简述催化剂的基本特征
催化剂及其基本特征
催化剂及其基本特征催化剂是一种能够加速化学反应速率的物质。
它不参与反应本身,但能够降低反应的活化能,从而加快反应速度。
催化剂可用于各种化学反应中,包括有机合成、燃烧、氧化还原等。
催化剂具有以下几个基本特征:1.可再生性:催化剂在反应中不发生永久性损失,在反应结束后可以重新被使用。
与反应物和产物相比,催化剂的量通常很少发生变化。
2.高效性:催化剂具有很高的效率,少量的催化剂就可以促进大量的反应物转化,从而在经济和环境上更加优越。
3.可选择性:催化剂可选择性地加速特定的反应通道,控制产物的选择性。
它可以引导反应产生特定的产物,避免副反应的发生。
4.反应物无损耗:催化剂参与反应后不会消耗,能够被连续循环使用。
在反应结束后,催化剂可以通过简单的分离和回收来进行再利用。
5.适用性广泛:催化剂可以应用于不同类型的反应,包括液相、气相和固相反应。
它们可以用于有机合成和工业过程中的各种反应,增加了反应的灵活性和多样性。
催化剂的作用机理可以分为两种类型:表面催化和溶液催化。
表面催化是指催化剂将反应物吸附在其表面上,通过改变反应物的构象和电子结构来促进反应发生。
溶液催化是指催化剂以固体或离子形态存在于溶液中,通过与反应物发生弱相互作用来加速反应。
常见的催化剂包括金属和金属化合物,如铂、钯、铜等。
它们具有较高的活性,并能在广泛的反应条件下工作。
此外,还有一些有机分子,如酶、酸和碱等,也具有催化性质。
催化剂的选择需要考虑很多因素,包括反应类型、反应条件、催化剂的稳定性和成本等。
优秀的催化剂应具有高活性、良好的选择性和稳定性,并且应在反应条件下表现出较长的使用寿命。
催化剂在化学反应中扮演着重要的角色。
它们能够加速反应速率,降低反应能量,提高反应产率。
在工业生产中,催化剂的应用可以大幅提高生产效率,减少能源消耗和环境污染。
此外,催化剂的发展也促进了许多新的反应的发现和发展,对推动科学技术的进步起到了重要作用。
工艺学重点
1石油化工工艺学重点1. 按一般化工产品生产过程和作用划分,化工工艺流程可概括为哪几个过程?按一般化工产品生产过程的划分和它们在流程中所担负的作用可概括为以下几个过程:(1)生产准备过程——原料工序包括反应所需的主要原料、氧化剂、氮化剂、溶剂、水等各种辅助原料的贮存、净化、干燥以及配制等等。
为了使原料符合进行化学反应所要求的状态和规格,根据具体情况,不同的原料需要经过净化、提浓、混合、乳化或粉碎(对固体原料)等多种不同的预处理。
(2)催化剂准备过程——催化剂工序包括反应使用的催化剂和各种助剂的制备、溶解、贮存、配制等。
(3)反应过程——反应工序是化学反应进行的场所,全流程的核心。
经过预处理的原料,在一定的温度、压力等条件下进行反应,以达到所要求的反应转化率和收率。
反应类型是多样的,可以是氧化、还原、复分解、磺化、异构化、聚合、焙烧等。
通过化学反应,获得目的产物或其混合物。
以反应过程为主,还要附设必要的加热、冷却、反应产物输送以及反应控制等。
(4)分离过程——分离工序将反应生成的产物从反应系统分离出来,进行精制、提纯、得到目的产品。
并将未反应的原料、溶剂以及随反应物带出的催化剂、副反应产物等分离出来,尽可能实现原料、溶剂等物料的循环使用。
分离精制的方法很多,常用的有冷凝、吸收、吸附、冷冻、蒸馏、精馏、萃取、膜分离、结晶、过滤和干燥等,对于不同生产过程可以有针对性的采用相应的分离精制方法。
(5)回收过程——回收工序对反应过程生成的一些副产物,或不循环的一些少量的未反应原料、溶剂,以及催化剂等物料均应有必要的精制处理以回收使用,因此要设置一系列分离、提纯操作,如精馏、吸收等。
(6)后加工过程——后处理工序将分离过程获得的目的产物按成品质量要求的规格、形状进行必要的加工制作,以及贮存和包装出厂。
(7)辅助过程除了上述六个主要生产过程外,在流程中还有为回收能量而设的过程(如废热利用),为稳定生产而设的过程(如缓冲、稳压、中间贮存),为治理三废而设的过程(如废气焚烧)以及产品贮运过程等。
《工业催化基础》课件(第2章 催化剂与催化作用的基础知识)2015-2
(1)按反应物相分:
多相催化: 指催化剂与反应物处于不同物相发生的催化反应。由气体反应物与固体催 化剂组成的反应体系称之为气固相催化反应,如乙炔和氢气在负载钯的固 体催化剂上加氢生成乙烯的反应。由气态反应物与液相催化剂组成的反应 体系称为气液相反应,如乙烯与氧气在PdCl2-CuCl2水溶液催化剂作用下氧 化生成乙醛的反应。由液态反应物与固体催化剂组成的反应体系称为液固 相催化反应,如由离子交换树脂等固体酸催化的醇醛缩合反应或醇的脱水 反应。由液态和气态两种反应物与固体催化剂组成的反应体系称为气液固 三相催化反应,如苯在雷尼镍催化剂上加氢生成环已烷的反应。 均相催化: 指催化剂与反应物处于相同物相发生的催化反应。如果催化剂和反应物均 为气相的催化反应称为气相均相催化反应,如SO2与O2在催化剂NO作用下 氧化为SO3的催化反应;如果反应物和催化剂均为液相的催化反应称为液相 均相催化反应,如乙酸和乙醇在硫酸水溶液催化作用下生成乙酸乙酯的反 应。 化工资源有效利用国家重点实验室 7
是催化剂与反应物分子间通过电子转移,形成活性中间物种进行的催化反 应。如在金属镍催化剂上的加氢反应,氢分子均裂与镍原子产生化学吸附, 在化学吸附过程中氢原子从镍原子中得到电子,以负氢金属键键合。负氢 金属键合物即为活性中间物种,它可进一步进行加氢反应,反应式如下:
H H H + M M M H M
这二种分类方法反映了催化剂与反应物分子作用的实质,但由于催化作用的复杂性 ,对有些反应难以将二者绝然分开,有些反应又同时兼备二种机理, 酸碱型及氧化 还原型催化反应比较如下表:
第一节 催化剂的特征
3、催化剂对反应具有选择性
催化剂具有选择性包合两个含义:其一是不同的反应,应该选择不同的催 化剂;其二是同样的反应选择不同的催化剂,可获得不同的产物。例如, 以合成气(CO+H2)为原料在热力学上可以沿着几个途径进行反应,但由 于使用不同催化剂进行反应,就得到下表给出的不同产物。
催化剂对化学反应速率的影响-催化概念及其特征-大修改
(3)催化剂对所选择的反应能加快或延缓平衡的到达, 即对可逆反应的正逆两个方向可同时加快或减速,但 并不影响化学平衡,即不改变平衡常数、平衡产率和 △rGm 。或者说,不改变反应物和产物的能级位置。
基础化学
(4)催化剂因参与反应过程,会发生物理变化。如银、 铂丝网表面失去光泽而变得粗糙,甚至使表面结构发 生改变而降低催化效率,这种情况称为催化剂的衰老。 (5)在催化剂或反应体系内加入少量的杂质常可以强烈 地影响催化剂的作用。这些杂质可起助催化剂(活化 剂)或催化剂毒物的作用。
基础化学
8.7.1 催化概念及其特征
