排列组合插板法插空法捆绑法
排列组合 插板法 插空法 捆绑法
![排列组合 插板法 插空法 捆绑法](https://img.taocdn.com/s3/m/68ec927deefdc8d377ee3217.png)
排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法?图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n 个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n个元素必须互不相异?(2)所分成的每一组至少分得一个元素?(3) 分成的组别彼此相异?举个很普通的例子来说明?把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36?下面通过几道题目介绍下插板法的应用?e 二次插板法?例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc?可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位?所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
排列组合--插板法、插空法、捆绑法32415
![排列组合--插板法、插空法、捆绑法32415](https://img.taocdn.com/s3/m/a72c914416fc700abb68fc58.png)
排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法?”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法. 应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
排列组合--插板法、插空法、捆绑法
![排列组合--插板法、插空法、捆绑法](https://img.taocdn.com/s3/m/2955bf686f1aff00bed51eff.png)
排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空得数量)【基本题型】有n个相同得元素,要求分到不同得m组中,且每组至少有一个元素,问有多少种分法?图中“"表示相同得名额,“”表示名额间形成得空隙,设想在这几个空隙中插入六块“挡板",则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含得名额数分给第一、二、三……七所学校,则“挡板"得一种插法恰好对应了10 个名额得一种分配方法,反之,名额得一种分配方法也决定了档板得一种插法,即挡板得插法种数与名额得分配方法种数就是相等得,【总结】ﻫ需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素得n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
ﻫ注意:这样对于很多得问题,就是不能直接利用插板法解题得。
但,可以通过一定得转变,将其变成符合上面3个条件得问题,这样就可以利用插板法解决,并且常常会产生意想不到得效果。
插板法就就是在n个元素间得(n—1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组得方法.应用插板法必须满足三个条件:(1) 这n个元素必须互不相异(2)所分成得每一组至少分得一个元素ﻫ(3)分成得组别彼此相异举个很普通得例子来说明把10个相同得小球放入3个不同得箱子,每个箱子至少一个,问有几种情况?问题得题干满足条件(1)(2),适用插板法,c9 2=36 ﻫ下面通过几道题目介绍下插板法得应用e二次插板法ﻫ例8:在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?ﻫ-o — o -o-o -o—o —三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共就是c71×c81×c9 1=504种【基本解题思路】将n个相同得元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m—1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序得m份,每个组依次按组序号分到对应位置得几个元素(可能就是1个、2个、3个、4个、…。
计数原理(最全面的方法汇总)
![计数原理(最全面的方法汇总)](https://img.taocdn.com/s3/m/8bfd0b476137ee06eef91876.png)
计数原理(排列组合)插空法,挡板法,捆绑法,优选法,平均分配问题等例题精选+练习一、挡板法(插板法、隔板法、插刀法)将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为挡板法。
(1)例题解读【例1】共有10完全相同的球分到5个盒里,每个盒至少要分到一个球,问有几种不同分法?解析:我们可以将10个相同的球排成一行,10个球之间出现了9个空隙,现在我们用4个档板”插入这9个空隙中,就“把10个球隔成有序的5份,每个盒子依次按盒子序号分到对应位置的几个球(可能是1个、2个、3个、4个、5个),这样,借助于虚拟“档板”就可以把10个球分到了5个班中。
【基本题型的变形(一)】题型:有n个相同的元素,要求分到m组中,问有多少种不同的分法?解题思路:这种问题是允许有些组中分到的元素为“0”,也就是组中可以为空的。
对于这样的题,我们就首先将每组都填上1个,这样所要元素总数就m个,问题也就是转变成将(n+m)个元素分到m组,并且每组至少分到一个的问题,也就可以用插板法来解决。
【例2】有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45解答:题目允许盒子有空,则需要每个组添加1个,则球的总数为8+3×1=11,此题就有C (10,2)=45(种)分法了,选项D为正确答案。
