数字电路实验报告
数字电路设计实训实验报告
一、实验目的1. 熟悉数字电路的基本组成和基本逻辑门电路的功能。
2. 掌握组合逻辑电路的设计方法,包括逻辑表达式化简、逻辑电路设计等。
3. 提高动手实践能力,培养独立思考和解决问题的能力。
4. 理解数字电路在实际应用中的重要性。
二、实验原理数字电路是一种用数字信号表示和处理信息的电路,其基本组成单元是逻辑门电路。
逻辑门电路有与门、或门、非门、异或门等,它们通过输入信号的逻辑运算,输出相应的逻辑结果。
组合逻辑电路是由逻辑门电路组成的,其输出仅与当前输入信号有关,与电路的过去状态无关。
本实验将设计一个简单的组合逻辑电路,实现特定功能。
三、实验仪器与设备1. 数字电路实验箱2. 逻辑门电路(如与非门、或非门、异或门等)3. 逻辑电平测试仪4. 线路板5. 电源四、实验内容1. 组合逻辑电路设计(1)设计一个三人表决电路三人表决电路的输入信号为三个人的投票结果,输出信号为最终的表决结果。
根据题意,当至少有两人的投票结果相同时,输出为“通过”;否则,输出为“不通过”。
(2)设计一个4选1数据选择器4选1数据选择器有4个数据输入端、2个选择输入端和1个输出端。
根据选择输入端的不同,将4个数据输入端中的一个输出到输出端。
2. 组合逻辑电路搭建与测试(1)搭建三人表决电路根据电路设计,将三个与门、一个或门和一个异或门连接起来,构成三人表决电路。
(2)搭建4选1数据选择器根据电路设计,将四个或非门、一个与非门和一个与门连接起来,构成4选1数据选择器。
(3)测试电路使用逻辑电平测试仪,测试搭建好的电路在不同输入信号下的输出结果,验证电路的正确性。
3. 实验结果与分析(1)三人表决电路测试结果当输入信号为(1,0,0)、(0,1,0)、(0,0,1)时,输出为“通过”;当输入信号为(1,1,0)、(0,1,1)、(1,0,1)时,输出为“不通过”。
测试结果符合设计要求。
(2)4选1数据选择器测试结果当选择输入端为(0,0)时,输出为输入端A的信号;当选择输入端为(0,1)时,输出为输入端B的信号;当选择输入端为(1,0)时,输出为输入端C的信号;当选择输入端为(1,1)时,输出为输入端D的信号。
数字电路实验报告 实验2
实验二 译码器及其应用一、 实验目的1、掌握译码器的测试方法。
2、了解中规模集成译码器的管脚分布,掌握其逻辑功能。
3、掌握用译码器构成组合电路的方法。
4、学习译码器的扩展。
二、 实验设备及器件1、数字逻辑电路实验板1块 2、74HC(LS)20(二四输入与非门) 1片 3、74HC(LS)138(3-8译码器)2片三、 实验原理74HC(LS)138是集成3线-8线译码器,在数字系统中应用比较广泛。
下图是其引脚排列,其中A 2、A 1、A 0为地址输入端,Y ̅0~Y ̅7为译码输出端,S 1、S ̅2、S ̅3为使能端。
下表为74HC(LS)138功能表。
74HC(LS)138工作原理为:当S 1=1,S ̅2+S ̅3=0时,电路完成译码功能,输出低电平有效。
其中:Y ̅0=A ̅2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅4=A 2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅1=A ̅2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅5=A 2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅2=A ̅2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅6=A 2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅3=A ̅2A 1A 0̅̅̅̅̅̅̅̅̅̅Y ̅7=A 2A 1A 0̅̅̅̅̅̅̅̅̅̅因为74HC(LS)138的输出包括了三变量数字信号的全部八种组合,每一个输出端表示一个最小项(的非),因此可以利用八条输出线组合构成三变量的任意组合电路。
实验用器件管脚介绍:1、74HC(LS)20(二四输入与非门)管脚如下图所示。
2、74HC(LS)138(3-8译码器)管脚如下图所示。
四、实验内容与步骤(四学时)1、逻辑功能测试(基本命题)m。
验证74HC(LS)138的逻辑功能,说明其输出确为最小项i注:将Y̅0~Y̅7输出端接到LED指示灯上,因低电平有效,所以当输入为000时,Y̅0所接的LED指示灯亮,其他同理。
《数字电路》实验报告
《数字电路》实验报告项目一逻辑状态测试笔的制作一、项目描述本项目制作的逻辑状态测试笔,由集成门电路芯片74HC00、发光二极管、电阻等元器件组成,项目相关知识点有:基本逻辑运算、基本门电路、集成逻辑门电路等;技能训练有:集成逻辑二、项目要求用集成门电路74HC00制作简易逻辑状态测试笔。
要求测试逻辑高电平时,红色发光二极管亮,测试逻辑低电平时绿色发光二极管亮。
三、原理框图四、主要部分的实现方案当测试探针A测得高电平时,VD1导通,三级管V发射级输出高电平,经G1反相后,输出低电平,发光二级管LED1导通发红光。
又因VD2截止,相当于G1输入端开路,呈高电平,输出低电平,G3输出高电平,绿色发光二级管LED2截止而不发光。
五、实验过程中遇到的问题及解决方法(1)LED灯不能亮:检查硬件电路有无接错;LED有无接反;LED有无烧坏。
(2)不能产生中断或中断效果:检查硬件电路有无接错;程序中有无中断入口或中断子程序。
(3)输入电压没有反应:数据原理图有没有连接正确,检查显示部分电路有无接错;4011逻辑门的输入端有无浮空。
六、心得体会第一次做的数字逻辑试验是逻辑状态测试笔,那时什么都还不太了解,听老师讲解完了之后也还不知道从何下手,看到前面的人都起先着手做了,心里很焦急可就是毫无头绪。
