理论力学静力学第二章习题答案

合集下载

理论力学习题答案

理论力学习题答案
2.3.11图示桁架系统上,已知:F=1500kN,L1=4m, L2=3m。试求桁架中各杆(1,2,3,4,5,6,7)的内力。
第三章 空间力系
一、是非题判断题
3.1.1对一空间任意力系,若其力多边形自行封闭,则该力系的主矢为零。 (∨)
平面力系中,若其力多边形自行闭合,则力系平衡。(×)
3.1.2只要是空间力系就可以列出6 个独立的平衡方程。 (×)
2.3.4悬臂式吊车的结构简图如图所示,由DE、AC二杆组成,A、B、C为铰链连接。已知P1=5kN,P2=1kN,不计杆重,试求杆AC杆所受的力和B点的支反力。
(答案:FBx=3.33kN,FBy=0.25kN,FAC=6.65kN)
2.3.5由AC和CD构成的组合粱通过铰链C连接,它的支承和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN.m,不计梁重,求支座A、B、D的约束反力和铰链C处所受的力。
3.1.3若由三个力偶组成的空间力偶系平衡,则三个力偶矩矢首尾相连必构成自行封闭的三角形。(∨)
3.1.4空间汇交力系平衡的充分和必要条件是力系的合力为零;空间力偶系平衡的充分和必要条件是力偶系的合力偶矩为零。(∨)
二、填空题
3.2.1若一空间力系中各力的作用线平行于某一固定平面,则此力系有5个独立的平衡方程。
3.3.3如图所示,三圆盘A、B、C的半径分别为15cm、10cm、5cm,三根轴OA、OB、OC在同一平面内,∠AOB为直角,三个圆盘上分别受三个力偶作用,求使物体平衡所需的力F和α角。
3.3.4某传动轴由A、B两轴承支承。圆柱直齿轮的节圆直径d=17.3cm,压力角 =20º,在法兰盘上作用一力偶矩为M=1030N.m的力偶,如轮轴的自重和摩擦不计,求传动轴匀速转动时A、B两轴承的约束反力。(答案:FAx=4.2kN,FAz=1.54kN,FBz=7.7kN,FBz.=2.79kN)

理论力学习题及答案(全)

理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

()2.在理论力学中只研究力的外效应。

()3.两端用光滑铰链连接的构件是二力构件。

()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。

则其合力可以表示为。

①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。

①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。

③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。

3.三力平衡定理是。

①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。

①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。

5.在下述原理、法则、定理中,只适用于刚体的有。

①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。

三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。

2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。

理论力学习题答案

理论力学习题答案

理论力学习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 静力学公理和物体的受力分析一、是非判断题在任何情况下,体内任意两点距离保持不变的物体称为刚体。