【基本题型的变形(二)】题型:有n个相同的元素,要求分到m组,要求各组中分到的元素至少某个确定值S(s>1,且每组的s值可以不同),问有多少种不同的分法?解题思路:这种问题是要求组中分到的元素不能少某个确定值s,各组分到的不是至少为一个了。
排列组合插板法、插空法、捆绑法
![排列组合插板法、插空法、捆绑法](https://img.taocdn.com/s3/m/adc306a3951ea76e58fafab069dc5022aaea46c4.png)
排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
排列组合中关于捆绑法、插空法、插隔板法的应用 (1)
![排列组合中关于捆绑法、插空法、插隔板法的应用 (1)](https://img.taocdn.com/s3/m/a27da8313169a4517723a338.png)
排列组合中关于捆绑法、插空法、插隔板法的应用捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。
这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。
插空法:当要求某几个元素必须不相邻(挨着)时,可先将其它元素排好,然后再将要求不相邻的元素根据题目要求插入到已排好的元素的空隙或两端位置。
插隔板法:指在解决若干相同元素分组,要求每组至少一个元素时,采用将比分组数目少1的隔板插入到元素中的一种解题策略。
题目特点:“若干相同元素分组”、“ 每组至少一个元素”。
例1:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4分两种情况考虑C=8种1、这两个新节目挨着,那么三个节目有4个空,又考虑到这两个节目的先后顺序共有2×14P=12种2、这两个节目不挨着,那么三个节目有4个空,这就相当于考虑两个数在4个位置的排列,由24综上得,共8+12=20种此题中使用了捆绑法和插空法。
例2:A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共有()种站法。
A.120B.72C.48D.24插空法:我们来这样考虑,因A、B两人不站一起,故可考虑的位置C、D、E,C、D、E三个人站在那有P=12。
一共留出4个空,将A、B分别放入这4个空的不同的空中,那就是4个空中取2个空的全排列,即24P=6,综上,共有6*12=72种这样考虑了之后,还有一点就是C、D、E三个人也存在一个排列问题,即23例3:A、B、C、D、E五个人排成一排,其中A、B两人必须站一起,共有()种站法。
A.120B.72C.48D.24捆绑法:此题和上一题实质是一样的,我们来这样考虑,A、B两人既然必须站在一起,那么索性我们就把他P=24,又因为A、B两人虽然是站们看成一个人,那么我们就要考虑其和C、D、E共4个人的全排列,即44P=2,综上,共有48种。
公务员行政能力考试测验:排列组合之解题方法精要
![公务员行政能力考试测验:排列组合之解题方法精要](https://img.taocdn.com/s3/m/6487d623192e45361066f5a7.png)
公务员行政能力考试测验排列组合之解题方法精要在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。
这三种方法有特定的应用环境,华图公务员录用考试研究中心行政职业能力测验研究专家沈栋老师通过本文以实例来说明三种方法之间的差异及应用方法。
一、捆绑法精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。
提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。
【例题】有10本不同的书:其中数学书4本,外语书3本,语文书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种。
解析:这是一个排序问题,书本之间是不同的,其中要求数学书和外语书都各自在一起。
为快速解决这个问题,先将4本数学书看做一个元素,将3本外语书看做一个元素,然后和剩下的3本语文书共5个元素进行统一排序,方法数为,然后排在一起的4本数学书之间顺序不同也对应最后整个排序不同,所以在4本书内部也需要排序,方法数为,同理,外语书排序方法数为。
而三者之间是分步过程,故而用乘法原理得。
【例题】5个人站成一排,要求甲乙两人站在一起,有多少种方法?解析:先将甲乙两人看成1个人,与剩下的3个人一起排列,方法数为,然后甲乙两个人也有顺序要求,方法数为,因此站队方法数为。
【练习】一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?注释:运用捆绑法时,一定要注意捆绑起来的整体内部是否存在顺序的要求,有的题目有顺序的要求,有的则没有。
如下面的例题。
【例题】6个不同的球放到5个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?解析:按照题意,显然是2个球放到其中一个盒子,另外4个球分别放到4个盒子中,因此方法是先从6个球中挑出2个球作为一个整体放到一个盒子中,然后这个整体和剩下的4个球分别排列放到5个盒子中,故方法数是。
计数方法之捆绑法、插空法、插板法
![计数方法之捆绑法、插空法、插板法](https://img.taocdn.com/s3/m/c4c32596d0d233d4b14e6973.png)
1
(★★★) 【例3】 核桃 的9个人继续照相,这次排队有了新的讲究:天天、向向、 核桃组的 续 相 排 有 新的讲究 向向 汤汤三位帅哥强烈要求必须相邻,任谁劝都不听,这时候只见 摄像师小段拿着一根绳子笑着就走过来了说:我能很快解决你 们这样一共有几种排队方式的问题。
【例4】 (★★★) 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书, 全部竖起排成一排,如果要求童话书排在一起,漫画书排在一起 有多少种排法?