老师说要复制一些文件协助我们做试验(例如:试验报告模板、试验操作步骤、引脚等与试验有关的文件),还让我们先画原理图。
这时,关于试验要做什么心里才有了一个模糊的框架。
看到别人在拷贝文件自己又没有U盘只好等着借别人的用,当然在等的时候我也画完了逻辑测试笔的实操图。
后面几次都没有过,但最后真的发觉试验的次数多了,娴熟了,知道自己要做的是什么,明确了目标,了解了方向,其实也没有想象中那么困难。
七、元器件一逻辑状态测试笔电路八、附实物图项目二多数表决器电路设计与制作一、项目描述本项目是以组合逻辑电路的设计方法,用基本门电路的组合来完成具有多数表决功能的电路。
数字电路实验报告3
数字电路实验报告3实验目的本实验旨在通过实际操作,进一步了解数字电路中的加法器和减法器的基本原理,并通过观察和分析实验结果,加深对数字电路的理解。
实验原理加法器加法器是数字电路中常用的逻辑电路,用于将两个二进制数相加。
常见的加法器有半加法器、全加法器等。
在本实验中,我们将使用半加法器和全加法器来实现二进制数的加法运算。
半加法器是最基本的加法器,它只能实现1位二进制数的相加。
半加法器有两个输入端A和B,表示要相加的两个二进制位,以及两个输出端Sum和Carry,分别表示相加的结果和进位。
全加法器是在半加法器的基础上进行改进,可以实现多位二进制数的相加。
全加法器有三个输入端A、B和Carry-in,分别表示要相加的两个二进制位和进位。
它还有两个输出端Sum和Carry-out,分别表示相加的结果和进位。
减法器减法器是用于实现二进制数的减法运算的数字电路。
它可以将两个二进制数相减,并得到减法的结果。
在本实验中,我们将使用全减法器来实现二进制数的减法运算。
全减法器是将半减法器进行组合得到的。
它有三个输入端A、B和Borrow-in,分别表示被减数、减数和借位。
它还有两个输出端Diff和Borrow-out,分别表示减法的结果和借位。
实验步骤1.搭建半加法器电路:根据半加法器的原理图,使用逻辑门和触发器等器件,搭建一个半加法器电路。
2.连接输入端:将两个二进制数的相应位连接到半加法器电路的输入端A和B上。
3.连接输出端:将半加法器电路的输出端Sum和Carry连接到示波器上,用于观察结果。
4.输入数据:给输入端A和B分别输入二进制数,记录输入的数值。
5.观察结果:观察示波器上显示的结果,并记录下来。
6.分析结果:根据观察到的结果,分析二进制数的相加运算是否正确,以及进位是否正确。
7.搭建全加法器电路:根据全加法器的原理图,使用逻辑门和触发器等器件,搭建一个全加法器电路。
8.连接输入端:将两个二进制数的相应位和进位信号连接到全加法器电路的输入端A、B和Carry-in上。
数字电路实验报告
数字电路实验目录实验一组合逻辑电路分析 (1)实验二组合逻辑实验(一) (5)实验三组合逻辑实验(三) (9)实验四触发器和计数器 (16)实验五数字电路综合实验 (20)实验六555集成定时器 (22)实验七数字秒表 (25)实验一组合逻辑电路分析一、参考元件1、74LS00(四2输入与非门)2、74LS20(双4输入与非门)二、实验内容1、组合逻辑电路分析A B C DX15 V图1.1 组合逻辑电路分析电路图说明:ABCD按逻辑开关“1”表示高电平,“0”表示低电平;逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。
实验表格记录如下:表1.1 实验分析:由实验逻辑电路图可知:输出X1=AB CD •=AB+CD ,同样,由真值表也能推出此方程,说明此逻辑电路具有与或功能。
2、密码锁问题:密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开;否则,报警信号为“1”,则接通警铃。
试分析下图中密码锁的密码ABCD 是什么?X1X25 VABCD图1.2 密码锁电路分析实验真值表记录如下:表1.2 实验分析:由真值表(表1.2)可知:当ABCD 为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。
由此可见,该密码锁的密码ABCD 为1001.因而,可以得到:X1=ABCD ,X2=1X 。
实验二 组合逻辑实验(一)半加器和全加器 一、实验目的熟悉用门电路设计组合电路的原理和方法步骤。
二、预习内容1、复习用门电路设计组合逻辑电路的原理和方法步骤。
2、复习二进制数的运算①用“与非”门设计半加器的逻辑图 ②完成用“异或”门、“与或非”门、“与非”门设计全加器的逻辑图 ③完成用“异或”门设计三变量判奇电路的原理图 三、参考元件1、74LS283(集成超前4位进位加法器)2、74LS00(四2输入与非门)3、74LS51(双与或非门)4、74LS136(四2输入异或门) 四、实验内容1、用与非门组成半加器 由理论课知识可知:i S =i i A B ⊕=i i i i AB A B +=i i i i i i A B A A B B ••• i C =i i A B =i i A B根据上式,设计如下电路图:AiBi SiCi图2.1与非门设计半加器电路图得到如下实验结果:表2.1 半加器实验结果记录表格2、用异或门、与或非门、与非门组成全加器 由理论课知识可知:i S =1i i i A B C -⊕⊕ i C =1()i i i i i A B A B C -+⊕根据上式,设计如下电路:Ai BiCi-1SiCi图2.2 用异或门、与或非门、与非门设计的全加器表2.2 3、用异或门设计3变量判奇电路,要求变量中1的个数为奇数时,输出为1,否则为0. 根据题目要求可知:输出L=ABC ABC ABC ABC A B C +++=⊕⊕ 则可以设计出如下电路:74LS136NA B CL图2.3 用异或门设计的3变量判奇电路根据上图,可以得到如下实验数据表格:表2.3 4、用“74LS283”全加器逻辑功能测试U174LS283NS U M _410S U M _313S U M _14S U M _21C 49B 411A 412B 315A 314B 22A 23B 16A 15C 07图2.4 元件74LS283利用74LS283进行如下表格中的测试:表2.4 “74LS283实验三 组合逻辑实验(三)数据选择器和译码器的应用 一、实验目的熟悉数据选择器和数据分配器的逻辑功能和掌握其使用方法。