( ∨ ) 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。

( × ) 加减平衡力系公理不但适用于刚体,而且也适用于变形体。

( × ) 力的可传性只适用于刚体,不适用于变形体。

( ∨ ) 两点受力的构件都是二力杆。

( × ) 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。

( × ) 力的平行四边形法则只适用于刚体。

( × ) 凡矢量都可以应用平行四边形法则合成。

( ∨ ) 只要物体平衡,都能应用加减平衡力系公理。

( × ) 凡是平衡力系,它的作用效果都等于零。

( × ) 合力总是比分力大。

( × ) 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。

( × )若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。

( ∨ )当软绳受两个等值反向的压力时,可以平衡。

( × )静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。

( ∨ )静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。

( ∨ )凡是两端用铰链连接的直杆都是二力杆。

( × )如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。

( × )图3二、填空题力对物体的作用效应一般分为 外 效应和 内 效应。

对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。

理论力学第二章力系简化习题解

理论力学第二章力系简化习题解

第二章 力系的简化习题解[ 习题 2-1] 一钢构造节点 , 在沿 OA,OB,OC 的方向上遇到三个力的作用, 已知 F 1 1kN ,F 2 1.41kN , F 32kN , 试求这三个力的协力 .解:F 1 x0 F1 y1kNF 21350F 3F 2 x 1.41 cos451( kN ) F 2 y 1.41sin 45 1(kN )F 3 x2kNF3 yO 9003F 1F RxF xi0 1 2 1(kN )i 03FRyFyi1 1 0i 0F R F Rx 2R Ry 21 作用点在 O 点 , 方向水平向右 .[ 习题 2-2]计算图中已知F 1 , F 2 , F 3 三个力分别在 x, y, z 轴上的投影并求协力. 已知F 1 2kN , F 2 1kN , F 33kN .解:zF1 x 2kNF1yF1zF2 xF 2 sin 450 cos13 0.424( kN ) F 15 F2 yF 2 sin 450 sin14 0.567( kN )A45 05F 2 sin 4505yF2 z10.707( kN)OF 2F 3F3 xF3 y0 F3 z3kN334F RxF xi20 2.424( kN )xi 03F RyF yi0 0.567(kN )i 03F RzF zi3 3.707(kN )i 0协力的大小 :F R FRx2FRy2FRz220.567 224.465(kN )方向余弦 :cosFRxF RcosFRyF RF RzcosF R作用点 : 在三力的汇交点A.[ 习题 2-3]已知 F 1 2 6N ,F 2 2 3N ,F 3 1N F 4 4 2N ,F 5 的结果 ( 提示 : 不用开根号 , 可使计算简化 ).解:zF 1 x 0 F 1y 0 F 1z 2 6NF 2 x 0 F 2 y2 3N F 2 zF 1F3 x 1N F 3 y 0F3z0 F 4F4 xF 4 cos450cos604 22 1 2(N ) 45A2260 0F 3F 4 yF 4 cos 450 sin 6004 2 2 3 2 3(N)22F4 zF 4 sin 4504 22 4(N)253F5 xF 5 sin cos74232 (2 6) 2 3(N)5 F5 yF 5 sin sin75 44232(2 6) 2 4(N)5F5 zF 5 cos72 62 6(N)4232(2 6 )25F RxF xi 001234(N)i 05FRyF yi0230234 4(N)i 05FRz Fzi26004264(N)i 0协力的大小 :F RFRx2FRy2FRz24 24242 4 3 6.93(N)方向余弦 :cosFRx4 3F R4 3 37 N , 求五个力合成F 52 6F 2y34xF Ry 4 3cos433F RFRz4 3cos4 33F Rarccos3540 44'8"3作用点 : 在三力的汇交点 A.[ 习题 2-4] 沿正 六面 体的 三棱 边作用 着三 个力 , 在平 面 OABC 内作 用一个 力偶 .已 知F 1 20N , F 2 30N , F 3 50 N , M 1N m . 求力偶与三个力合成的结果 .AzF 1B150mmMOyO 1EF 2xF 3150mmD200mmC解:把 F 1, F 2 , F 3向O 1平移, 获得: 题 24图主矢量 :F RF 3 F 1 F 25020 30 0M x ( F 1 ) F 1204( N m)M y ( F 1 ) 0 M z ( F 1 ) 0M x ( F 2 ) F 2 30 6( N m) M y ( F 2 ) F 2304.5(N m)M z ( F 2 ) 0 M x ( F 3 ) 0M y ( F 3 ) F 37.5( N m)M z ( F 3 )M 的方向由 E 指向 D.MOCM O 1(F 1)M O 1(F 3)8.25( N m)M xM sin12000.8( N m)2002150 2OE150M yM cos10.6( N m)O 12002 1502M 900DCM z3M xM x (F i ) M x 4 6 0 0.89.2( N m)i 13M y M y (F i ) M y3.6( N m) i 1 3M zi 1 M z (F i ) M z00000主矩 :M O (M x )2 (M y ) 2 (M z ) 2( 9.2)2( 3.6)202 9.88( N m)方向余弦 :cosM xM 0cosM yM 0cosM zM 0[习题 2-5]一矩形体上作用着三个力偶 (F 1,F 1') , (F 2,F 2') , (F 3,F 3') .已 知F 1F 1 ' 10N , F 2F 2 '16N , F 3 F 3 '20N , a 0.1m , 求三个力巧合成的结果 .解:先把 F 1 在正 X 面上平行挪动到 x 轴 .则应附带力偶矩 :zM x ( F 1 ) F 1a 101( N m)F 'Mx1M x (F 1 ) 1(N m)1'aM y1F 1 2a 102( N m)F 2Mz1y把 F 2 沿 y, z 轴上分解 :F 2F 3FF cos450 1611.314( N )2 y22aF F sin 4501611.314( N )'F 12 z2Mx2 0F 3xa题 2 5图M y2 F 2z 2a2.263( N m)M z2 F 2 y 2a2.263( N m)M x3 0 My3Mz3F 3 a 20 2( N m)3M xM xi 1 0 0 1i 13M yMyi24.263(N m)i 1 3M zMzi2 0.263( N m)i 1主矩 :M O (M x ) 2(M y ) 2(M z ) 212( 4.263) 2 0.263 24.387(N m)方向余弦 :zcosM x1100mmM 0100mm2NM y2Ncos2NM 05N7NM zcosyOM 0[ 习题 2-6] 试求图诸力合成的结果 .4N4N解:3N1200主矢量 :3NF R 5 2 7 0竖 M x (5N ) 0的向 M x (7N )7力 矩产M x (2N ) 2生 面 顶M x1底 Mx 2面斜 M x3 3sin 60 0面x习题2 6图M y M z (5N ) 0M yM z ( 7N ) 0 M y (2 N ) 0M z ( 2N ) 0M y10 M x1My20 Mx2M y3M x33 cos 600主矩 :M O ( M x ) 2( M y ) 2( M z ) 2( 0.76) 2221.086( N m)方向余弦 :M xcosM 0cosM yM 0cosM zM 0[ 习题 2-7]柱子上作有着 F1,F2, F3三个铅直力,已知 F1 80kN , F2 60kN ,F3 50kN ,三力地点以下图. 图中长度单位为mm ,求将该力系向O点简化的结果.zF1F3A( 0, 250, ZA )F2C( 170,150,0)yOB(170,150,0)解:主生竖向的力矩产主矩 :矢量:x习题27图F R8060 50190(kN ) M x (F1 )800.25 20M y (F1 )0M z (F1 )0M x (F2 )609M y (F2 )60M z (F2 )0M x (F3 )50M y (F3 )50M z (F3 )0M O(M x ) 2( M y ) 2(M z ) 22 1.7 202 3.891( N m)方向余弦 :cosM xM 0cosM yM 0cosM z0M 0[ 习题 2-8]求图示平行力系合成的结果( 小方格边长为100mm)7kNyo(0,0)7kN3kN9kNB(400,200)12kNA(450,0)D(300,600)x 解:C(600,500)习题28图1277390主矢量:F RA M x (3kN)0M y ( 3kN )3B M x (9kN)9M y ( 9kN )9C M x (12kN )6M y (12kN )12D M x (7kN)7M y (7kN )7主矩 :M O(M x )2( M y ) 28.4 2( 4.35)29.46(kN m)方向余弦 :cosM x M 0cosM y M 0[ 习题 2-9]平板 OABD上作用空间平行力系以下图, 问x, y应等于多少才能使该力系协力作用线经过板中心 C.解:主矢量 :F R7 8 5 6 430(kN )由协力矩定理可列出以下方程:4 y5 8 8 83044 y 40 64120y 4(m)长度单位 : m4x 5 6 6 6 303x 6( m)[ 习题 2-10] 一力系由四个力构成。

