线()(3)任何一个有理数都可以用上的点来表示()(4)上到原点距离等于3的点所表示的数是+3()(5)上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.()2.画一条数轮,并画出表示下列各数的点,-5,0,+3.2,-1.4九、布置作业(-)必做题:课本第56页1、2.(二)选做题:课本第56页及第57页B组l.(三)思考题:①在数轮上距原点3个单位长度的点表示的数是_____②在数轮上表示-6的点在原点的_____侧,距离原点_____个单位长度,表示+6的点在原点的____侧,距离原点____个单位长度.【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.十、板书设计随堂练习答案1.×√√×√ 2.略作业答案(一)必做题1.(1)依次是(2)依次是2.依次是(二)选做题:3.略 B组1.(1)-6,(2)-1,(3)3;(4)0(三)思考题:①②左,6,右,6探究活动(1)在上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.分析:画时,的三要素:原点、正方向、单位长度缺一不可.(1)在上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了;(2)在上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.解:(1)上,距离原点3个单位的点是+3和-3,距离原点4.5个单位的点是+4.5和-4.5.由图看出:-4.5<-3<3<4.5(2)在上画出大于-4但不大于2的数的范围.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.点评:利用,数形结合,是解这一类问题的好方法.XX文讯教育机构WenXun Educational Institution。

相关文档
最新文档