【例5】 (★★★) 饼 饼干组的一行 的 8人同样在照相,但排队过程中一个小插曲影响了 样在 相 排 过 中 曲 照相的进度,兔兔与关关、小新起了一点小矛盾, 3人带着情绪强 烈要求:互不相邻 这样有几种排队的方式? 烈要求:互不相邻,这样有几种排队的方式?
【例6】 (★★★★) 8人围圆桌聚餐,甲、乙两人必须相邻,而乙、丙两人不得相邻, 有几种坐法?
(★★) 【例1】 晚上饼 组刚到桃 仙 大家都很 奋 璐璐 关关 4月4日晚上饼干组刚到桃园仙谷,大家都很兴奋,璐璐、关关、 兔兔、小雷、峰峰、阳阳、成成,媛媛八个人想站在一块儿合个 影 请分别解出以下情况的不同方法数 影,请分别解出以下情况的不同方法数。 ⑴组长兔兔觉得: 个人随便站成一排,她认为这 随便站成 排, 认为这 样简单公平。 8个 ⑵副组长关关认为: 8个人可以站成三排,前2中3后3, 这样看起来比较美观。
【例2】 (★★★)
4月5日早上核桃组刚到桃园仙谷,组长美美和她八个小伙伴都很 兴奋,想站在一块儿合个影,请分别求出以下情况有多少种不同 的站法? (1)天天固执的认为站成一排并且自己必须站在正 中间,因为自己长的比别人帅 些。 中间,因为自己长的比别人帅一些。 (2)向向发言:站成一排并且自己和汤汤站两端, “我们俩宽度一样,这样比较对称”。 (3)小熊老师:“我和天天不站两端,其余的随便 排,快点,不要磨叽。”
考前冲刺排列组合的三大方法精要
![考前冲刺排列组合的三大方法精要](https://img.taocdn.com/s3/m/6b96a4ea2cc58bd63086bd2a.png)
考前冲刺:排列组合的三大方法精要来源:华图教育沈栋在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。
这三种方法有特定的应用环境,华图教育专家沈栋提醒考生应特别注意三种方法之间的差异及应用方法。
一、捆绑法精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。
提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。
【例题】有10本不同的书:其中数学书4本,外语书3本,语文书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有()种。
解析:这是一个排序问题,书本之间是不同的,其中要求数学书和外语书都各自在一起。
为快速解决这个问题,先将4本数学书看做一个元素,将3本外语书看做一个元素,然后和剩下的3本语文书共5个元素进行统一排序,方法数为,然后排在一起的4本数学书之55A 间顺序不同也对应最后整个排序不同,所以在4本书内部也需要排序,方法数为,同理,44A 外语书排序方法数为。
而三者之间是分步过程,故而用乘法原理得。
33A 543543A A A 【例题】5个人站成一排,要求甲乙两人站在一起,有多少种方法?解析:先将甲乙两人看成1个人,与剩下的3个人一起排列,方法数为,然后甲乙44A 两个人也有顺序要求,方法数为,因此站队方法数为。
22A 4242A A 【练习】一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?注释:运用捆绑法时,一定要注意捆绑起来的整体内部是否存在顺序的要求,有的题目有顺序的要求,有的则没有。
如下面的例题。
【例题】6个不同的球放到5个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?解析:按照题意,显然是2个球放到其中一个盒子,另外4个球分别放到4个盒子中,因此方法是先从6个球中挑出2个球作为一个整体放到一个盒子中,然后这个整体和剩下的4个球分别排列放到5个盒子中,故方法数是。
解答排列组合问题常用的几种途径
![解答排列组合问题常用的几种途径](https://img.taocdn.com/s3/m/4e5cc53c178884868762caaedd3383c4bb4cb4da.png)
体,即为一个“对象”,4 本不同年级的物理书也看成一
个整体,即为另一个“对象”,把两个“对象”排成一排
有
A2 2
种排法;
第二步,对数学书、物理书两个“对象”内部的元素
分别进行排列,数学书“对象”内部的元素有
A3 3
种排列
方法,物理书“对象”内部的元素有
A
4 4
种排列方法.