工程力学(静力学答案)

工程力学(静力学答案)

第一章习题下列习题中,凡未标出自重的物体,质量不计。

接触处都不计摩擦。

1-1试分别画出下列各物体的受力图。

1-2试分别画出下列各物体系统中的每个物体的受力图。

1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。

1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。

1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。

1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。

1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。

1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。

参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故: 22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+=方向沿OB 。

2-3解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300ACAB FF -=0Y =∑cos300ACFW -=联立上二式,解得:0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700ACAB FF -=0Y =∑sin 700ABFW -=联立上二式,解得:1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300ACAB FF -=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:0.5AB F W=(拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300ABAC FF -=0Y =∑cos30cos300ABAC FF W +-=联立上二式,解得:0.577AB F W=(拉力)0.577AC F W=(拉力)2-4解:(a)受力分析如图所示:由x=∑22cos45042RAF P=+15.8RAF KN∴=由Y=∑22sin45042RA RBF F P-=+7.1RBF KN∴=(b)解:受力分析如图所示:由0x =∑3cos 45cos 45010RA RB F F P ⋅--= 0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN=(压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理 0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:7.32ABF KN=-(受压)27.3ACF KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D,B点分别列平衡方程(1)取D点,列平衡方程由x=∑sin cos0DBT Wαα-=DBT Wctgα∴==(2)取B点列平衡方程由0Y =∑sin cos 0BDT T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+ ⎪⎝⎭取E 为研究对象:由0Y =∑cos 0NH CEF F α'-=CECE F F '=故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:0x =∑sin 75sin 750ABAD FF -=0Y =∑cos 75cos 750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:0x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得:2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得:1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡0x =∑05RD REF F '-= 0Y =∑05RD F Q -=联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡0x =∑cos 450RERA FF -= 0Y =∑sin 450RBRA FF P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

理论力学习题及答案(全)

理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

()2.在理论力学中只研究力的外效应。

()3.两端用光滑铰链连接的构件是二力构件。

()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。

则其合力可以表示为。

①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。

①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。

③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。

3.三力平衡定理是。

①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。

①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。

5.在下述原理、法则、定理中,只适用于刚体的有。

①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。

三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。

2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。

理论力学习题及解答1

理论力学习题及解答1

理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。

1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。

1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。

(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。

转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。

当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。

2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。

2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。

各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。

2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。

2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。

2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。

图2-6 图2-72-7 求图示多跨静定梁的支座反力。

2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。

图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。

胡汉才编著理论力学课后习题答案第2章力系的简化

胡汉才编著理论力学课后习题答案第2章力系的简化

力系的简化第二章,的力F,5)两点(长度单位为米),且由A指向B.通过A(3,0,0),B(0,42-1 。

,对z轴的矩的大小为在z轴上投影为22 /5。

答:F / ;6 F上和y,c,则力F在轴z2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b的矩x ;F对轴;Fy= 的投影:Fz=F 。

)= M ( x)··()(··;-··;cos=FFz=F答:φsinφbFy=θFsincosφφcosφ+cMxFcos41-图2 图2-40F,则该力,若F=100N,4)两点(长度单位为米)),B(0,2-3.力4通过A(3,4、0 。

,对x轴的矩为在x轴上的投影为320N.m;答:-60NAE内有沿对角线,在平面ABED2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a °,则此力对各坐标轴之矩为:α=30的一个力F,图中。