数电实验报告答案
实验名称:数字电路基础实验实验目的:1. 熟悉数字电路的基本原理和基本分析方法。
2. 掌握数字电路实验设备的使用方法。
3. 培养动手实践能力和分析问题、解决问题的能力。
实验时间:2023年X月X日实验地点:实验室XX室实验仪器:1. 数字电路实验箱2. 万用表3. 双踪示波器4. 数字信号发生器5. 短路线实验内容:一、实验一:基本逻辑门电路实验1. 实验目的- 熟悉与门、或门、非门的基本原理和特性。
- 学习逻辑门电路的测试方法。
2. 实验步骤- 连接实验箱,设置输入端。
- 使用万用表测量输出端电压。
- 记录不同输入组合下的输出结果。
- 分析实验结果,验证逻辑门电路的特性。
3. 实验结果与分析- 实验结果与理论预期一致,验证了与门、或门、非门的基本原理。
- 通过实验,加深了对逻辑门电路特性的理解。
二、实验二:组合逻辑电路实验1. 实验目的- 理解组合逻辑电路的设计方法。
- 学习使用逻辑门电路实现组合逻辑电路。
2. 实验步骤- 根据设计要求,绘制组合逻辑电路图。
- 连接实验箱,设置输入端。
- 测量输出端电压。
- 记录不同输入组合下的输出结果。
- 分析实验结果,验证组合逻辑电路的功能。
3. 实验结果与分析- 实验结果符合设计要求,验证了组合逻辑电路的功能。
- 通过实验,掌握了组合逻辑电路的设计方法。
三、实验三:时序逻辑电路实验1. 实验目的- 理解时序逻辑电路的基本原理和特性。
- 学习使用触发器实现时序逻辑电路。
2. 实验步骤- 根据设计要求,绘制时序逻辑电路图。
- 连接实验箱,设置输入端和时钟信号。
- 使用示波器观察输出波形。
- 记录不同输入组合和时钟信号下的输出结果。
- 分析实验结果,验证时序逻辑电路的功能。
3. 实验结果与分析- 实验结果符合设计要求,验证了时序逻辑电路的功能。
- 通过实验,加深了对时序逻辑电路特性的理解。
四、实验四:数字电路仿真实验1. 实验目的- 学习使用数字电路仿真软件进行电路设计。
数字电路实验报告-实验一[总结]
实验一数字电路实验基础一、实验目的⑴掌握实验设备的使用和操作⑵掌握数字电路实验的一般程序⑶了解数字集成电路的基本知识二、预习要求复习数字集成电路相关知识及与非门、或非门相关知识三、实验器材⑴直流稳压电源、数字逻辑电路实验箱、万用表⑵74LS00、74LS02、74LS48四、实验内容和步骤1、实验数字集成电路的分类及特点目前,常用的中、小规模数字集成电路主要有两类。
一类是双极型的,另一类是单极型的。
各类当中又有许多不同的产品系列。
⑴双极型双极型数字集成电路以TTL电路为主,品种丰富,一般以74(民用)和54(军用)为前缀,是数字集成电路的参考标准。
其中包含的系列主要有:▪标准系列——主要产品,速度和功耗处于中等水平▪LS系列——主要产品,功耗比标准系列低▪S系列——高速型TTL、功耗大、品种少▪ALS系列——快速、低功耗、品种少▪AS系列——S系列的改进型⑵单极型单极型数字集成电路以CMOS电路为主,主要有4000/4500系列、40H系列、HC系列和HCT系列。
其显著的特点之一是静态功耗非常低,其它方面的表现也相当突出,但速度不如TTL集成电路快。
TTL产品和CMOS产品的应用都很广泛,具体产品的性能指标可以查阅TTL、CMOS集成电路各自的产品数据手册。
在本实验课程中,我们主要选用TTL数字集成电路来进行实验。
2、TTL集成电路使用注意事项⑴外形及引脚TTL集成电路的外形封装与引脚分配多种多样,如附录中所示的芯片封装形式为双列直插式(DIP)。
芯片外形封装上有一处豁口标志,在辨认引脚分配时,芯片正面(有芯片型号的一面)面对自己,将此豁口标志朝向左手侧,则芯片下方左起的第一个引脚为芯片的1号引脚,其余引脚按序号沿芯片逆时针分布。
⑵电源每片集成电路芯片均需要供电方能正常使用其逻辑功能,供电电源为+5V单电源。
电源正端(+5V)接芯片的VCC引脚,电源负端(0V)接芯片的GND引脚,两者不允许接反,否则会损坏集成电路芯片。
最新数字电路实验八实验报告
最新数字电路实验八实验报告实验目的:1. 熟悉数字电路的基本组成和工作原理。
2. 掌握数字电路的设计与测试方法。
3. 学习使用数字电路实验箱和相关测试设备。
实验原理:数字电路是由逻辑门电路组成的,通过不同的逻辑门可以构建出复杂的数字系统。
本实验通过设计和实现一个简单的数字电路系统,来加深对数字逻辑和电路设计的理解。
实验设备:1. 数字电路实验箱。
2. 示波器。
3. 逻辑笔。
4. 连接线。
实验步骤:1. 设计实验电路:根据实验要求,设计一个简单的数字电路,例如一个4位二进制加法器。
2. 搭建电路:使用数字电路实验箱中的逻辑门和其他电子元件,按照设计图搭建电路。
3. 测试电路:使用逻辑笔和示波器对电路的输入和输出进行测试,确保电路按照预期工作。
4. 调试优化:根据测试结果,对电路进行必要的调整和优化,直至电路完全符合设计要求。
实验结果:1. 电路图:附上设计的4位二进制加法器电路图。
2. 测试数据:列出输入的不同组合和对应的输出结果,验证电路的正确性。
3. 问题与解决:描述在实验过程中遇到的问题以及采取的解决措施。
实验结论:通过本次实验,我们成功设计并实现了一个4位二进制加法器。
实验过程中,我们学习了数字电路的设计流程,掌握了使用实验设备进行电路搭建和测试的技能。
同时,我们也意识到在电路设计中需要注意的细节问题,以及如何通过调试来解决实际问题。
建议与反思:在今后的实验中,我们应该更加注重对电路设计的前期规划,以及对电路性能的测试和验证。
此外,对于复杂的电路设计,可以尝试使用计算机辅助设计(CAD)软件来提高设计效率和准确性。
电路实验实验报告