因此,符合题意的排列方法共有
同元素.将这 10 个相同元素排成一排,元素之间有 9 个
空,选出 2 个空插入隔板,可把 10 个元素分成 3 份,分
配给每个班级,所以共有
C2 9
=
36种
分配方案.
本题为相同元素的分配问题,可采用隔板法对问
题进行求解.隔板法的适用范围较窄,同学们在解题时
需首先确定问题是否为相同元素的分配问题,再采用
A22∙A33∙A
4 4
=
288种
.
本题中要求数学书必须相邻,物理书也必须相
邻,则本题即为相邻问题,可采用捆绑法对问题进行
求解.
二、运用插空法
若问题中要求几个元素不能相邻,则需采用插空
法,即先将无限制条件的元素全排列;再将指定的不
能相邻的元素插入已排好元素的间隙或两端位置,从
而将各个元素按照题目要求排列好.
隔板法求解.
四、借助倍缩法
有些问题中要求部分元素有固定的顺序,此时我
们可用倍缩法进行求解.先将所有元素进行全排列;然
后用所有元素的全排列数除以定序元素的全排列数,
即可得到问题的答案.
例 4.现将 4 名男生、3 名女生(身高各不相同)这 7
名学生排成一行.若女生按照从矮到高的顺序排列(从
(完整版)排列组合问题之捆绑法_插空法和插板法
![(完整版)排列组合问题之捆绑法_插空法和插板法](https://img.taocdn.com/s3/m/32aea5593186bceb19e8bbff.png)
行测答题技巧:排列组合问题之捆绑法,插空法和插板法“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。
例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“A,B”、C、D、E“四个人”进行排列,有种排法。
又因为捆绑在一起的A、B两人也要排序,有种排法。
根据分步乘法原理,总的排法有种。
例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有种排法;又3本数学书有种排法,2本外语书有种排法;根据分步乘法原理共有排法种。
【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。
解题过程是“先捆绑,再排列”。
“不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】:题目要求A和B两个人必须隔开。
首先将C、D、E三个人排列,有种排法;若排成D C E,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺ D ︺ C ︺ E ︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。
由乘法原理,共有排队方法:。
例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有方法,由乘法原理得:所有不同的添加方法为=504种。
小学数学思维方法:计数问题(捆绑法,插空法和插板法)
![小学数学思维方法:计数问题(捆绑法,插空法和插板法)](https://img.taocdn.com/s3/m/2fb01fa3a26925c52cc5bfeb.png)
计数问题(捆绑法,插空法和插板法)【知识精要】一、基本概念⎧⎨⎩加法原理:分类用加法乘法原理:分步用乘法⎧⎨⎩排列:与顺序有关组合:与顺序无关 二、基本公式 排列公式:!(1)(2)(1)()!m m n n n A P n n n n m n m ===---+- 组合公式:!(1)(2)(1)()!!(1)(2)21m n m n nn n n n n m C C n m m m m m ----+===---⨯ 三、计数方法 1.“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。
解题过程是“先捆绑,再排列”。
2.“不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
解题过程是“先排列,再插空”例如.若有A 、B 、C 、D 、E 五个人排队,要求A 和B 两个人必须不站在一起,则有多少排队方法?解:题目要求A 和B 两个人必须隔开。
首先将C 、D 、E 三个人排列,有种排法;若排成D C E ,则D 、C 、E “中间”和“两端”共有四个空位置,也即是: ︺ D ︺ C ︺ E ︺,此时可将A 、B 两人插到四个空位置中的任意两个位置,有种插法。
由乘法原理,共有排队方法:。
3. 插板法就是在n 个元素间的(n-1)个空中插入 若干个(b )个板,可以把n 个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n 个元素必须互不相异,(2)所分成的每一组至少分得一个元素 ,(3) 分成的组别彼此相异【典型例题】例1.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?解:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有种排法;又3本数学书有种排法,2本外语书有种排法;根据分步乘法原理共有排法种。
排列组合问题
![排列组合问题](https://img.taocdn.com/s3/m/6af10c7dec3a87c24128c4f0.png)
行测答题技巧:排列组合问题之捆绑法,插空法和插板法“相邻问题”捆绑法,即在解决对丁某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素问排列顺序的解题策略。