)= );M(F= ((MF)= ;MF zYx6Fa/4 =(F);M)=0,(F)=-Fa/2MF答:M(zxy2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。

答:M(F)=160 N·cm;M(F)=100 N·cmzx43-图2 2图-42O2-6.试求图示中力F对点的矩。

M(F)=Flsinα解:a: O M(F)=Flsinαb: Oα+ Flcos)sinc: M(F)=F(l+lα2O13??22?lM?Fl?Fsin d: 2o1。

轴的力矩M1000N2-7.图示力F=,求对于z z图题2-8 7题2-图。

试求=40N,M=30N·m=40N2-8.在图示平面力系中,已知:F=10N,F,F321其合力,并画在图上(图中长度单位为米)。

解:将力系向O点简化=30N F=F-R12X40N -=R=-F3V R=50N ∴m )··3+M=300N+FF主矩:Mo=(+F312d=Mo/R=6mO合力的作用线至点的矩离iiRR0.8-=),(cos,=0.6),(cos合力的方向:iR )=-53,°08'(iR ,')(=143°08,内作用一力偶,其矩M=50KNGA转向如图;又沿·m,2-9.在图示正方体的表面ABFE2RR =50。

工程力学静力学(北京科技大东北大学)所有课后习题答案详解供参习

工程力学静力学(北京科技大东北大学)所有课后习题答案详解供参习

第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P N θ==+=∑故: 161.2R F N ==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有故: 3R F KN ==方向沿OB 。

2-3解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:联立上二式,解得:0.577AB F W =(拉力)1.155AC F W =(压力)(b ) 由平衡方程有:联立上二式,解得:1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:联立上二式,解得:0.5AB F W =(拉力)0.866AC F W =(压力)(d ) 由平衡方程有:联立上二式,解得:0.577AB F W =(拉力)0.577AC F W =(拉力)2-4解:(a )受力分析如图所示:由0x =∑ cos 450RA F P =由0Y =∑ sin 450RA RB F F P +-=(b)解:受力分析如图所示:由联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN =(压力)5RB F KN =(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=由0Y =∑ sin 0AC N F F W α+-=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos45cos450RA CB P F F --=联立后,解得: 0.707RA F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由0x =∑ cos60cos300AC AB F F W ⋅--=联立上二式,解得: 7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由0x =∑ sin cos 0DB T W αα-=(2)取B 点列平衡方程由0Y =∑ sin cos 0BD T T αα'-=2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=取C 为研究对象:由0x =∑ cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '= 解得:取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CE CE F F '=故有:2-11解:取A 点平衡:联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:由对称性及 AD AD F F '=2-12解:整体受力交于O 点,列O 点平衡由 0x =∑cos cos300RA DC F F P α+-=联立上二式得: 2.92RA F KN =1.33DC F KN =(压力)列C 点平衡联立上二式得: 1.67AC F KN =(拉力)1.0BC F KN =-(压力)2-13解:(1)取DEH 部分,对H 点列平衡联立方程后解得: RD F(2)取ABCE 部分,对C 点列平衡且 RE RE F F '=联立上面各式得: RA F =(3)取BCE 部分。

理论力学第二版第二章答案 罗特军

理论力学第二版第二章答案 罗特军
S 0

π
y sin x
0
dy sin xdx 2
0

π

da w. co m
yC
π y sin x 1 1 π 2 π y d x d y d x y d y sin xdx 0 0 0 S S 2S 8
由对称性, xC
π 2



四川大学 建筑与环境学院 力学科学与工程系 魏泳涛



四川大学 建筑与环境学院 力学科学与工程系 魏泳涛


ww
w.
kh
da
7 πr 2 0 πr 2 r r 2 2 7 πr πr 6 2 2 7 πr 0 πr r r 图形形心 y 坐标: 2 2 7 πr πr 6
w.
co
静力学习题及解答—力系的简化
i i
123.6mm , yC
S y S
i i

533.3
i
514.1mm



四川大学 建筑与环境学院 力学科学与工程系 魏泳涛


ww
w.
kh
da
w.
co
m
静力学习题及解答—力系的简化
2.8 均质平面薄板由正弦曲线与 x 轴的一段所围成,如图所示。求板的中心位置。
解:
S dxdy dx



m
解: q h 1m 78.4 kN m M O (F1 ) F1a 891kN m M O (F2 ) F2b 297kN m 1 水压力主矢大小: qh 313.6kN ,方向水平向右 2 1 h 水压力对 O 点主矩: qh 836.3kN m 2 3 (313.6i 891 j ) kN 945(0.332i 0.943 j ) kN 因此,力系主矢: FR 力系对 O 点主矩: M O 243.3kN m 合力作用线距离 O 点: d

胡汉才编著《理论力学》课后习题答案第2章力系的简化

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。

答:F/2;62F/5。

2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩M x(F)= 。

答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ)图2-40 图2-412-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。