电路实验实验报告篇一:电路实验报告数字电路实验报告姓名:田月皎学号:XX080432201 学院:信息学院专业:运算机科学与技术指导教师:邹尔宁协助指导教师:XX年 12 月 28 日实验一经常使用仪器仪表利用一、实验目的:熟悉经常使用仪器仪表的利用二、实验器材:数字万用表,数字电路实验箱三、实验内容:熟悉万用表的功能及利用一、测电压〔直流电压测量〕二、测量电阻四、实验原理分析:〔一〕观看和了解数字万用表的构造一、熟悉数字万用表数字万用表的表头是灵敏电流计。
表头上的表盘印有多种符号,刻度线和数值。
符号A一V一Ω表示这只电表是能够测量电流、电压和电阻的多用表。
表盘上印有多条刻度线,其中右端标有“Ω〞的是电阻刻度线,其右端为零,左端为∞,刻度值散布是不均匀的。
符号“-〞或“DC〞表示直流,“~〞或“AC〞表示交流,“~〞表示交流和直流共用的刻度线。
刻度线下的几行数字是与选择开关的不同档位相对应的刻度值。
表头上还设有机械零位调整旋钮,用以校正指针在左端指零位。
2 、选择开关万用表的选择开关是一个多档位的旋转开关。
用来选择测量工程和量程。
〔如图3一4〔B〕〕。
一样的万用表测量工程包括:“mA〞;直流电流、“V〞:直流电压、“V〞:交流电压、“Ω〞:电阻。
每一个测量工程又划分为几个不同的量程以供选择。
二、表笔和表笔插孔表笔分为红、黑二只。
利历时应将红色表笔插入标有“+〞号的插孔,黑色表笔插入标有“-〞号的插孔。
〔二〕万用表的利用方式一、应检查表针是不是停在表盘左端的零位。
如有偏离,可用小螺丝刀轻轻转动表头上的机械零位调整旋钮,使表针指零 2 、将表笔按上面要求插入表笔插孔3 、将选择开关旋到相应的工程和量程上就能够够利用了〔三〕测试结果五实验总结:通过这次实验,了解了万用表的利用,明白了如何用万用表测量电阻,电压,等数据,稳固了电路根底。
实验二门电路功能测试一实验目的:〔1〕明白得TTL和CMOS一般门电路的参数含义〔2〕把握TTL和CMOS 一般门电路的利用方式〔3〕把握分析一般门电路逻辑功能的一样方式〔4〕明白得TTL和CMOS一般门电路参数的一样分析方式二、实验元器件:?一、四双输入与非门 74LS00 ×1片二、电阻100Ω×1只 ?3、电子电路实验箱 1个 ?4、数字万用表 1个三、实验内容:一、与非门逻辑功能测试 ? 二、与非门电压传输特性四、实验原理分析:一、与非门逻辑功能测试 (1)实验电路图与非门逻辑功能分析(a)器件顶视引脚图 (b)测试电路(2) 实验芯片 74LS00芯片 (3)实验进程? 一、参照与非门逻辑功能分析电路图,一只74LS00芯片中含有四个一样的双输入与非门? 二、依照电路图,将线连接正确,确保电路无误后可通电? 3、变换单刀双掷开关的状态,用直流电压表测试电路的输出电压〔4〕测试二、与非门电压传输特性 (1)实验电路图分析与非门电压传输特性电路〔2〕实验进程依照电路,在0~5V 间慢慢伐整输入的电流电压,将随之转变的数据记入测试结果表〔3〕测试结果五、实验总结:通过这次实验,学会用74LS00芯片做该实验研究“与非门电压传输特性〞,将可变电压从5V慢慢伐整到0V,电压在1V时跳变。
数电实验报告东大
一、实验目的1. 理解数字电路的基本组成和基本原理。
2. 掌握常用数字电路的分析和设计方法。
3. 提高动手实践能力,加深对数字电路理论知识的理解。
二、实验内容本次实验主要包含以下内容:1. 数字电路基础实验2. 组合逻辑电路实验3. 时序逻辑电路实验三、实验仪器与设备1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 计算器5. 实验指导书四、实验原理1. 数字电路基础实验:通过实验了解数字电路的基本组成和基本原理,包括逻辑门、编码器、译码器等。
2. 组合逻辑电路实验:通过实验掌握组合逻辑电路的分析和设计方法,包括加法器、编码器、译码器、数据选择器等。
3. 时序逻辑电路实验:通过实验掌握时序逻辑电路的分析和设计方法,包括触发器、计数器、寄存器等。
五、实验步骤1. 数字电路基础实验- 连接实验箱,检查电路连接是否正确。
- 按照实验指导书的要求,进行逻辑门、编码器、译码器等电路的实验。
- 观察实验结果,分析实验现象,并记录实验数据。
2. 组合逻辑电路实验- 连接实验箱,检查电路连接是否正确。
- 按照实验指导书的要求,进行加法器、编码器、译码器、数据选择器等电路的实验。
- 观察实验结果,分析实验现象,并记录实验数据。
3. 时序逻辑电路实验- 连接实验箱,检查电路连接是否正确。
- 按照实验指导书的要求,进行触发器、计数器、寄存器等电路的实验。
- 观察实验结果,分析实验现象,并记录实验数据。
六、实验结果与分析1. 数字电路基础实验- 通过实验,验证了逻辑门、编码器、译码器等电路的基本原理和功能。
- 实验结果符合理论预期,验证了数字电路的基本组成和基本原理。
2. 组合逻辑电路实验- 通过实验,掌握了组合逻辑电路的分析和设计方法。
- 实验结果符合理论预期,验证了组合逻辑电路的基本原理。
3. 时序逻辑电路实验- 通过实验,掌握了时序逻辑电路的分析和设计方法。
- 实验结果符合理论预期,验证了时序逻辑电路的基本原理。
数电项目实验报告(3篇)
第1篇一、实验目的1. 理解数字电路的基本概念和组成原理。
2. 掌握常用数字电路的分析方法。
3. 培养动手能力和实验技能。
4. 提高对数字电路应用的认识。
二、实验器材1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 短路线5. 电阻、电容等元器件6. 连接线三、实验原理数字电路是利用数字信号进行信息处理的电路,主要包括逻辑门、触发器、计数器、寄存器等基本单元。
本实验通过搭建简单的数字电路,验证其功能,并学习数字电路的分析方法。
四、实验内容及步骤1. 逻辑门实验(1)搭建与门、或门、非门等基本逻辑门电路。
(2)使用数字信号发生器产生不同逻辑电平的信号,通过示波器观察输出波形。
(3)分析输出波形,验证逻辑门电路的正确性。
2. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发器电路。
(2)使用数字信号发生器产生时钟信号,通过示波器观察触发器的输出波形。
(3)分析输出波形,验证触发器电路的正确性。
3. 计数器实验(1)搭建异步计数器、同步计数器等基本计数器电路。
(2)使用数字信号发生器产生时钟信号,通过示波器观察计数器的输出波形。
(3)分析输出波形,验证计数器电路的正确性。
4. 寄存器实验(1)搭建移位寄存器、同步寄存器等基本寄存器电路。
(2)使用数字信号发生器产生时钟信号和输入信号,通过示波器观察寄存器的输出波形。
(3)分析输出波形,验证寄存器电路的正确性。
五、实验结果与分析1. 逻辑门实验通过实验,验证了与门、或门、非门等基本逻辑门电路的正确性。
实验结果表明,当输入信号满足逻辑关系时,输出信号符合预期。
2. 触发器实验通过实验,验证了D触发器、JK触发器、T触发器等基本触发器电路的正确性。
实验结果表明,触发器电路能够根据输入信号和时钟信号产生稳定的输出波形。
3. 计数器实验通过实验,验证了异步计数器、同步计数器等基本计数器电路的正确性。
实验结果表明,计数器电路能够根据输入时钟信号进行计数,并输出相应的输出波形。
数字电路实验报告_北邮
一、实验目的本次实验旨在通过实践操作,加深对数字电路基本原理和设计方法的理解,掌握数字电路实验的基本步骤和实验方法。
通过本次实验,培养学生的动手能力、实验技能和团队合作精神。
二、实验内容1. 实验一:TTL输入与非门74LS00逻辑功能分析(1)实验原理TTL输入与非门74LS00是一种常用的数字逻辑门,具有高抗干扰性和低功耗的特点。
本实验通过对74LS00的逻辑功能进行分析,了解其工作原理和性能指标。
(2)实验步骤① 使用实验箱和实验器材搭建74LS00与非门的实验电路。
② 通过实验箱提供的逻辑开关和指示灯,验证74LS00与非门的逻辑功能。
③ 分析实验结果,总结74LS00与非门的工作原理。
2. 实验二:数字钟设计(1)实验原理数字钟是一种典型的数字电路应用,由组合逻辑电路和时序电路组成。
本实验通过设计一个24小时数字钟,使学生掌握数字电路的基本设计方法。
(2)实验步骤① 分析数字钟的构成,包括分频器电路、时间计数器电路、振荡器电路和数字时钟的计数显示电路。
② 设计分频器电路,实现1Hz的输出信号。
③ 设计时间计数器电路,实现时、分、秒的计数。
④ 设计振荡器电路,产生稳定的时钟信号。
⑤ 设计数字时钟的计数显示电路,实现时、分、秒的显示。
⑥ 组装实验电路,测试数字钟的功能。
3. 实验三:全加器设计(1)实验原理全加器是一种数字电路,用于实现二进制数的加法运算。
本实验通过设计全加器,使学生掌握全加器的工作原理和设计方法。
(2)实验步骤① 分析全加器的逻辑功能,确定输入和输出关系。
② 使用实验箱和实验器材搭建全加器的实验电路。
③ 通过实验箱提供的逻辑开关和指示灯,验证全加器的逻辑功能。
④ 分析实验结果,总结全加器的工作原理。
三、实验结果与分析1. 实验一:TTL输入与非门74LS00逻辑功能分析实验结果表明,74LS00与非门的逻辑功能符合预期,具有良好的抗干扰性和低功耗特点。
2. 实验二:数字钟设计实验结果表明,设计的数字钟能够实现24小时计时,时、分、秒的显示准确,满足实验要求。
西工大数字电路实验报告——实验五
实验五:计数器及其应用一.实验目的:1. 熟悉常用中规模计数器的逻辑功能。
2. 掌握二进制计数器和十进制计数器的工作原理和使用方法。
3. 运用集成计数器构成1/N 分频器。
二. 实验设备:数字电路试验箱,数字双踪示波器,函数信号发生器,74LS90及Multisim 仿真软件。
三. 实验原理:计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时兼有分频功能。
计数器按计数进制有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。
目前,TTL 和CMOS 电路中计数器的种类很多,大多数都具有清零和预置功能,使用者根据器件手册就能正确地运用这些器件。
实验中用到异步清零二-五-十进制异步计数器74LS90。
74LS90是一块二-五-十进制异步计数器,外形为双列直插,引脚排列如图(1)所示,逻辑符号如图(2)所示,图中的NC 表示此脚为空脚,不接线,它由四个主从JK 触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。
在74LS90计数器电路中,设有专用置“0”端)1(0R 、)2(0R 和置“9”端)1(9S 、)2(9S 。
其中)1(0R 、)2(0R 为两个异步清零端,)1(9S 、)2(9S 为两个异步置9端,CP1、CP2为两个时钟输入端,Q0~Q3为计数输出端,74LS90的功能表见表(1),由此可知:当R1=R2=S1=S2=0时,时钟从CP1引入,Q0输出为二进制;时钟从CP2引入,Q3输出为五进制;时钟从CP1引入,而Q0接CP2 ,即二进制的输出与五进制的输入相连,则Q3Q2Q1Q0输出为十进制(8421BCD 码);时钟从CP2引入,而Q3接CP1 ,即五进制的输出与二进制的输入相连,则Q0Q1Q2Q3输出为十进制(5421BCD 码)。
数字电路实验报告
数字电路实验报告摘要:本实验旨在通过设计和实现数字电路,加深对数字电路原理的理解,并掌握电路设计和实验的基本方法。
本实验主要包括逻辑门电路、计数器电路和状态机电路的设计与实现。
通过实验,我们成功验证了数字电路的基本原理和功能。
引言:数字电路是现代电子技术的基础,广泛应用于计算机、通信、嵌入式系统等领域。
数字电路实验是电子工程专业的重要实践环节,通过实验可以加深对数字电路原理的理解,培养学生的动手实践能力和问题解决能力。
一、逻辑门电路设计与实现逻辑门电路是数字电路的基本组成部分,本实验通过设计和实现与、或、非、异或等逻辑门电路,加深对逻辑门的理解。