例1 .若有A、B、C、》E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“ A, B”、G 口E “四个人”进行排列,有妃种排法。
乂因为捆绑在一起的A B两人也要排序,有4;种排法。
根据分步乘法原理,总的排法有乂园=24x2= 48种。
例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有应;种排法;乂3本数学书有4;种排法,2本外语书有就种排法;根据分步乘法原理共有排法给求牌= 120 x6x2=1440种。
【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑” 起来的大元素内部的顺序问题。
解题过程是“先捆绑,再排列”。
“不邻问题”插空法,即在解决对丁某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例3 .若有A、B、C、》E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】:题目要求A和B两个人必须隔开。
首先将C、D E三个人排列,有种排法;若排成D C E ,则D C E “中间”和“两端”共有四个空位置,也即是:一D C E ,此时可将A、B两人插到四个空位置中的任意两个位置,有妒种插法。
由乘法原理,共有排队方法:jQxAl =6X12=720例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有吊种方法;再用另一个节目去插8个空位,有遨种方法;用最后一个节目去插9个空位,有方法,由乘法原理得:所有不同的添加方法为其;乂K=504种。
排列组合的13种方法题,,
![排列组合的13种方法题,,](https://img.taocdn.com/s3/m/7e3daf4e5a8102d276a22fdd.png)
排列组合常用十三种解题方法方法一:捆绑法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须相邻且甲在乙的右边,那么不同的排法有多少种?方法二:插空法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须不相邻,那么不同的排法有多少种?例题:晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2个节目插入原节目单中,则不同的插法有种。
方法三:隔板法例题:小明有10块糖,他每天可以吃1块到10块不等,现在要求小明3天把10块糖吃完,问小明一共有多少种不同的吃糖方法?例题:将10个保送生预选指标分配给某重点中学高三年级六个班,每班至少一名,共有多少种分配方案?方法四:定位问题优先法例题:一个老师和四名学生排成一排,老师不在两端,且老师不能跟其中某个学生相邻,则不同的排法有种例题:2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为方法五:多排问题单排法例题:共有8个人分别站前后2排,每排4人,其中要求某2人站前排,某1人站在后排,则共有__ 种排法。
例题:现有12人排成3行,每行4人,其中小明不站第二行,小红只站第一行,小白不站第三行,问一共有多少种不同的站队方法?方法六:乱坐问题分步法例题:将数字1,2,3,4,填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有种。
例题:将标有1,2,3,4,5编号的五个小球分别填入标号为1,2,3,4,5的五个箱子,每个箱子放一个球,则每个箱子的标号与放小球标号均不相同的填法有种。
方法七:多元问题罗列法例题:由0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个。
例题:用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为?方法八:至少问题间接法 例题:有9名男生与4名女生共13人,现在要求从所有学生中任选 5人参加知识竞赛,问选择的5人中至少有1名女生的选择情况有多 少种? 例题:甲、乙两人从4门课程中各选修 2门,则甲、乙所选的课程中至少有 1 门不相同的选法共有 种 方法九:条件问题排除法 例题:正六边形中心和顶点共7个点,以其中任意3个点为顶点 的三角形共有 个。
小学六年级奥数 计数方法之捆绑法、插空法、插板法
![小学六年级奥数 计数方法之捆绑法、插空法、插板法](https://img.taocdn.com/s3/m/d7e93d552af90242a995e565.png)
Ann n! n(n 1)(n 2) 2 1
(2)组合数公式:
Cnm
Anm Amm
n(n 1) (n m 1) m (m 1) 2 1
(3)组合C nm n
②
C
0 n
C
1 n
C
2 n
Cnn
1
【例3】(★★★) 核桃组的9个人继续照相,这次排队有了新的讲究:天天、向向、 汤汤三位帅哥强烈要求必须相邻,任谁劝都不听,这时候只见 摄像师小段拿着一根绳子笑着就走过来了说:我能很快解决你 们这样一共有几种排队方式的问题。
【例4】 (★★★) 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书, 全部竖起排成一排,如果要求童话书排在一起,漫画书排在一起 有多少种排法?