答:-60N;320N.m2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE 的一个力F,图中α=30°,则此力对各坐标轴之矩为:M x(F)= ;M Y(F)= ;M z(F)= 。

答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/42-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。

答:M x(F)=160 N·cm;M z(F)=100 N·cm图2-42 图2-432-6.试求图示中力F 对O 点的矩。

解:a: M O (F)=F l sin αb: M O (F)=F l sin αc: M O (F)=F(l 1+l 3)sin α+ F l 2cos αd: ()2221l l F F M o +=αsin2-7.图示力F=1000N ,求对于z 轴的力矩M z 。

题2-7图 题2-8图2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。

试求其合力,并画在图上(图中长度单位为米)。

解:将力系向O 点简化R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m合力的方向:cos (R ,i )=0.6,cos (R ,i )=-0.8(R,i)=-53°08’(R,i)=143°08’2-9.在图示正方体的表面ABFE内作用一力偶,其矩M=50KN·m,转向如图;又沿GA,BH作用两力R、R',R=R'=502KN;α=1m。

2静力学第二章习题答案

2静力学第二章习题答案

第二章 部分习题解答2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。

试求A 和C 点处的约束力。

解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。

曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。

AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M0)45sin(100=-+⋅⋅M a F A θ aMF A 354.0= 其中:31tan =θ。

对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。

2-4四连杆机构在图示位置平衡,已知OA=60cm,BC=40cm,作用在BC 上力偶的力偶矩M 2=1N ·m 。

试求作用在OA 上力偶的力偶矩大小M 1和AB 所受的力AB F 。

各杆重量不计。

解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。

由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。

对BC 杆有: 0=∑M030sin 20=-⋅⋅M C B F B对AB 杆有: A B F F = 对OA 杆有:0=∑M01=⋅-A O F M AF B F A θ θ F F C F AF OOF AF BF BF CC求解以上三式可得:m N M ⋅=31, N F F F C O AB 5===,方向如图所示。

2-6等边三角形板ABC,边长为a ,今沿其边作用大小均为F 的力321,,F F F ,方向如图a,b 所示。

试分别求其最简简化结果。

解:2-6a坐标如图所示,各力可表示为:j F i F F 23211+=, i F F =2, j F i F F 23213+-=先将力系向A 点简化得(红色的):j F i F F R 3+=, k Fa M A 23= 方向如左图所示。

理论力学习题册答案

理论力学习题册答案

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体)精选)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A、球B、整体)b(杆BC、杆AC、整体第一章静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

WA DBCEOriginal FigureADBCEWWF AxF Ay F BFBD of the entire frame )a(杆AB、BC、整体)b(杆AB、BC、轮E、整体)c(杆AB、CD、整体)d(杆BC带铰、杆AC、整体精选)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。

()3、力偶矩就是力偶。

()二.电动机重P=500N,放在水平梁AC的中央,如图所示。

理论力学练习册及答案

理论力学练习册及答案
解:动点取杆OA上A点,动系固连杆O1C上,定系固连机架。
由速度合成定理 作速度平行四边形。
由加速度合成定理 作加速度图。
取 方向投影,得:
再取动点杆O1C上C点,动系固连套筒B上,定系固连机架。
由速度合成定理 作速度平行四边形。
由加速度合成定理:
作加速度图。
取 方向投影,得:
取 方向投影,得:
第八章 刚体平面运动
8-1.已知图示机构滑块B,沿水平方向按规律SB=0.01t2+0.18t m移动,通过连杆AB带动半径R=0.1 m的轮子沿水平方向只滚不滑。求当t=1 s时,点A和点C在图示位置的速度和加速度。
解:当 时,
由于杆AB作瞬时平动,且P为轮C
的速度瞬心,故有:
8-2.曲柄OA=17 cm,绕定轴O转动的角速度ωOA=12 rad/s,AB=12 cm,BD=44 cm,滑块C、D分别沿着铅垂与水平滑道运动,在图示瞬时OA铅垂,求滑块C与D的速度。
2、研究滑块A运动副,求 ,
3、分别作套筒o运动副、滑块A运动副
加速度图,
4、研究杆BE,作O、A加速度图,
5、分别列O、A点加速度投影式求解
7-7.圆盘半径OA=r,可绕其边缘上一点A转动,从而带动直杆BC绕B点转动,AB=3r,且直杆与圆盘始终相切,当圆盘中心运动到AB连线上时,圆盘转动的角速度为ω,角加速度为ε,求此瞬时直杆BC的角速度和角加速度。
8-5.滑块B、D在铅直导槽中滑动,通过连杆BA及CD与轮子A相连,各连接处都是光滑铰链。轮A放在水平面上,AB=10 cm,CD=13 cm。在图示瞬时,即轮心A至两铅垂导槽的距离均为8 cm时,可在水平面上自由滚动的轮子,其轮心速度νA=30 cm/s,方向水平向右。求此时滑块D的速度。

理论力学第二章思考题及习题答案

理论力学第二章思考题及习题答案

第二章思考题2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心? 2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故?2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动?2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何?2.5水面上浮着一只小船。