1.1 与门电路设计与实现与门是将两个输入信号进行逻辑与运算的电路,输出信号为两个输入信号的逻辑与。
根据与门的真值表,我们设计了与门电路,并使用逻辑门集成电路进行实现。
1.2 或门电路设计与实现或门是将两个输入信号进行逻辑或运算的电路,输出信号为两个输入信号的逻辑或。
根据或门的真值表,我们设计了或门电路,并使用逻辑门集成电路进行实现。
1.3 非门电路设计与实现非门是将输入信号进行逻辑非运算的电路,输出信号为输入信号的逻辑非。
根据非门的真值表,我们设计了非门电路,并使用逻辑门集成电路进行实现。
1.4 异或门电路设计与实现异或门是将两个输入信号进行异或运算的电路,输出信号为两个输入信号的异或。
根据异或门的真值表,我们设计了异或门电路,并使用逻辑门集成电路进行实现。
二、计数器电路设计与实现计数器电路是数字电路中常用的电路,本实验通过设计和实现二进制计数器和BCD计数器,加深对计数器电路的理解。
2.1 二进制计数器电路设计与实现二进制计数器是一种能够进行二进制计数的电路,根据计数器的位数,可以实现不同范围的计数。
我们设计了4位二进制计数器电路,并使用触发器和逻辑门集成电路进行实现。
2.2 BCD计数器电路设计与实现BCD计数器是一种能够进行BCD码计数的电路,BCD码是二进制编码的十进制表示形式。
数电综合实验报告(3篇)
第1篇一、实验目的1. 巩固和加深对数字电路基本原理和电路分析方法的理解。
2. 掌握数字电路仿真工具的使用,提高设计能力和问题解决能力。
3. 通过综合实验,培养团队合作精神和实践操作能力。
二、实验内容本次实验主要分为以下几个部分:1. 组合逻辑电路设计:设计一个4位二进制加法器,并使用仿真软件进行验证。
2. 时序逻辑电路设计:设计一个4位计数器,并使用仿真软件进行验证。
3. 数字电路综合应用:设计一个数字时钟,包括秒、分、时显示,并使用仿真软件进行验证。
三、实验步骤1. 组合逻辑电路设计:(1)根据题目要求,设计一个4位二进制加法器。
(2)使用Verilog HDL语言编写代码,实现4位二进制加法器。
(3)使用ModelSim软件对加法器进行仿真,验证其功能。
2. 时序逻辑电路设计:(1)根据题目要求,设计一个4位计数器。
(2)使用Verilog HDL语言编写代码,实现4位计数器。
(3)使用ModelSim软件对计数器进行仿真,验证其功能。
3. 数字电路综合应用:(1)根据题目要求,设计一个数字时钟,包括秒、分、时显示。
(2)使用Verilog HDL语言编写代码,实现数字时钟功能。
(3)使用ModelSim软件对数字时钟进行仿真,验证其功能。
四、实验结果与分析1. 组合逻辑电路设计:通过仿真验证,所设计的4位二进制加法器能够正确实现4位二进制加法运算。
2. 时序逻辑电路设计:通过仿真验证,所设计的4位计数器能够正确实现4位计数功能。
3. 数字电路综合应用:通过仿真验证,所设计的数字时钟能够正确实现秒、分、时显示功能。
五、实验心得1. 通过本次实验,加深了对数字电路基本原理和电路分析方法的理解。
2. 掌握了数字电路仿真工具的使用,提高了设计能力和问题解决能力。
3. 培养了团队合作精神和实践操作能力。
六、实验改进建议1. 在设计组合逻辑电路时,可以考虑使用更优的电路结构,以降低功耗。
2. 在设计时序逻辑电路时,可以尝试使用不同的时序电路结构,以实现更复杂的逻辑功能。
数字系统电路实验报告(3篇)
第1篇一、实验目的1. 理解数字系统电路的基本原理和组成。
2. 掌握数字电路的基本实验方法和步骤。
3. 通过实验加深对数字电路知识的理解和应用。
4. 培养学生的动手能力和团队合作精神。
二、实验原理数字系统电路是由数字逻辑电路构成的,它按照一定的逻辑关系对输入信号进行处理,产生相应的输出信号。
数字系统电路主要包括逻辑门电路、触发器、计数器、寄存器等基本单元电路。
三、实验仪器与设备1. 数字电路实验箱2. 数字万用表3. 示波器4. 逻辑分析仪5. 编程器四、实验内容1. 逻辑门电路实验(1)实验目的:熟悉TTL、CMOS逻辑门电路的逻辑功能和测试方法。
(2)实验步骤:1)搭建TTL与非门电路,测试其逻辑功能;2)搭建CMOS与非门电路,测试其逻辑功能;3)测试TTL与门、或门、非门等基本逻辑门电路的逻辑功能。
2. 触发器实验(1)实验目的:掌握触发器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建D触发器电路,测试其逻辑功能;2)搭建JK触发器电路,测试其逻辑功能;3)搭建计数器电路,实现计数功能。
3. 计数器实验(1)实验目的:掌握计数器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建同步计数器电路,实现加法计数功能;2)搭建异步计数器电路,实现加法计数功能;3)搭建计数器电路,实现定时功能。
4. 寄存器实验(1)实验目的:掌握寄存器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建4位并行加法器电路,实现加法运算功能;2)搭建4位并行乘法器电路,实现乘法运算功能;3)搭建移位寄存器电路,实现数据移位功能。
五、实验结果与分析1. 逻辑门电路实验通过搭建TTL与非门电路和CMOS与非门电路,测试了它们的逻辑功能,验证了实验原理的正确性。
2. 触发器实验通过搭建D触发器和JK触发器电路,测试了它们的逻辑功能,实现了计数器电路,验证了实验原理的正确性。
3. 计数器实验通过搭建同步计数器和异步计数器电路,实现了加法计数和定时功能,验证了实验原理的正确性。
数字电路实验的实验报告(3篇)
第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。
2. 熟悉数字电路实验设备和仪器的基本操作。
3. 培养实际动手能力和解决问题的能力。
4. 提高对数字电路设计和调试的实践能力。