【例2】(★★★) 4月5日早上核桃组刚到桃园仙谷,组长美美和她八个小伙伴都很 兴奋,想站在一块儿合个影,请分别求出以下情况有多少种不同 的站法? (1)天天固执的认为站成一排并且自己必须站在正 中间,因为自己长的比别人帅一些。 (2)向向发言:站成一排并且自己和汤汤站两端, “我们俩宽度一样,这样比较对称”。 (3)小熊老师:“我和天天不站两端,其余的随便 排,快点,不要磨叽。”
2n
【例1】(★★) 4月4日晚上饼干组刚到桃园仙谷,大家都很兴奋,璐璐、关关、 兔兔、小雷、峰峰、阳阳、成成,媛媛八个人想站在一块儿合个 影,请分别解出以下情况的不同方法数。 ⑴组长兔兔觉得: 8个人随便站成一排,她认为这 样简单公平。 ⑵副组长关关认为: 8个人可以站成三排,前2中3后3, 这样看起来比较美观。
【例5】 (★★★) 饼干组的一行8人同样在照相,但排队过程中一个小插曲影响了 照相的进度,兔兔与关关、小新起了一点小矛盾, 3人带着情绪强 烈要求:互不相邻,这样有几种排队的方式?
排列组合插板法、插空法、捆绑法
![排列组合插板法、插空法、捆绑法](https://img.taocdn.com/s3/m/5f03b37dbd64783e09122bf0.png)
排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法?图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法. 应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
排列组合的方法捆绑法,插空法和插板法
![排列组合的方法捆绑法,插空法和插板法](https://img.taocdn.com/s3/m/cedbc450f90f76c661371ab4.png)
“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。
例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“A,B”、C、D、E“四个人”进行排列,有种排法。
又因为捆绑在一起的A、B两人也要排序,有种排法。
根据分步乘法原理,总的排法有种。
例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有种排法;又3本数学书有种排法,2本外语书有种排法;根据分步乘法原理共有排法种。
【王永恒提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。
解题过程是“先捆绑,再排列”。
“不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】:题目要求A和B两个人必须隔开。
首先将C、D、E三个人排列,有种排法;若排成D C E,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺ D ︺ C ︺ E ︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。
由乘法原理,共有排队方法:。
例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有方法,由乘法原理得:所有不同的添加方法为=504种。
排列组合的方法捆绑法
![排列组合的方法捆绑法](https://img.taocdn.com/s3/m/442fc094763231126fdb1178.png)
排列组合的方法捆绑法,插空法和插板法“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。
运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。
解题过程是“先捆绑,再排列”。
“不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。
解题过程是“先排列,再插空”。
有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法?插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢?我们可以腹胀化归思想。
插板法必须严格满足三个条件:①所要分的元素必须完全相同②所要分的元素必须分完,决不允许有剩余;③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。