1. 催化剂 在反应体系中,有些物质的加入可使化学反应 的速率发生改变,而这些物质在反应前后的数 量和化学组成不变,这种现象称为催化作用 (catalysis)。而加到在反应体系中产生催化 作用的物质,称为催化剂(catalyst)。
正催化剂 负催化剂 自身催化剂
基础化学
3.催化作用原理
催化剂之所以具有催化作用,原因在于催化剂 参与化学反应,改变反应机理,使反应的表观 活化能发生显著改变,从而导致反应速率改变。
基础化学
如机理(1)
A+B
AB
Hale Waihona Puke 虽为元反应,但活化能 高。速率慢。
机理(2)
C
A+B
AB
虽变为非元反应,但表 观活化能大降。速率快。
这与爬两座矮山远比爬 一座高峰快得多的道理 一个样。
基础化学
2. 催化剂的特点
(1) 选择性强。若同一反应物有发生多种反应的可能, 此时对同一反应物使用不同的催化剂可能得到不同的 产物。如 乙烯,加AgCl催化剂产物为环氧乙烷;加铬-钛催
催化剂基础详解
第一章 绪论
1.1.1催化作用的意义
合成氨
• N2+3H2→3NH3 • 催化剂:Fe-Al2O3-K2O • 每吨催化剂可产2万吨氨
• N2来源:空气分离 • H2来源: 烃类水蒸气转化法。 • 工艺(涉及反应):加氢、脱硫、转化、
变换、甲烷化、氨合成。需用八种不同
催化剂
第一章 绪论
1.1.1催化作用的意义
氧化还原型反应:催化剂与反应物通过单个电 子转移,形成活性中间体物种进行的催化反应。
催化剂的分类
按催化剂的元素及化合态分类 金属、金属氧(硫)化物、金属有机化合物 按催化剂的导电性及化学形态 导体、半导体、绝缘体 按行业类别分类 石油炼制工业、化肥工业、环境保护等
催化剂的反应性能
物进料总量的百分比 产率=转化率×选择性
催化剂的稳定性
使用寿命:指催化剂在一定反应条件下 维持一定反应活性和选择 性的使用时间。
a
催
化b
稳定期
衰
剂
老
活成
期
性
熟 期
催化剂的稳定性
化学稳定性 耐热稳定性 抗毒稳定性 机械稳定性
对工业催化剂的要求
适宜的活性 高选择性
活性和选择性的取舍 长寿命
石油
第一章 绪论
煤
1.1.1催化作用的意义
第一章 绪论
天然气
1.1.1催化作用的意义
催化剂的定义与特征
催化剂的定义
能改变化学反应的速度 不改变化学反应的热力学平衡位置 本身在化学反应中不被明显地消耗
催化剂的特征 只能改变热力学上可进行的化学反应
只改变化学反应的速度,而不改变化学平衡的 位置。
工业催化原理——作业汇总(含标准答案)
第一章催化剂与催化作用基本知识1、简述催化剂地三个基本特征.答:①催化剂存在与否不影响△Gθ地数值,只能加速一个热力学上允许地化学反应达到化学平衡状态而不能改变化学平衡;②催化剂加速化学反应是通过改变化学反应历程,降低反应活化能得以实现地;③催化剂对加速反应具有选择性.2、1-丁烯氧化脱氢制丁二烯所用催化剂为MoO3/BiO3混合氧化物,反应由下列各步组成(1)CH3-CH2-CH=CH2+2Mo6++O2-→CH2=CH-CH=CH2+2Mo5++H20(2)2Bi3++2Mo5+→2Bi2++2Mo6+(3)2Bi2++1/202→2Bi3++02-总反应为CH3-CH2-CH=CH2+1/202→CH2=CH-CH=CH2+H20试画出催化循环图.CH3-CH2CH2=CH-CH=CH2Mo5+Bi2+H203、合成氨催化剂中含有Fe3O4、Al2O3和K20,解释催化剂各组成部分地作用. 答:Fe3O4:主催化剂,催化剂地主要组成,起催化作用地根本性物质Al2O3:构型助催化剂,减缓微晶增长速度,使催化剂寿命长达数年K20:调变型助催化剂,使铁催化剂逸出功降低,使其活性提高第二章催化剂地表面吸附和孔内扩散1、若混合气体A和B2在表面上发生竞争吸附,其中A为单活性吸附,B2为解离吸附:A+B2+3*→A*+2B*,A和B2地气相分压分别为p A和p B.吸附平衡常数为k A和k B.求吸附达到平衡后A地覆盖率θA和B地覆盖率θB.解:对于气体A:吸附速率v aA=k aA P A(1—θA—θB) ;脱附速率v dA=k dAθA 平衡时:v aA=v dA,即θA=(k aA/k dA)P A(1—θA—θB)=k A·k B(1—θA—θB)对于气体B:吸附速率v aB=k aB P B(1—θA—θB)2;脱附速率v dB=k dBθB2平衡时:v aB=v dB ,即θB2= k B P B(1—θA—θB)2m换算成标况).(2)求Al2O3地表面积.(已知:N2分子截面积16.2×10-20m2)解:P/V a(P0-P)=(1/CV m)[1+(C-1)P/P O]=[(C-1)/CV m](P/P O)+1/CV m 由题目可知:(C-1)/CVm=50.06 1/CVm=0.2723 ∴C=184.84 Vm=0.01987L(标况)n=0.01987/22.4=8.875×10-4S=nN A S O=8.875×10-4×6.023×1023×16.2×10-20=86.60m23、多相催化反应一般包括那几个步骤?其中哪几个步骤属于化学过程?答:多相催化反应包括:外扩散:反应物分子从气流中向催化剂颗粒表面扩散;(孔)内扩散:反应物分子从颗粒表面向颗粒内表面扩散;化学吸附:反应物分子在催化剂内表面吸附;表面反应:吸附地反应物分子在催化剂表面上反应;脱附:产物分子自催化剂内表面脱附;(孔)内扩散:产物分子从颗粒内表面向颗粒外表面扩散;外扩散:产物分子从催化剂颗粒外表面向气流中扩散;其中化学吸附、表面反应、脱附属于化学过程.4、在多相催化反应中,为什么至少有一种反应物必须经过化学吸附?答:因为化学吸附可使反应物分子均裂生成自由基,也可以异裂生成离子或使反应物分子强极化为极性分子,生成地这些表面活性中间物种具有很高地反应活性,有利于催化反应地进行.5、物理吸附、化学吸附地差别如何?物理吸附和化学吸附地特征比较化学吸附态一般是指分子或原子在固体催化剂表面进行化学吸附地化学状态、电子结构及几何构型.7、氢地吸附态有:在金属表面上地吸附态(均裂吸附)和在金属氧化物表面上地吸附态(均裂吸附)8、室温下,氢在ZnO上地化学吸附有两类,它们是:第一类是快速可逆地吸附:这类吸附地氢参与了乙烯加氢-氘交换反应,表明它是处于活化状态;第二类化学吸附是慢地、不可逆地:示踪实验表明这类吸附地氢不能进行乙烯加氢和氢-氘交换反应,因而是没有得到活化地.即所谓地高配位M-吸附态和低配位L-吸附态.9、CO在过渡金属上两种吸附态是:分子态吸附、解离型吸附10、在一些催化剂上,已经确定了哪几种氧吸附形式?哪种氧吸附态易使烃类发生深度氧化作用?多种吸附态:电中性地氧分子O2和带负电荷地阳离子(O2-,O-,O2-)带吸附阳离子与深度氧化有关.11、关于烯烃在金属上地缔合化学吸附,已经提出哪两种吸附态?答:σ型和π型12、有关乙炔在金属表面上地吸附态,已经提出地吸附态有哪几种?