二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。
(2)设计简单的组合逻辑电路,如全加器、译码器等。
2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。
(2)设计简单的时序逻辑电路,如计数器、分频器等。
3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。
(2)分析电路的输入输出关系,验证电路的正确性。
4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。
(2)分析电路的输入输出关系,验证电路的正确性。
5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。
(2)对比实际实验结果和仿真结果,分析误差原因。
四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。
(2)了解实验器材的性能和操作方法。
(3)准备好实验报告所需的表格和图纸。
2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。
(2)使用万用表测试电路的输入输出关系,验证电路的功能。
(3)记录实验数据,分析实验结果。
3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。
(2)使用示波器观察触发器的输出波形,验证电路的功能。
(3)记录实验数据,分析实验结果。
4. 组合逻辑电路实验(1)设计4位二进制加法器电路。
(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。
(3)记录实验数据,分析实验结果。
电路实验报告(9篇)
电路实验报告(9篇)电路试验报告1一、试验仪器及材料1、信号发生器2、示波器二、试验电路三、试验内容及结果分析1、VCC=12v,VM=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输2、VCC=9V,VM=4、5V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输3、VCC=6V,VM=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输出波形最大且不失真。
(以下输入输出值均为有效值)四、试验小结功率放大电路特点:在电源电压确定的状况下,以输出尽可能大的不失真的信号功率和具有尽可能高的转换效率为组成原则,功放管常工作在尽限应用状态。
电路试验报告2一、试验目的1、更好的理解、稳固和把握汽车全车线路组成及工作原理等有关内容。
2、稳固和加强课堂所学学问,培育实践技能和动手力量,提高分析问题和解决问题的力量和技术创新力量。
二、试验设备全车线路试验台4台三、试验设备组成全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中心线路板、节气组件、电源、收放机、保险等。
四、组成原理汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、帮助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子掌握系统。
随着汽车技术的进展,汽车电器设备和电子掌握系统的应用日益增多。
五、试验方法与步骤1、汽车线路的特点:汽车电路具有单线、直流、低压和并联等根本特点。
(1)汽车电路通常采纳单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属局部连接,与车架或车身连接的导线又称为搭铁线。
蓄电池负极搭铁的汽车电路,称为负搭铁。
现代汽车普遍采纳负搭铁。
同一汽车的全部电器搭铁极性是全都的。
对于某些电器设备,为了保证其工作的牢靠性,提高灵敏度,仍旧采纳双线制连接方式。
数字电路实验报告 2023年数字电路实训报告(精彩7篇)
数字电路实验报告2023年数字电路实训报告(精彩7篇)用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
下面是作者给大家整理的7篇2023年数字电路实训报告,希望可以启发您对于数字电路实验报告的写作思路。
数字电路实训报告篇一一、实训时间__二、实训地点__电工电子实习基地三、指导老师__四、实训目的1、熟悉电工工具的使用方法。
2、了解安全用电的有关知识及触电的急救方法。
3、掌握电工基本操作技能。
4、熟悉电动机控制电路的调试及故障排除方法。
5、熟悉电动机板前配线的工艺流程及安装方法。
6、了解电动机正转反转电路设计的一般步骤,并掌握电路图的绘制方法。
7、熟悉常用电器元件的性能、结构、型号、规格及使用范围。
五、实训资料(一)常用低压电器介绍1、螺旋式熔断器螺旋式熔断器电路中较简单的短路保护装置,使用中,由于电流超过容许值产生的热量使串联于主电路中的熔体熔化而切断电路,防止电器设备短路或严重过载。
它由熔体、熔管、盖板、指示灯和触刀组成。
选取熔断器时不仅仅要满足熔断器的形式贴合线路和安装要求,且务必满足熔断器额定电压小于线路工作电压,熔断器额定电流小于线路工作电流。
2、热继电器热继电器是用来保护电动机使之免受长期过载的危害。
但是由于热继电器的热惯性,它只能做过载保护。
它由热元件、触头系统、动作机构、复位按钮、整定电流装置、升温补偿元件组成。
其工作原理为:热元件串接在电动机定子绕组仲,电动机绕组电流即为流动热元件的电流。
电动机正常运行时热元件产生热量虽能使双金属片弯曲还不足以使继电器动作。
电动机过载时,经过热元件电流增大,热元件热量增加,使双金属片弯曲增大,经过一段时光后,双金属片推动导板使继电器出头动作,从而切断电动机控制电路。
3、按钮开关按钮开关是用来接通或断开控制电路的,电流比较小。
按钮由动触点和静触点组成。