1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?练习:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个新节目,有多少种安排方法?(国考2008-57)例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法.(标准的是非空,那么非空如果处理?)4.停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?e二次插板法例8:在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?C63例4、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法?图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
【基本题型例题】【例1】共有10完全相同的球分到7个班里,每个班至少要分到一个球,问有几种不同分法?解析:我们可以将10个相同的球排成一行,10个球之间出现了9个空隙,现在我们用6个档板”插入这9个空隙中,就“把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),这样,借助于虚拟“档板”就可以把10个球分到了7个班中。
【基本题型的变形(一)】题型:有n个相同的元素,要求分到m组中,问有多少种不同的分法?,也就是组中可以为空的。
解题思路:这种问题是允许有些组中分到的元素为“0”对于这样的题,我们就首先将每组都填上1个,这样所要元素总数就m个,问题也就是转变成将(n+m)个元素分到m组,并且每组至少分到一个的问题,也就可以用插板法来解决。
【例2】有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45解答:题目允许盒子有空,则需要每个组添加1个,则球的总数为8+3×1=11,此题就有C(10,2)=45(种)分法了,选项D为正确答案。
【基本题型的变形(二)】题型:有n个相同的元素,要求分到m组,要求各组中分到的元素至少某个确定值S(s>1,且每组的s值可以不同),问有多少种不同的分法?解题思路:这种问题是要求组中分到的元素不能少某个确定值s,各组分到的不是至少为一个了。
对于这样的题,我们就首先将各组都填满,即各组就填上对应的确定值s那么多个,这样就满足了题目中要求的最起码的条件,之后我们再分剩下的球。
这样这个问题就转变为上面我们提到的变形(一)的问题了,我们也就可以用插板法来解决。
【例3】15个相同的球放入编号为1、2、3的盒子内,盒内球数不少于编号数,有几种不同的放法?解析:编号1:至少1个,符合要求。
编号2:至少2个:需预先添加1个球,则总数-1编号3:至少3个,需预先添加2个,才能满足条件,后面添加一个,则总数-2 则球总数15-1-2=12个放进3个盒子里所以C(11,2)=55(种)【例】10 个学生中,男女生各有 5 人,选 4 人参加数学竞赛。
(1)至少有一名女生的选法种数为_______________。
(2)A、B 两人中最多只有一人参加的选法种数为___________解法1:10 名中选4 名代表的选法的种类:C10排除4名参赛全是男生:C54 (排除法)C10C54=205解法2:选1女生时,选2个女生时,选3、4个女生时的选法,分别相加(2010年国考真题)某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。
问一共有多少种不同的发放方法?() A.7 B.9 C.10 D.12解析:每个部门先放8个,后面就至少放一个,三个部门则要先放8×3=24份,还剩下30-24=6份来放入这三个部门,且每个部门至少发放1份,则C(5,2)=10插空法插空法就是对于解决某几个元素要求不相邻的问题时,先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置。
首要特点就是不相邻。
下面举例说明。
一. 数字问题【例】把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种?解析:本题直接解答较为麻烦,因为可先将3,4,5三个元素排定,共有种排法,然后再将1,2插入四个空位共有种排法,故由乘法原理得,所有不同的五位数有二. 节目单问题【例】在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种?解析:-o - o - o - o - o - o - 六个节目算上前后共有七个空位,那么加上的第一个节目则有种方法;此时有七个节目,再用第二个节目去插八个空位有种方法;此时有八个节目,用最后一个节目去插九个空位有种方法。