答:π型一位吸附、σ型二位吸附、解离吸附13、关于苯在金属上地吸附已经提出地看法有:答:6位σ型吸附、2位σ型吸附、η6π缔合型吸附态、解离吸附14、在一种催化剂表面产生各种吸附态地成因是多方面地,主要原因有哪两种?答:固有不均一性、诱导不均一性.15、固有不均一性地定义:指表面原子(离子)微环境地不均一性,一般是指由催化剂本身地结构所决定地和在制备过程中所产生地价不饱和性或配位不配合性地差异.16、Langmuir吸附地基本假设如何?答:(1)吸附剂表面是均匀地,各吸附中心能量相同;(2)吸附分子间无相互作用;(3)吸附是单分子层吸附,其吸附分子与吸附中心碰撞才能吸附,一个分子共占据一个吸附中心;(4)一定条件下,吸附与脱附可建立动态平衡.17、乔姆金等温式成立地条件:只适用于化学吸附,且在较小地覆盖度范围内才有效,从化学吸附只能在一部分表面中心上进行(即吸附分子只能吸附在可以成键地吸附中心上)地观点来看,上述二者显然是一致地.18、物理吸附地多分子层理论地基本假设:(1)固体表面是均匀地,自由表面对所有分子地吸附机会相等,分子地吸附、脱附不受其他分子存在地影响;(2)固体表面与气体分子地作用力为范德华力,因此在第一吸附层之上还可以进行第二层、第三层等多层吸附.19、溢流定义:一定条件下形成或存在于一种固相表面地活性物种,不经脱附过程进入气相而向同样条件下不能直接形成或本来不存在该活性物种地另一种固相表面上地迁移.第三章酸碱催化剂及其催化应用1、酸、碱地质子论地定义:凡是能提供质子(H +)地物质称为酸(B 酸);凡是能够接受质子地物质称为碱(B 碱)2、酸、碱地电子论地定义: 凡是能接受电子对地物质称为酸(L 酸);凡是能提供电子对地物质称为碱(L 碱).3、软硬酸、碱原则:(SHAB 原则)软酸与软碱易形成稳定地络合物,硬酸与硬碱易形成稳定地络合物.而交界酸碱不论结合对象是软或硬酸碱,都能相互配位,但形成络合物地稳定性差.4、酸、碱性质地完整描述包括哪三个方面?答:酸中心地类型、酸中心地浓度、酸中心地强度5、均相酸、碱催化反应地特征?答:均相酸碱催化一般以离子型机理进行,即酸碱催化剂与反应物作用形成正碳离子或负碱离子中间物种,这些中间物种与另一反应物作用(或本身分解),生成产物并释放出催化剂,构成酸碱催化循环.在这些催化过程中均以质子转移步骤为特征,所以,一些有质子转移地反应,如水合、脱水、酯化、水解、烷基化和脱烷基等反应,均可使用酸碱催化剂进行催化反应.6、Bronsted 规则公式是什么,怎么应用该规则对液体酸催化反应建立催化剂筛选模型?答:Bronsted 规则公式:α=aa a K G k 取对数,得:logk a =logG a +αlogK a 或 logk a =logG a -αpK a用logk a 对pK a 作图,可得到一直线,斜率为-αα值在0~1之间.α值很小,表明反应对催化剂地酸强度不敏感,此时任何一种酸都是优良地质子给予者,反应与催化剂酸强度无关;相反,α值接近1,表明反应对催化剂酸强度很敏感,只有强酸中心才能催化该反应.有些酸催化剂在反应过程中可同时离解出两个或多个质子,在这种情况下就须对方程作些修正.对酸催化反应为:α=)K p q (G p k a a a 对碱催化反应为:β=b b b K G k 或 β=)K q p(G p k b b b7、对酸中心地检测包括哪几个方面?答:酸中心地类型、酸量(酸度、酸密度、酸浓度)、酸强度及其分布.8、以TiO 2-SiO 2 为例,请阐述田部浩三关于二元混合氧化物酸性中心模型.答:在TiO2-SiO2二元混合氧化物中,一级结构为杂多负离子;二级结构为杂多负离子和抗衡正离子所组成杂多酸或杂多酸盐地晶体结构;三级结构指地是由杂多负离子抗衡正离子和结晶水所组成地晶体结构.10、杂多酸地性质:答:热稳定性:分解温度620~870K,PW>SiW>PMo>SiMo;酸性:杂多酸为强B酸;氧化还原性:杂多酸为强氧化剂;“假液相”性:吸收大量极性分子地杂多酸类似于一种浓溶液11、用指示剂测定固体酸地酸性(1)如,某固体酸能使蒽醌变黄色,则样品酸强度:H o≤-8.2(2)如,某固体酸不能使蒽醌变色而能使亚苄基乙酰苯变黄色,则样品酸强度:-8.2<H o<-5.612、正碳离子稳定性顺序是:叔正碳离子>仲正碳离子>伯正碳离子>乙基正碳离子>甲基正碳离子13、固体碱催化反应机理:负碳离子机理,L碱中心能够供给电子对,把C-H中地H+脱去,形成负碳离子14、请简述分子筛沸石地结构特点.答:分子筛地晶格骨架主要由硅铝酸部分所组成,固体内部地原子排列,是按照一定地规律作周期性地三维排列.对于不同地硅铝比例,不同地制备条件与方法,骨架结构也不同.分子筛只有中空地有高度规则性地笼状结构,通向这笼状多面体,有各种大小均一地孔道,从而组成了四通八达地微晶体.入口孔径(窗口)地大小限制了能够吸附在分子筛内部表面地分子地几何大小,从而具有筛分分子地性能.其孔径大小也与阳离子地类型有关.15、沸石分子筛地离子交换度(简称交换度):可用Na+交换度衡量:Na+交换度% =(交换下来地Na20量/原来沸石中含地Na20量)×100%16、分子筛地择形选择性:(A)反应物择形催化:当反应混合物中有些反应物分子地临界直径小于孔径时,可以进到晶孔内,与催化剂内表面相接触进行催化反应,而大于孔径地分子不能进入晶孔内,这样便产生反应物择形催化.(B)产物择形催化:反应产物中分子临界直径小于孔口地可以从孔中扩散出来,最终成为产物,而分子临界直径大于孔径地则无法从孔内溢出,此时便产生了产物选择性.(C)限制过渡态择形催化:反应物分子相互作用时可生成相应地过渡态,它需要一定空间,当催化剂空腔中地有效空间小于过渡态所需要地空间时,反应将受到阻止,此时便产生限制过渡态选择性催化.(D)分子交通控制地择形催化:具有两种不同形状和大小和孔道分子筛中,反应物分子可以很容易地通过一种孔道进入到催化剂地活性部位,进行催化反应,而产物分子则从另一孔道扩散出去,尽可能地减少逆扩散,从而增加反应速率.这种分子交通控制地催化反应,是一种特殊形式地择形选择性,称分子交通控制择形催化.17、请简述催化裂化原料油中固体酸催化剂地发展过程.催化剂地选择比较明显地经历以下三个阶段:一、1936 年开始采用天然粘土催化剂(例如酸处理过地白土-微晶膨润土、蒙脱土、高岭土).这些粘土是水合硅铝酸盐,合有可交换地Ca2+、Mg2+、Fe3+等离子.经过H2SO4处理后,这些离子绝大部分为H+所交换;二、40 年代以后,催化裂化使用了合成非晶态硅酸铝类催化剂(又称硅铝胶SiO2-Al2O3).它地优点是抗硫性能、机械性能较好,所产生地汽油辛烷值比天然催化刑也高,但汽油与焦炭比例较差;三、近年来,由新型分子筛催化剂,与硅铝胶催化剂对比,有四个特点:1)活性高得多;2)汽油组分中合饱和烷烃及芳烃多,汽油质量较好;3)单程转化率提高,比较不易产生“过裂化”,裂化效率较高;4)抗重金属污染性能高.