船上一人如何向船尾走去,则船将向前移动。

这是不是与质心运动定理相矛盾?试解释之。

2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒?2.7选用质心坐标系,在动量定理中是否需要计入惯性力?2.8轮船以速度V 行驶。

一人在船上将一质量为m 的铁球以速度v 向船首抛去。

有人认为:这时人作的功为()mvV mv mV v V m +=-+222212121 你觉得这种看法对吗?如不正确,错在什么地方? 2.9秋千何以能越荡越高?这时能量的增长是从哪里来的?2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么? 2.11多级火箭和单级火箭比起来,有哪些优越的地方?第二章思考题解答2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。

对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。

2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。

2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,难以解算。

理论力学第二章答案

理论力学第二章答案

[
]
代入完整保守体系的拉格朗日方程,并化简得
&& θ + sinθ ⋅ cosθ ⋅ ω 2 = 0
2.9 用拉格朗日方程写出习题1.27的运动微分方程 解:体系为自由度为2的完整约束体系,取x,y为广义坐标
m & & T = (x2 + y2) 2

V =−
e2 4 πε 0

1 x2 + y2 1 x2 + y2
ϕ +ϕ ϕ +ϕ m1g sinϕ1 − k cos 1 2 ⋅ (l − 2R) ⋅ sin 1 2 = 0 2 2 m g sinϕ − k cosϕ1 + ϕ2 ⋅ (l − 2R) ⋅ sinϕ1 + ϕ2 = 0 2 2 2 2
o
ϕ1 ϕ2
m2
m1
2.23 质量为m,电荷为q的粒子在轴对称电场 中运动。写出粒子的拉格朗日函数和运动微分方程。 v v v v 解: 由题中 E = E 0 e r ,B = B 0 k 令 ϕ = E 0 ln R v 1 v A = B 0 R eθ 2 v v 在柱坐标系中,有: = 1 mv 2 − q ϕ + q A ⋅ V , L 2 d ∂L ∂L − =0 代入: & dt ∂ q α ∂ qα
o
2.6 用拉格朗日程写出习题1.20的运动微分方程 解:如图,取底面圆心处为坐标原点,建立柱坐标系,质点到 v &v v v & eϕ + ze z & 轴距为R,则: υ = R er + Rϕ & & 由几何关系 R = ( R2 + z ⋅ tan α ), R = z ⋅ tan α

(完整版)理论力学课后答案第二章

(完整版)理论力学课后答案第二章

解 册究対繼*晦矍*曲:/」平衛ii 殳宦廉,交廉”的钓痕力耳欝珊谊寸c 乃向如I 用 b 陌示.収啪杯爺Cy*血平胡那论鬥式⑴* (?)峡立・解紂佔2…已暂 F 兰5 am N .棗与撑祎自虫不计匚求 BC'ffK 内力及铁员 的反力。

解该系统曼力如图(訂, 三力匸交于艰0・苴封訥的力 三角膠如图冷人祥得 屉二5OOON 』仏 二疔000 W2-2在铰链A 、B 处有力F i , F 2作用,如图所示。

该机 F i 与F 2的关系。

2-3铰链4杆机构CABD 的CD 边固定, 构在图示位置平衡,不计杆自重。

求力 30T >◎60°检(b)B解⑴柠点掐坐WAS 力如囲 归所示"H3平祈刖论咼节点瓦腿标歴覺力如国 所小*血丫轉理论得2S -F^ ccs 30fr -f ; cosW )0 =0^=-^=—^— = 1.553^F 、: - 0.644已扣两伦备車P A ^P L •处于T册状态,杆電不比求I )若片=丹=巴 角e -?2)若 P A - 300 B = 0血=?ffi 八5两轮受力分别 如图示■对A 辂育SX = 0* F 刚 cEjedO* — F\g oos$ = 0SY 二 0a F sx tin60T - F 屈 sinfl - P A = tj对 B 轮育 SX ■ 0, Fn ooa? - F,\&8^3(/ = 0 IV = 0. F rw sinff 下 F 斶 anJO* - P n =(1) 四牛封程嬴立求AL 爾<3-30*(2) 把拧-0\F A - 300 M 代入方社,联立解筹P fl = 100 N2-5如图2-10所示,刚架上作用力F 。

试分别计算力F解 M A (F) = -FbcoseM s [F) - -Fb cos0 + FosinB二F(osiii0-bcos0)2-6已知梁AB 上作用1力偶,力偶矩为M ,梁长为I ,梁重不计。

理论力学第二章课后习题答案

理论力学第二章课后习题答案

理论力学第二章课后习题答案·12·理论力系第2章平面汇交力系与平面力偶系一、是非题(恰当的在括号内踢“√”、错误的踢“×”)1.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。