由乘法原理得,所有不同的添加方法为:。
三. 关灯问题【例】一条马路上有编号1,2,3,4,5,6,7,8,9的九盏路灯,为了节约用电,可以把其中的三盏灯关掉,但不能同时关掉相邻两盏或三盏,则所有不同的关灯方法有多少种?解析:如果直接解答须分类讨论,故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插七个空位(用不亮的3盏灯去插剩下亮的6盏灯空位,就有7个空位)共有种方法,因此所有不同的关灯方法为种。
四. 停车问题【例】停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?解析:先排好8辆车有种方法,要求空位置连在一起(剩下4个空位在一起,来插入8辆车,有9个空位可以插),将空位置插入其中有种方法。
所以共有种方法。
五. 座位问题【例】 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种?解法:先拿出5个椅子排成一排,在5个椅子中间出现4个空,再让3个人每人带一把椅子去插空,于是有种。
捆绑法解答:根据题目要求,则其中一个盒子必须得放2个,其他每个盒子放1个球,C,这个整体和剩下4个球放所以从6个球中挑出2个球看成一个整体,则有26入5个盒子里,则有55A。
方法是26C55A排列组合中的解题方法之插板法一、基础理论:插板是一个无形的东西即板子,它不能代表一个元素,它区别于插空法。
插板法是用于解决“相同元素”分组问题。
判断插板法的题目主要看题干中的两个词语:①相同元素②至少为1,如果有这样两个词语一般此题就可以直接插板进行解题。
引例说明:春节前单位慰问困难职工,将10份相同的慰问品分给6名职工,每名职工至少要分得1份慰问品,分配方法共有:A.84种B.126种C.210种D.252种【分析】此题第一眼给人的感觉是能用列举法进行分类解题,但是细一思考分类的情况太多了,不易计算,因为想用插板法解题一般是分两类或三类。
而插板法就可以使这种为题迎刃而解。
利用无形的板子把其分割开来。
【解析】“10份慰问品相同且每人至少得1份”,满足插板法的两个前提①相同元素②至少为1,故可直接使用插板法。
将10份慰问品依次排成一条直线,我们用插板的形式把慰问品分给6名职工,中间形成9个空,插上第1个板子,则第一个板子之前的分给第一名职工,在后面又插了一个板子,表示第1个板子和第2个板子之间的分给第二名职工,依次类推,因为要分给6个人,所以要插5个板子,第5个板子之后的分给第六名职工,所以只要板子固定了,那么每名职工分几份慰问品就固定了。
所以10分慰问品中间形成了9个空;分给6个人,插入5个板;共有=126种分配方法。
注:估计有的同学会问,为什么第一个慰问品之前的位置和最后一个慰问品之后的位置不能放板子。
其实原因在于“每名员工至少分1份慰问品”,如果在第一个慰问品之前的位置放板子那么第一名职工就一份分不到了,如果在最后一个慰问品之后的位置放板子那么最后一名职工就一份分不到了。
二、真题举例:例1、假设x、y、z是三个非零自然数,且有x+y+z=36,则共有多少组满足条件的解?A.700B.665C.630D.595【分析】此题可以看做是36块糖排成一排,即元素相同;由于x、y、z是非零自然数,即至少为1,问题:x+y+z=36,顺便看成3个人来分这36块糖。
满足插板法应用条件。
【解析】根据题意,36块糖内部形成35个空位,分给三个人,需要插两个板子,故有=595种,而一种分法对应着一组解,如x=1,y=1,z=34,就是一组解。
共有595组解。
因此,选D。
例2、将10本没有区别的图书分到编号为1、2、3的图书馆,要求每个图书馆分得图书数量不小于其编号数,问共有多少种不同的分法?( )A.12B.15C.30D.45【分析】根据题意,“10本没有区别的图书”即相同元素,“要求每个图书馆分得图书数量不小于其编号数“即1号图书馆至少分1本,2号图书馆至少分两本,3号图书馆至少分3本,分析完题意之后发现似乎不满足插板法的前提条件至少为1,类似的这种题目我们只需要适当变形就可利用插板法解题。
【解析】1号图书馆至少分1本,已经满足至少为1,不用变形。
而2号图书馆至少分两本,所以可从10本中取出一本先给2号图书馆。
而3号图书馆至少分3本,可以从10本中取出两本书给3号图书馆,所以在给出一本和两本,那么还剩下7本,现在1号,2号,3号图书馆至少在发放一本书就可以满足了,那么此时就可以用插板法解题。
所以答案是=15小结:题目中一般有相同元素,至少为什么,此题都可用插板法解题,所以大家要不断熟悉插板法的应用。