第四章金属催化剂及其催化应用1、金属分散度:分散度(D)=表相原子数/(表相+体相)原子数.分散度是指金属晶粒大小而言,晶粒大,分散度小,反之晶粒小,分散度大.2、能带:按照分子轨道理论,把金属以及金属氧化物看成N个原子规则排列成地近乎无限地巨大分子,相邻原子地轨道重叠,组成成属于整个材料地N个非定域分子轨道.随着N趋于无限大,能带总宽度逐渐增大,但仍保持有限值,因此能级间隔趋向于零,称为能带.3、费米能级:电子在能带中填充地最高能级4、d 轨道百分数:价键理论认为,过渡金属原子以杂化轨道相结合,杂化轨道通常为s、p、d等原子轨道地线性组合,称为spd 或dsp杂化,杂化轨道中d 原子轨道所占地百分数称为d特性百分数,以符号d%表示.5、逸出功φ:费密能级与导带顶地能量差,即把一个电子从半导体内部拉到外部,变成完全自由电子时所需地最低能量.6、金属晶体不均一性:近年来随着表面分析技术地发展,人们用低能电子衍射、俄歇能谱、紫外光电子能谱及质谱等研究金属单晶地表面结构,直接观察到晶体表面存在着晶台、晶阶和晶弯等不均一表面,7、参照图,根据金属催化剂表面原子地几何排布对催化活性地影响,解释采用金属Ni 催化乙烯加氢反应时Ni地[110]晶面催化活性高于[111]晶面地催化活性地原因.乙烯地双位吸附络合物如图所示:乙烯中碳原子为正四面体,θ约为109°28',C-C 键距离为0.154 nm,C-Ni 键地距离为0.182 nm.答:乙烯在金属催化剂上加氢反应机理是:氢在Ni表面解离,乙烯在Ni表面采取不解离双位(α,β)吸附,然后两者在表面上互相作用,形成半氢化地吸附态CH2CH3,最后进一步氢化为乙烷.乙烯地双位吸附络合物如图所示:乙烯中碳原子为正四面体,θ约为109°28',C-C键距离为0.154 nm,C-Ni 键地距离为0.182 nm.为了活化最省力,原则上除所欲断裂地键外,其他地键长和键角力求不变.这样就要求双位活性中心M-M 有一定地间距a.a,b,c地关系为:θ=arccos[(c-a)/2b]金属Ni为面心立方晶格,其不同晶面上有两种Ni-Ni 双位活性中心,分别称为窄活性位和宽活性位.窄活性位Ni-Ni 间距为a=0.248 nm,其吸附乙烯时θ=105°41’.(比109°28’小4°28’).宽活性位Ni-Ni 间距为a=0.351 nm,其吸附乙烯时θ=122°57’. (比109°28’小13°32’).所以,乙烯在窄活性位上吸附时,θ角偏离较小,乙烯几何结构变化较小,因此乙烯在窄活性中心上容易吸附,是一种强吸附.但其加氢活性并不高,这是因为这种吸附产生地活性物种太稳定,不易进行进一步加氢地后续反应.而乙烯在宽活性位上吸附时,θ角偏离较大,乙烯几何结构变化较大,吸附较难,形成键造成分子内地张力较大,是一种弱吸附,但却给出高地加氢活性.Ni 地[110]晶面含有地宽活性位较多,而[111]晶面仅含窄活性位,因此Ni 地[110]晶面催化乙烯加氢地活性高于[111]晶面地催化活性.8、乙烯在各种金属膜上加氢地速度常数与金属原子地间距有关,请从金属催化剂地结构和吸附方面地理论,解释这种现象.答:金属催化剂进行乙烯加氢反应时,金属地晶格间距与活性有关.这时因为催化剂地活性和反应物分子在它上面地吸附能力相关.在反应过程中,反应物在催化剂地活性位上进行吸附,吸附地反应物进行反应生成中间态化合物,中间态化合物进一步脱附离开催化剂形成产物.多原子分子在催化剂上地吸附是多位吸附.当反应物分子地几何结构与金属地晶格距离接近时,在反应过程中,吸附地反应物分子在催化剂表面形成强吸附和稳定化合物,不能进一步反应生成中间态和脱附,导致反应物分子不能继续吸附,所以不能起到催化作用.当反应物分子几何结构与金属地晶格距离相差较大时,在反应过程中,反应物分子不能吸附在催化剂表面,也以不能起到催化作用.只有反应物分子地几何结构与金属地晶格距离相匹配,形成强度适中地吸附物种,才能起到催化作用.乙烯加氢反应中,乙烯在金属催化剂上吸附反应时地C-C 键长是0.154nm,而原子间距在0.375~0.39nm 地Pd、Pt、Rh 等与乙烯有强度适中地吸附作用,所以对该反应具有较好地催化作用.9、巴兰金多位理论:巴兰金:提出催化作用地几何适应性与能量适应性地概念地多位理论.其基本观点如下:反应物分子扩散到催化剂表面,首先物理吸附在催化剂活性中心上;然后反应物分子指示基团(指分子中与催化剂接触进行反应地部分)与活性中心作用,于是分子发生变形,生成表面中间络合物(化学吸附);通过进一步催化反应,最后解吸成为产物.几何适应性;指示基团地对称性与活性中心地对称性一致才能具有催化作用. 能量适应性;根据最省力原则,要求活性中心与反应分子间有一定地结构对应性,并且吸附不能太弱,也不能太强.因为太弱吸附速度太慢,太强则解吸速度太慢,只有适中才能满足能量适应地要求.10、晶格缺陷地类型:原子(离子)缺陷(点缺陷)[空位、间隙原子(离子)、杂质、取代原子(离子)、缔合中心],电子缺陷[电子],扩展缺陷(复合)[缺陷簇、切变面],线缺陷[错位],面缺陷[晶体表面]11、合金地分类:机械混合:各金属原子仍保持其原来地晶体结构,只是粉碎后机械地混在一起.这种机械混合常用于晶格结构不同地金属,它不符合化学计量.化合物合金:两种金属符合化合物计量地比例,金属原子间靠化学力结合组成地金属化合物.这种合金常用于晶格相同或相近,原子半径差不多地金属.固溶体:介于上述两者之间,这是一种固态溶液,其中一种金属元素可视为溶剂,另一种较少地金属可视为溶解在溶剂中地溶质.固溶体通常分为填隙式和替代式两种.12、解释在用 Cu-Ni 合金催化剂催化乙烷氢解和环己烷脱氢反应过程中Cu 含量增加对两个反应速度影响地差异:乙烷氢解为甲烷地反应速度降低约4个数量级,而环己烷脱氢速度只是略有增加,然后变得与合金组成无关,直到接近纯铜时,速率才迅速下降.答:(1)Cu-Ni合金催化剂上铜表面富集作用;(2)环己烷脱氢C-H键断裂容易发生,所以合金化影响不明显;(3)而对于乙烷氢解C-C键地裂解,由于发生氢解反应,金属表面至少有一对相邻金属原子与2个C原子成键,才能进行氢解反应. 当镍和铜形成合金时,由于Cu地富集,镍地表面双位数减少,而且吸附强度降低,因而导致氢解反应速度大大降低.13、计算:[Ni](3d8)(4s2).Ni 六个轨道参与成键,有两种成键杂化轨道.