2.用解析法求平面呈报力系的合力时,若挑选出相同的直角坐标轴,其税金的合力一定相同。

(√)3.在平面汇交力系的平衡方程中,两个投影轴一定要互相垂直。

(×)4.在维持力偶矩大小、转为维持不变的条件下,可以将例如图2.18(a)右图d处为平面力偶m移至例如图2.18(b)所示e处,而不改变整个结构的受力状态。

(×)(a)图2.185.如图2.19所示四连杆机构在力偶m1m2的作用下系统能保持平衡。

6.例如图2.20右图皮带传动,若仅就是包角发生变化,而其他条件均维持维持不变时,并使拎轮旋转的力矩不能发生改变。

(√图2.19图2.201.平面呈报力系的均衡的充要条件就是利用它们可以解言的约束反力。

2.三个力汇交于一点,但不共面,这三个力3.例如图2.21右图,杆ab蔡国用数等,在五个力促进作用下处在平衡状态。

则促进作用于点b的四个力的合力fr=f,方向沿4.如图2.22所示结构中,力p对点o的矩为plsin。

5.平面呈报力系中作力多边形的矢量规则为:各分力的矢量沿着环绕着力多边形边界的某一方向首尾相接,而合力矢量沿力多边形半封闭边的方向,由第一个分力的起点指向最后一个分力的终第面汇交力系与平面力偶图2.21图2.226.在直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小但在非直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小不相等。

1.例如图2.23右图的各图为平面呈报力系所作的力多边形,下面观点恰当的就是(c)。

(a)图(a)和图(b)就是平衡力系则(b)图(b)和图(c)就是平衡力系则(c)图(a)和图(c)就是平衡力系则(d)图(c)和图(d)就是平衡力系则f2f2f1(a)(b)(c)2.关于某一个力、分力与投影下面说法正确的是(b)。

理论力学答案第二章

理论力学答案第二章

《理论力学》第二章作业习题2-5解:(1)以D点为研究对象,其上所受力如上图(a)所示:即除了有一铅直向下的拉力Fr外, 沿DB有一拉力Tr和沿DE有一拉力ETr。

列平衡方程XYFF⎧=⎪⎨=⎪⎩∑∑cos0sin0EET TT Fθθ-=⎧⎨-=⎩解之得800/0.18000()T Fctg Nθ=≈=(2)以B点为研究对象,其上所受力如上图(b)所示:除了有一沿DB拉力T'r外,沿BA有一铅直向下的拉力ATr,沿BC有一拉力CTr,且拉力T'r与D点所受的拉力Tr大小相等方向相反,即T T'=-r r。

列平衡方程XYFF⎧=⎪⎨=⎪⎩∑∑sin0cos0CC AT TT Tθθ'-=⎧⎨-=⎩解之得8000/0.180000()AT T ctg Nθ'=≈=答:绳AB作用于桩上的力约为80000N。

习题2-6 解:(1) 取构件BC 为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M ,那末B 、C 处所受的约束力B F r 、C F r必定形成一个阻力偶与之平衡。

列平衡方程()0B M F =∑r0C M F l -=所以 C M F l=(2) 取构件ACD 为研究对象,其受力情况如上图(b)所示:C 处有一约束力C F 'r与BC 构件所受的约束力C F r 互为作用力与反作用力关系,在D 处有一约束力D F r 的方向向上,在A 处有一约束力A F r,其方向可根据三力汇交定理确定,即与水平方向成45度角。

列平衡方程0X F =∑sin 450o A C F F '-=所以 222A C C M F F F l'=== 2Ml(b)所示。

习题2-7解:(1) 取曲柄OA 为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M ,那末O 、A 处所受的约束力O F ρ、BA F ρ必定形成一个阻力偶与之平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。

试求A 和C 点处的约束力。

解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。

曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。

AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):
0=∑M 0)45sin(100=-+⋅⋅M a F A θ a
M F A 354.0=
其中:31
tan =θ。

对BC 杆有:a
M F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。

2-4
解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。

由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。

对BC 杆有: 0=∑M
030sin 20=-⋅⋅M C B F B
对AB 杆有: A B
F F =
对OA 杆有: 0=∑M
01=⋅-A O F M A
求解以上三式可得:m N M ⋅=31, N F F F C O AB 5===,方向如图所示。

//
2-6求最后简化结果。

解:2-6a
坐标如图所示,各力可表示为:
j F i F F ρ
ρρ23211+=, i F F ρρ=2, j F i F F ρρρ2
3213+-=
先将力系向A 点简化得(红色的): j F i F F R ρρρ3+=, k Fa M A ρ
ρ2
3=
方向如左图所示。

由于A R M F ρ
ρ⊥,可进一步简化为一个不过
A 点的力(绿
色的),主矢不变,其作用线距A 点的距离a d 4
3=
,位置如左图所示。

2-6b
同理如右图所示,可将该力系简化为一个不过A 点的力(绿色的),主矢为:
i F F R ρρ2-=
其作用线距A 点的距离a d
4
3=
,位置如右图所示。