其工作原理为:按下按钮时,动触点就把下边的静触点接通而断开上边的静触点。
【最新】西南交大,数字电路,实验报告-word范文 (8页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==西南交大,数字电路,实验报告篇一:数字电子技术实验报告数字电子技术实验报告姓名:尚朝武学号:201X0123400044 实验时间:201X-12-24实验一(一) 1、实验内容:(1用静态法测试74LS00与非门电路的逻辑功能 2、实验原理图如图1.113、实验步骤:1) 用万用表测量双路跟踪稳压电源中的+5V电源电压; 2) 检查无误后引用通用接插板;3) 在芯片盒中找到74LS00芯片并插入通用接插板上; 4) 测试与非门的逻辑功能A. 按图1.1接线,检查接线无误后通电;;B. 设置输入变量A、B的高(H)、低(L)电平,并分别测量与非门的输出电压U;(U>3.6V时,则Y=H(1);反之,Y=L(0))。
5)用万用表测量输出电压,并将结果填入表1.1.1中 4、实验结果见表1.1.1表1.1.1(二 1、实验内容用动态测试法验证图(a)、(b)、(c)的输入输出波形。
2、实验原理图图图图(表)d74ls86管脚图和引脚图及真值表3、实验步骤1)利用实验一——(一)的双路跟踪稳压电源中的+5V电源电压; 2)检查无误后引用通用接插板;3)在芯片盒中分别找到74LS86、74LS60芯片并分别插入通用接插板上; 4)分次按图a、b、c、d接线,检查接线无误后通电;设置输入变量A的信号为100kHz 5)分别记下数字显示器显示的波形。
4、实验结果见下图图a的输入(图上)、输出(图下)波形图b的输入(图上)、输出(图下)波形三)图c的输入(图上)、输出(图下)波形1、实验内容:(1用静态法测试74LS139静态译码器的逻辑功能 2、实验原理图如图A、B 3、实验步骤:1) 利用实验一——(一)的双路跟踪稳压电源中的+5V电源电压; 2) 检查无误后引用通用接插板;3) 在芯片盒中找到74LS139芯片并插入通用接插板上; 4) 测试74LS139译码器的逻辑功能a) 按图1.1接线,检查接线无误后通电;;b) 设置输入变量A、B及E的高(H)、低(L)电平,并分别测量74LS139的输出电压U;(U>3.6V时,则Y=H(1);反之,Y=L(0)); 5)用万用表测量输出电压,并将结果填入表1.2中 4、实验结果见表1.2图A 74LS139的管脚图篇二:201X-201X西南交大数字电路第1次作业(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路实验报告一
4-bit Full Adder Design
1.1 Requirement of the Experiment
Design a 4-bite Adder to add A(A3A2A1A0) and B(B3B2B1B0),output 4-bit Sum S=A+B and the COUT as the carry.
1.2 Experiment Target
1. Learn the Logic Diagram Input Method with ispDesignLEVER.
2. Understand how to deisgn a test vector file in ABEL-HDL.
3. To be familiar with the PLD Experiment System(PLD-PAC-1).
4. To know the drawing method of Logic Diagram in ispDesignLEVER and its function simulation process.
5. Know the principles and structure of 4-bit Ripple Adder.
1.3 Step of Experiment
1. Use Schematic Editor to input the logic diagram of a 4-bit adder(*.sch)
2. Input the ABEL-HDL test vector file(*.abv)
3.Do the function simulation with the above test vector and check the output vaild according to the waveforms until to error happens.
4.Specify the input and output Pin No. by connecting I/O PAD to input and output of above 4-bit adder. Switch S8-S5(34-37)and S4-S1(38-41)on PLD Experimental System can be used as input A and B,LED6(18-15 ) and
LED5(14-11) as the output S(Sum). L8 can be used to show the carry (Cout).Note that L1-L8(83-76) is active-low.
5.Do the Fit Design function to generate the circuit JED file.
6.Download the JED into the chip on PLD Experiment System and verify the results.
1.4 Experiment Content
Circuit Diagram(*.sch)
Circuit Test Vector(*.abv)
Circuit Function Simulation Results including the critical
waveforms。