在Ni-A(d2sp3杂化)中共有6 个杂化轨道,其中4 个原子占据3 个d 轨道,在6 个杂化轨道中共有2 个d 轨道, 故d 轨道百分数为2/6=0.33Ni-B(d3sp2杂化) 中共有7 个杂化轨道,其中4 个原子占据2 个d 轨道,在7个杂化轨道中共有3 个d 轨道, 故d 轨道百分数为3/7=0.43,故Ni 地d 轨道百分数为:0.33*30%+0.43*70%=40%答:Ni地d 轨道百分数为40%第五章金属氧化物催化剂1、n 型半导体与p 型半导体地掺杂生成规律:n 型半导体地生成:(1)非化学计量比化合物中含有过量地金属原子或低价离子可生成n型半导体,(2)负离子(氧)缺位,(3)高价离子取代晶格中地正离子,(4)向氧化物引入电负性小地原子.p 型半导体地生成:(1)氧化物中正离子缺位地非化学计量化合物,(2)用低价正离子取代晶格中正离子,(3)通过向晶格掺入电负性大地间隙原子.2、应用金属氧化物催化剂进行乙烯完全催化氧化反应(1),催化剂地活性和生成热焓有关系,如图所示:下图中纵坐标T1.8代表乙烯转化率达到1.8%时地反应温度,温度越低表示反应活性越高;横坐标-△Hf o代表氧化物地生成热焓,表示金属-氧键地强弱.由图可见,氧化物生成热与乙烯氧化反应活性成火山曲线.曲线顶端附近是PdO,它地生成热焓△Hf o=-8.54kJ·g-1(atomO);而乙烯完全氧化反应(1)地反应热焓ΔH=-220.6 kJ·g-1(atomO);PdO 地ΔHf0与反应热焓1/2ΔH接近,表现出活性最高.试用能量适应原理和金属氧化物催化剂地氧化还原原理对该现象进行解释.答:根据催化地能量适应性原理,对于吸热反应,催化剂催化目地反应进行地活化能约为该反应反应热地一半时,催化剂有较好地催化性能.因为乙烯反应热焓ΔH=-220.6KJ.g-1(atomO),所以催化剂地活化能等于1/2ΔH时,具有较好地活性.对于金属氧化物催化剂上进行地乙烯氧化反应包括两个过程:即C2H4 地氧化(同时PdO被还原)和还原地Pd 被气相氧氧化地过程.M+1/2O2—MO 1/6C2H4+MO—1/3CO2+1/3H2O+M这是个串联反应,过程中较慢(活化能较大)地一步将决定反应地速率.在整个反应中维持金属氧化物和金属之间地氧化还原循环是催化剂在反应中起到地地主要作用.当金属氧化物被还原和相应地金属被气相氧氧化地速率相当,才能给出最好地活性.因为金属被气相氧氧化地反应步骤能够决定整个反应地速率,这步反应地活化能即为整个反应地活化能,因此金属地生成热焓(ΔHf0)等于1/2ΔH地金属氧化物催化剂对该反应具有较好地活性.由图可见PdO 地ΔHf0约等于1/2ΔH,所以有较好地活性.3. 氧化物催化剂地半导体机理:(半导体催化地电子机理)在半导体催化剂上发生地催化剂反应通常伴有反应物与催化剂之间地电子转移,即反应物在半导体催化剂表面化学吸附形成单电子键、双电子键或离子键,使反应物分子被活化,然后进行一系列化学反应.4. 氧化——还原机理(dual-redox):过渡金属氧化物催化剂在催化烃类氧化反应中,反应产物中地氧常常不是直接来自气相中氧,而是来自金属氧化物中地晶格氧,气相中地氧只是用来补充催化剂在反应中消耗地晶格氧.5. 半导体有哪三种类型,它们导电特征是什么?答:一种是本征半导体,这种半导体要导电,是依靠温度激发,把少量价电子由满带激发到导带(空带)中,导带中得到自由电子,这自由电子导电就叫做电子导电.同时满带放走了部分价电子后,由本来地中和状态(不带电)变为带正电,这在半导体术语中叫做正空穴(或简称正穴)地形成.正穴地移动也能产生电流,这叫做正穴电.它地导电办法是:邻近地电子迁到正空穴地位置,产生新地正空穴,新地正空六又再被其邻近地电子所占住,如此继续下去,使电子向一定地方向流动,产生了电流.电子导电又叫n 型导电.空穴导电又叫P 型导电.所以本征半导体地导电,同时存在n 型导电与P 型导电. 6. 在丁烷氧化脱氢催化剂Cr 2O 3-Al 2O 3 中添加Li 2O 时,其催化脱氢速率下降;加Na 2O 量低时(少于1%),脱氢速率也是下降地,但加Na 2O 量较大时(大于2%),脱氢速度又增加;加K 2O 时,脱氢速率大增.请解释其原因.Li +离子半径比Cr 3+、Al 3+离子半径略小,它们容易占据Cr 3+、Al 3+地位置.价数诱导地结果,引起P 型电导地增加,n 型电导地减少.所以,加进Li 2O,使丁烷脱氢反应速度减小.加进Na 2O,在少于1%地添加量时,和Li 2O 一样,促使n -减少,亦即使反应速度降低.但加进Na 2O 达到2%时,Na +只能在品格间隙,相当于表面带正电荷,促使表面能放下降,结果使n -增加,从而促进反应.K +比Na +、Li +地离子半径均大,它不能取代Cr 3+、Al 3+ ,只能在晶格间隙,因而纯粹起着增加n -地作用.使丁烷脱氢反应速度大增.Langmuir 等温方程依据模型:①吸附剂表面是均匀地,各吸附中心能量相同;②吸附分子间无相互作用;③吸附是单分子层吸附,其吸附分子与吸附中心碰撞才能吸附,一个分子只占据一个吸附中心;④一点条件下,吸附与脱附可建立动态平衡. 满足上述条件地吸附,就是Langmuir 吸附,其吸附热q 与覆盖度θ无关.吸附速度va 与压力p 、自由表面(1-θ)成正比,即va=ap(1-θ),式中a 为吸附速度常数;脱附速度vd 只与已覆盖地表面成正比,即vd=b θ,式中b 为脱附速度常数.吸附达到平衡时,va=ad.所以ap(1-θ)= b θ 于是可得ap b ap +=θ ,若令b a /=λ,则pb p λλθ+= 上式即为Langmuir 等温方程,因为m V V /=θ,故可得p b p V V m λλ+=/式中,m V 为一定压力下单吸附层地饱和吸附量.上式还可表示为p V V V m m λ1111∙+=。
第二章 催化剂基础
学习目标
1 2 3
明确催化剂的 基本特征、化 学组成、宏观 物理性质和催 化作用的基本 原理。
重点掌握活性、 选择性、中毒 与失活等催化 剂的基本性能。
掌握多相固体 催化剂的基本 组成,以及比 表面积、比孔 容积、密度等 基本概念。
主要内容
1 催化剂若干术语和基本概念 催化剂的化学组成和物理结构 催化剂的宏观物理性质
(2)均相配合物催化剂
半导体TiO2和配 合物Ru(bpy)2+
第二节 催化剂的化学组 成和物理结构
三、生物催化剂(酶)
第三节 催化剂的宏观物 理性质
形状和大小
第三节 催化剂的宏观 物理性质
第五节 催化剂载体
e.与活性组分作用形成活性更高的化合物 f.增加催化剂的抗毒能力 g.节省活性组分用量,降低催化剂成本 三、几种常用的催化剂载体 1.氧化铝载体 2.分子筛载体 3.活性炭载体
Diagram
Title
Add your text
ThemeGallery
第三节 催化剂的宏观物 理性质
四、机械强度 (1)压碎强度 均匀施加压力到成型催化剂颗粒压裂为止 所承受的最大负荷,称为催化剂压碎强度。 (2)磨损性能 五、抗毒稳定性 评价催化剂抗毒稳定性的方法:1)2)3) 六、密度 堆密度、颗粒密度、真密度(骨架密度)
第一节 催化剂若干术语 和基本概念
(2)选择性 S=
100% 某一关键反应物A已转化的量(mol)
生成目的产物B的量生成产物不同。
举例: 环己烯 →C4H6 + C2H4 →C6H6 (苯) + 2H2 →C6H6 (苯) + 2C6H12 →C6H6 (苯) + 2H2O →裂解氧化物混合产物 800℃, 无催化剂 >300℃, Pd <<300℃, Pd <<300℃, O2, Pd 400℃, O2