简化中心的选取不同,是否影响最后的简化结果?
2-13
解:整个结构处于平衡状态。

选择滑轮为研究对象,受力如图,列平衡方程(坐标一般以水平向右为x 轴正向,竖直向上为y 轴正向,力偶以逆时针为正):
∑=0x F 0sin =+Bx F P α
∑=0y F 0cos =--αP P F By
选梁AB 为研究对象,受力如图,列平衡方程:
∑=0x F
0=-Bx Ax F F ∑=0y F
0=-By Ay F F
0=∑A M
0=⋅-l F M By A
求解以上五个方程,可得五个未知量A By Bx Ay Ax M F F F F ,,,,分别为:
αsin P F F Bx Ax -==(与图示方向相反) )cos 1(α+==P F F By Ay (与图示方向相同)
l P M A )cos 1(α+= (逆时针方向)
2-18
解:选AB 杆为研究对象,受力如图所示,列平衡方程: 0=∑A M
0cos cos 2
cos =⋅-⋅-⋅
αααl F l
G a N D
∑=0y F 0cos =--F G N D α
求解以上两个方程即可求得两个未知量α,D N ,其中:
31
])2()(2arccos[l
G F a G F ++=α
未知量不一定是力。

2-27
解:选杆AB 为研究对象,受力如下图所示。

列平衡方程:
0=∑y M
0tan sin cos tan 2
1
=⋅-⋅-⋅αθθαc F c F c P BC BC
N F BC 6.60=
0'=∑x M
0sin 2
1
=⋅-⋅-⋅a F c F a P BC B θ
N F B 100=
由∑=0y
F 和∑=0z F 可求出Az Ay F F ,。

平衡方程0=∑x M 可用来校核。

思考题:对该刚体独立的平衡方程数目是几个?
2-29
解:杆1,2,3,4,5,6均为二力杆,受力方向沿两端点连线方向,假设各杆均受压。

选板ABCD 为研究对象,受力如图所示,该力系为空间任意力系。

采用六矩式平衡方程: 0=∑DE M 045cos 02=⋅F 02=F
0=∑AO M
045cos 45cos 45cos 0006=⋅-⋅-a F a F
F F 2
26-
=(受拉) 0=∑BH M 045cos 45cos 0604=⋅-⋅-a F a F F F 2
24=(受压) 0=∑AD M
045sin 45cos 0061=⋅-⋅+⋅a F a F a F
F F 2
211+=
(受压)
0=∑CD M
045sin 031=⋅-⋅+⋅a F a F a F
F
F 213-=(受拉)
0=∑BC M
045cos 0453=⋅-⋅+⋅a F a F a F
05=F
本题也可以采用空间任意力系标准式平衡方程,但求解代数方程组非常麻烦。


似本题的情况采用六矩式方程比较方便,适当的选择六根轴保证一个方程求解一个未知量,避免求解联立方程。

2-31 力偶矩cm N M
⋅=1500
解:取棒料为研究对象,受力如图所示。

列平衡方程:
⎪⎩⎪
⎨⎧∑=∑=∑=000
O
y x M F F
⎪⎪⎩⎪⎪⎨⎧=-⋅+=+-=-+02
)(045sin 045cos 2110
2201
M D
F F N p F N p F 补充方程:⎩⎨

==2211N f F N f F s s
五个方程,五个未知量s f N F N F ,2211,,,,可得方程:
02222=+⋅⋅-⋅M f D p f M S S
解得491.4,223.021==S S f f 。

当491.42=S f 时有:
0)
1(2)
1(2
221<+-=
S S f f p N 即棒料左侧脱离V 型槽,与提议不符,故摩擦系数223.0=S f 。

2-33
解:当045=α时,取杆AB 为研究对象,受力如图所示。

列平衡方程:
⎪⎩⎪
⎨⎧∑=∑=∑=000A
y x M F F
⎪⎪⎩⎪

⎨⎧
=⋅
-⋅-⋅=-+=-0sin 2
cos sin sin cos 0cos 0sin ααθαθθθB
A p C A T C A T p T F T F S
N 附加方程:N S S F f F =
四个方程,四个未知量s S N f T F F ,,,,可求得646.0=s f 。

2-35
解:选棱柱体为研究对象,受力如图所示。

假设棱柱边长为a ,重为P ,列平衡方程:
⎪⎩⎪
⎨⎧∑=∑=∑=000x
B A F M M
⎪⎪



⎪⎪⎨⎧
=-+=+⋅+⋅-=+⋅-⋅0sin 032sin 2cos 032sin 2cos αα
αααP F F a P a P a F a P a P a F B A NA NB 如果棱柱不滑动,则满足补充方程⎩⎨⎧==NB
s B NA s A F
f F F f F 21时处于极限平衡状态。

解以上五个方程,可求解五个未知量α,,,,NB B NA A F F F F ,其中:
3
2)(3tan 1221+-+=
s s s s f f f f α
(1)
当物体不翻倒时0≥NB
F ,则:
060tan ≤α
(2)
即斜面倾角必须同时满足(1)式和(2)式,棱柱才能保持平衡。

相关文档
最新文档