催化剂及其基本特征
Company Document number : WTUT-WT88Y-W8BBGB-BWYTT-199981、催化剂及其基本伶征催化剂是一种物质.它能够改变化学反应的速率.而不改变该反应的标准Gibbs自由焙变化;此过程称为催化作用. 涉及催化剂的反应称为催化反应。
催化剂的基本待征催化剂只能实现热力学可行的反应.不能实现热力学不可能的反应;催化剂只能改变化学反应的速度.不能改变化学平衡的位S;催化剂能降低反应的活化能.改变反应的历程;催化刑对反应具有选择性n2、催化剂的组成主催化剂:催化剂的主要活性组分.起催化作用的根本性物质.如合成氨催化剂的铁.催化剂中若没有活性组分存在.那么就不可能有催化作用助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分.以及改善催化剂的耐热性、抗為性.捉髙催化刑机械强度和寿命的组分。
催化剂载体:主要是负载催化活性组分的作用.还具有提髙催化刑比表面积、提供适宜的孔结构、改善活性组分的分欲性、提高催化剂机械淫度、提高催化剂稳定性等多种作用3、催化剂的稳定性指催化剂的活性和选择性随反应时间的变化.催化剂的性能稳定性情况•通常以寿命表示。
催化剂在反应条件下操作.稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后.经再生又安复到许可水平的累计时间称为总寿命:> 催化剂翁定性包括热稳定性.抗毒魂定性.机械稳定性三个方面。
4、物理吸附与化学吸附的主要区别物理吸附:指气体物质(分子、离子、原子或聚築体)与衣面的物理作用(如色欲力、诱导偶扱吸引力)而发生的吸附.其吸附剂与吸附质之间主要是分子间力(也称"m dcrWaals- 力)o 化学吸附:指在气固界面上.气体分子或原子由化学键力(如静电、共价键力)而发生的吸附.因此化学吸附作用力淫.涉及到吸附质分子和固体间化学键的形成、电子重排等。
5、何谓B酸和L酸.及其简便的鉴定方法能够给出质子的都是酸.能够接受质子的都是獗.Brnsled 定义的酸濟称为B酸(B锻).又叫质子酸碱:能够接受电子对的都是酸.能够给出电子对的都是碱. 所以Lewis定义的酸诡称为L酸(L麻).又叫非质子酸固体酸的类型有B酸和L酸两种.对固体酸类型最有效的区分方法是红外光谖法.它是通过研究NH3或毗唏在固体酸表面上吸附的红外光语釆区分B酸和L酸的。
催化剂及其基本特征
催化剂及其基本特征1、烃类加氢脱硫过程所用的钴酸钼催化剂中,CoO的作用是什么?CoO的作用是使MoS2晶体保持分离状态。
2、合成氨工艺流程中,甲烷化的目的是什么?主要的催化活性组分?低变后, 原料中微量的CO和CO2 (< 0.5%) 进合成塔时必须脱除, 过去用铜氨液吸收, 现用催化加氢脱除。
Ni 是有效的催化剂, 活性大小顺序如下: Ni > Co > Fe > Cu > Mn > Cr > V3、钙钛矿型复合金属氧化物的结构特征?这种复合金属氧化物是结构与钙钛矿CaTiO3类似的一大类化合物,通式为ABO3,其中A:B 配位数为6:6的ABO3复合金属氧化物的结构和实例如表所示;A:B配位数为12:6的ABO3 复合金属氧化物的结构和实例如表4、以萘氧化反应为例论述金属氧化物催化剂的催化作用机理。
萘氧化反应分两步进行:(1)萘与氧化物催化剂反应,萘被氧化,氧化物催化剂被还原;(2)还原了的氧化物催化剂与氧反应恢复到起始状态,在反应过程中催化剂经历了还原-氧化循环过程。
20、简述氧物种在催化反应中的作用。
各种氧物种在催化氧化反应中的反应性能是不一样的,根据氧物种反应性能的不同,可将催化氧化分为两类,一类是经过氧活化过程的亲电氧化,另一类是以烃的活化为第一步的亲核氧化:在第一类中,O2- 和O- 物种是强亲电反应物种,它们进攻有机分子中电子密度最高的部分。
对于烯烃,这种亲电加成导致形成过氧化物或环氧化物中间物。
在多相氧化条件下,烯烃首先形成饱和醛,芳烃氧化形成相应的酐,在较高的温度下,饱和醛进一步完全氧化。
在第二类中,晶格氧离子O2- 是亲核试剂,它是通过亲核加成插入由活化而引起的烃分子缺电子的位置上而导致选择性氧化的。
21、简述乙烯环氧化催化反应的机理。
Ag是这一反应的特效催化剂,工业催化剂是负载型银催化剂,含Ag10%-35%,载体是α-Al2O3、SiO2等,并添加少量Re, Cs, Li等助催化剂。
催化剂基本知识概要
催化剂活性的表示方法
• (1)催化剂的比活性:催化剂比活性常用表面比 活性或体积比活性,即所测定的反应速度常数与 催化剂表面积或催化剂体积之比来表示。 • (2)反应速率表示法:反应速率表示法即用单位 时间内,反应物或产物的量的摩尔数变化来表示。 • (3)工业上常用转化率来表示催化剂活性。表示 方法是:在一定的反应条件下,已转化的反应物 的量占进料量的百分数,即催化剂的收率。 (4)用每小时每升催化剂所得到的产物的数值来 表示活性。
加氢催化剂一般的使用过程
催化剂的装填
催化剂装填是装置开工的关键步骤之一,它不仅直接关系到装置能否长周期平稳生 产,而且关系到产品质量能否达到设计要求。催化剂装得不好,可能使得反应器径向 温度分布不均匀;可能产生沟流,从边壁走短路,影响反应效果,从而使局部出现激 烈反应,结焦,使得反应器压降上升加快等。 .催化剂装填时要注意的问题 (1)反应器必须保证干燥; (2)催化剂不应被水淋湿; (3)催化剂床层中不应遗留有任何杂物; (4)催化剂装填过程中,一定要装平整,尽量使催化剂装填均匀;催化剂扒平,是为 了尽量使催化剂装得平整均匀,各处催化剂装填密度基本相同,能够达到预计装填量。 但是在催化剂的装填过程中,应该尽量装填均匀,减少扒平次数。频繁扒平或扒平量 过大是不允许的。在每一床层装填完后最后扒平。 (5)磁球、催化剂种类与尺寸不能混装、装错; (6)装填时不能直接用脚踩踏催化剂与磁球; (7)注意人身安全; (8)反应器内构件要及时、准确地按要求安装。
催化剂的失活及失活原因
催化剂经过一段时间的使用之后,活性逐渐下降或 消失,这种现象称为催化剂的失活。催化剂的失活主 要有以下几个原因: • (1)催化剂中毒。某些物质与催化剂作用破坏了催化 剂的催化效能,这些物质通常是反应原料中带来的杂 质。 • (2)催化剂结碳(结焦、碳沉积)。催化剂在使用过程 中逐渐在催化剂表面上沉积一层含碳化合物,减少了 催化剂可利用的表面积,引起活性衰退。 (3)催化剂烧结。催化剂在高温下长期使用会使催化 剂的活性组分晶粒长大,比表面积减小,活性下降, 称为催化剂烧结。
精细化工—催化剂
简而言之:
△G催化 = △G非催化
催化剂的基本特征:
改变反应途径,降低反应活化能,加快反应速度 催化剂对反应具有选择性
催化剂能做什么?
只能加速热力学上可行的反应,而不能加速热力学上不能进行的反应
只能加速反应趋于平衡,而不能改变平衡位置
催化剂不能做什么?
△G < 0 △G 0 = - RT lnK
• 催化剂的基本特征三
– 催化剂对反应具有选择性(催化剂的专用性)
专一对某一反应起加速作用的性能为选择性
C2H5OH
Cu 200-250 ℃ Al2O3 350-380 ℃ Al2O3 250 ℃ ZnO-Al2O3 400-450 ℃ Cu(活化)
Na
热稳定性(活性组分挥发、流失;活性组分烧结或微晶长大, 进而比表面、活性位减少)
化学稳定性(稳定的催化剂化学组成和化合状态,活性组分和 助催化剂不产生化学变化)
抗污稳定性(催化剂表面积焦、积炭) 抗毒稳定性(催化剂对有害物质毒化的抵抗能力)
含硫、氧、氮、砷的化合物、卤素化合物、重金属化合物、金属有机化合物 等(来源于原料中杂质或反应副产物)
单位时间内每个催化活性中心上发生反应的次数 转化率(一定温度、空速下)
X(转化率) = (已转化的反应物量 / 起始的反应物量) × 100%
时空收率(时空得率) 一定条件下,单位时间、单位体积(或质量)催化剂上所得目的产物量
• 4.2 选择性
– 指所消耗的原料中转化成目的产物的分率。用来描述催化剂 上两个以上相互竞争反应的相对速率
非 均 相
催化剂状态 气 液 固
液
固
固
物理化学名词解释归纳
一.名词解释1.离子迁移数: 是指在一电解质溶液中各种离子的导电份额或者导电百分数。
2.独立组分数: 用以确定平衡体系中所有各相组成所需的独立物质的最少数目称为独立组分数。
3.摩尔燃烧焓: 是指1mol有机化合物在指定温度标准大气压下完全燃烧生成稳定的产物时的反应热。
4.等电点: 蛋白质所带的正负电荷数相等即净电荷为0时的pH称为蛋白质的等电点。
5.扩散:物质从高浓度区自发向低浓度区迁移, 使其分布趋向均匀的过程称为扩散。
6.对峙反应: 也称可逆反应, 是指在正方向和逆方向上可以同时进行的反应, 且正逆反应速率的大小可相比拟。
7.可逆过程: 是指系统内部及系统与环境之间每一瞬间都接近于平衡态的过程。
8.摩尔电导率: 表示在两个相距1m的平行电极间, 1mol电解质溶液所具有的电导。
9.HLB值:即亲水亲油平衡值, 用来表示表面活性物质的亲水性和亲油性的相对强弱。
10.乳状液转型: 是指在外界某种因素的作用下, 乳状液由O/W型变成W/O型, 或者由W/O型变成O/W 型的过程。
11原子发射光谱: 是指由物质内部运动的原子和分子受到外界能量后而得到的光谱。
12.自由度: 在不引起旧相消失和新相生成的前提下, 可以在一定范围内变动的独立变量如浓度温度压力的数目称为自由度。
13.离子选择电极: 是指具有离子感应膜, 可以把溶液中某种离子的活度转换成相应电势的电极, 它是某离子的指示电极。
14.负吸附:溶液的表面张力随着溶质的加入儿升高, 表面过剩为负, 称为负吸附。
15.吸附平衡:当气体分子在吸附剂表面聚集与逃离吸附剂表面两个过程的速率相等时, 体系达到平衡, 称为吸附平衡。
16.乳状液: 是由一种或几种液体以小液滴的形式分散于另一种与其互不相容的液体中形成的多相分散体系。
二.简答题1.简述可逆过程的特点. (1)可逆过程是由一连串无限接近平衡态额微小变化组成, 因变化的动力和阻力相差为一无穷小量, 因而过程进行得无限缓慢。
催化剂及其基本特征
1、催化剂及其基本特征催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。
催化剂的基本特征催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应;催化剂只能改变化学反应的速度,不能改变化学平衡的位置;催化剂能降低反应的活化能,改变反应的历程;催化剂对反应具有选择性。
2、催化剂的组成主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。
助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。
催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用3、催化剂的稳定性指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。
催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。
催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。
4、物理吸附与化学吸附的主要区别物理吸附:指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。
化学吸附:指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。
5、何谓B酸和L酸,及其简便的鉴定方法能够给出质子的都是酸,能够接受质子的都是碱,Brönsted定义的酸碱称为B酸(B碱),又叫质子酸碱。
能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。
工业催化原理—作业汇总(含答案)
第一章催化剂与催化作用基本知识1、简述催化剂的三个基本特征。
答:①催化剂存在与否不影响△Gθ的数值,只能加速一个热力学上允许的化学反应达到化学平衡状态而不能改变化学平衡;②催化剂加速化学反应是通过改变化学反应历程,降低反应活化能得以实现的;③催化剂对加速反应具有选择性。
2、1-丁烯氧化脱氢制丁二烯所用催化剂为MoO3/BiO3混合氧化物,反应由下列各步组成(1)CH3-CH2-CH=CH2+2Mo6++O2—→CH2=CH—CH=CH2+2Mo5++H20(2)2Bi3++2Mo5+→2Bi2++2Mo6+(3)2Bi2++1/202→2Bi3++02—总反应为CH3-CH2-CH=CH2+1/202→CH2=CH-CH=CH2+H20试画出催化循环图。
CH3-CH2—CH=CH2Bi3、合成氨催化剂中含有Fe3O4、Al2O3和K20,解释催化剂各组成部分的作用。
答:Fe3O4:主催化剂,催化剂的主要组成,起催化作用的根本性物质Al2O3:构型助催化剂,减缓微晶增长速度,使催化剂寿命长达数年K20:调变型助催化剂,使铁催化剂逸出功降低,使其活性提高第二章催化剂的表面吸附和孔内扩散1、若混合气体A和B2在表面上发生竞争吸附,其中A为单活性吸附,B2为解离吸附:A+B2+3*→A*+2B *,A和B2的气相分压分别为p A和p B。
吸附平衡常数为k A和k B。
求吸附达到平衡后A的覆盖率θA和B的覆盖率θB.解:对于气体A:吸附速率v aA=k aA P A(1—θA—θB);脱附速率v dA=k dAθA平衡时:v aA=v dA ,即θA=(k aA/k dA)P A(1—θA—θB)=k A·k B(1—θA—θB)对于气体B:吸附速率v aB=k aB P B(1—θA-θB)2;脱附速率v dB=k dBθB2平衡时:v aB=v dB ,即θ2= k B P B(1—θA—θB)2。
第一章思考题答案
第⼀章思考题答案第⼀章思考题答案1. 按⼀般化⼯产品⽣产过程和作⽤划分,化⼯⼯艺流程可概括为哪⼏个过程?按⼀般化⼯产品⽣产过程的划分和它们在流程中所担负的作⽤可概括为以下⼏个过程:(1)⽣产准备过程——原料⼯序包括反应所需的主要原料、氧化剂、氮化剂、溶剂、⽔等各种辅助原料的贮存、净化、⼲燥以及配制等等。
为了使原料符合进⾏化学反应所要求的状态和规格,根据具体情况,不同的原料需要经过净化、提浓、混合、乳化或粉碎(对固体原料)等多种不同的预处理。
(2)催化剂准备过程——催化剂⼯序包括反应使⽤的催化剂和各种助剂的制备、溶解、贮存、配制等。
(3)反应过程——反应⼯序是化学反应进⾏的场所,全流程的核⼼。
经过预处理的原料,在⼀定的温度、压⼒等条件下进⾏反应,以达到所要求的反应转化率和收率。
反应类型是多样的,可以是氧化、还原、复分解、磺化、异构化、聚合、焙烧等。
通过化学反应,获得⽬的产物或其混合物。
以反应过程为主,还要附设必要的加热、冷却、反应产物输送以及反应控制等。
(4)分离过程——分离⼯序将反应⽣成的产物从反应系统分离出来,进⾏精制、提纯、得到⽬的产品。
并将未反应的原料、溶剂以及随反应物带出的催化剂、副反应产物等分离出来,尽可能实现原料、溶剂等物料的循环使⽤。
分离精制的⽅法很多,常⽤的有冷凝、吸收、吸附、冷冻、蒸馏、精馏、萃取、膜分离、结晶、过滤和⼲燥等,对于不同⽣产过程可以有针对性的采⽤相应的分离精制⽅法。
(5)回收过程——回收⼯序对反应过程⽣成的⼀些副产物,或不循环的⼀些少量的未反应原料、溶剂,以及催化剂等物料均应有必要的精制处理以回收使⽤,因此要设置⼀系列分离、提纯操作,如精馏、吸收等。
(6)后加⼯过程——后处理⼯序将分离过程获得的⽬的产物按成品质量要求的规格、形状进⾏必要的加⼯制作,以及贮存和包装出⼚。
(7)辅助过程除了上述六个主要⽣产过程外,在流程中还有为回收能量⽽设的过程(如废热利⽤),为稳定⽣产⽽设的过程(如缓冲、稳压、中间贮存),为治理三废⽽设的过程(如废⽓焚烧)以及产品贮运过程等。
催化剂简介
催化剂简介催化的定义:根据IUPAC于1981年提出的定义,催化剂是一种物质,它能够加速反应的速率而不改变该反应的标准Gibbs自由焓变化。
这种作用称为催化作用。
涉及催化剂的反应都称为催化反应。
在某些文献中还能见到其他的催化剂定义,其实质与上述定义是一致的。
例如,催化剂是一种物质,它加速化学反应趋于平衡,而自身在反应的最终产物中不显示,或者说在反应过程中不会自始至终地将自身陷入。
这里强调了催化剂作为一种化学物质,它能够与反应物相互作用,但是在反应的终结时它保持不变。
由于催化剂在反应终了时不变,故不改变反应物系的初始态,不改变反应的平衡位置。
催化剂之所以能够加速化学反应趋于热力学平衡点,是由于它为反应物分子提供了一条较易进行的反应途径。
以合成氨反应为例,工业上采用熔铁催化剂合成。
若不采用催化剂,在通常条件下N2分子和H2分子直接化合是极困难的;及时有反应发生,其速率也很慢。
因为这两种分子都相当稳定,破坏它们之间的化学键需要大量能量,在500度、常压条件下,导致反应活化的活化能为334kj/mol,在这种情况下生成氨的产率很低。
但采用催化剂后则情况大大不同,这两种反应分子通过化学吸附使其化学键由减弱到解离,然后化学吸附的氢与化学吸附的氮进行表面相互作用,中间再进行一系列表面作用过程,最后生成氨分子,并从催化剂表面上脱附生成气态氨。
特性:催化作用具有四个基本特征,可以根据上述定义导出,对于了解催化剂的功能是很重要的。
①催化剂只能加速热力学上可以进行的反应,而不能加速热力学上无法进行的反应。
如果某种化学反应在给定的条件下属于热力学上不可行的,这就告诉人们不要为它白白浪费人力和物力去寻找高效催化剂。
因此,在开发一种新的化学反应的催化剂时,要求首先对该反应体系进行热力学分析,看它在该条件下是否属于热力学上可行的反应。
②催化剂只能加速反应趋于平衡,而不能改变平衡的位置(平衡常数)。
对于给定的反应,在已知条件下,其催化和非催化过程的﹣ΔG°r值是相同的,即K f值是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述催化剂的基本特征
催化剂是指能够加速化学反应进程而不被消耗的物质,其特征如下:
1. 催化剂能够提高反应速率,但不改变反应热力学平衡,即不改变反应物和产物浓度比。
2. 催化剂能够在反应中形成中间体,降低反应活化能,从而降低反应能量要求,加速反应进程。
3. 催化剂具有高度选择性,能够选择性地促进某些反应物之间的作用,而不影响其他反应物的反应。
4. 催化剂使用量通常很小,一种催化剂可在多次反应中重复使用,具有很高的经济性。
5. 催化剂可以是单质、化合物或复合物,或者是表面活性物质。
6. 催化剂的作用机理复杂多样,包括吸附、表面反应、活性位点等多种作用方式。
7. 催化剂的效果可以受到反应条件、反应物质、催化剂种类等因素的影响,需要进行充分的反应条件优化和催化剂选择。
总之,催化剂是化学反应中不可或缺的重要角色,具有多种特征和作用方式。
催化剂的研究和应用领域广泛,对于实现可持续发展和绿色化工具具有重要意义。
- 1 -。