高中数学必修五 全册教学课件 , PPT (全册 )
合集下载
高中数学必修五课件整书全套
![高中数学必修五课件整书全套](https://img.taocdn.com/s3/m/653854f3fc0a79563c1ec5da50e2524de418d015.png)
双曲线的标准方程和一般方程
掌握双曲线的标准方程和一般方程,能够根据不同的条件选择合适的方程形式解决问题。
抛物线及其性质
抛物线的定义和方程
通过平面内与一个定点和一条定直线距离相 等的点的轨迹定义抛物线,并推导其标准方 程。
抛物线的几何性质
探讨抛物线的对称性、顶点、焦点、准线等几何性 质,并理解其在实际问题中的应用。
回顾三角函数的定义、性质、图像和 变换,以及三角函数在实际问题中的
应用。
不等式与线性规划
总结不等式的性质、解法和应用,以 及线性规划问题的建模和求解方法。
数列与数学归纳法
复习数列的概念、通项公式、求和公 式,以及数学归纳法在证明数列问题 中的应用。
概率与统计
回顾概率的基本概念、事件的概率计 算、随机变量的分布和期望,以及统 计中的数据处理和分析方法。
07
概率统计初步
随机事件与概率
随机事件的定义与性质
了解随机事件的概念,掌握随机事件 的基本性质,如互斥事件、对立事件 等。
概率的定义与性质
古典概型与几何概型
掌握古典概型和几何概型的定义和计 算方法,能够运用古典概型和几何概 型解决简单的实际问题。
理解概率的定义,掌握概率的基本性 质,如非负性、规范性、可加性等。
高中数学必修五课件 整书全套
目录
• 绪论 • 数列与数学归纳法 • 不等式与不等式组 • 圆锥曲线与方程 • 空间向量与立体几何 • 导数与微分初步 • 概率统计初步 • 复习与总结
01
绪论
教材简介
本教材是高中数学必修五课程的配套课件,涵盖 01 了课程的所有知识点和教学要求。
课件内容以章节为单位,包括教学目标、知识点 02 讲解、例题分析、练习题等多个部分。
掌握双曲线的标准方程和一般方程,能够根据不同的条件选择合适的方程形式解决问题。
抛物线及其性质
抛物线的定义和方程
通过平面内与一个定点和一条定直线距离相 等的点的轨迹定义抛物线,并推导其标准方 程。
抛物线的几何性质
探讨抛物线的对称性、顶点、焦点、准线等几何性 质,并理解其在实际问题中的应用。
回顾三角函数的定义、性质、图像和 变换,以及三角函数在实际问题中的
应用。
不等式与线性规划
总结不等式的性质、解法和应用,以 及线性规划问题的建模和求解方法。
数列与数学归纳法
复习数列的概念、通项公式、求和公 式,以及数学归纳法在证明数列问题 中的应用。
概率与统计
回顾概率的基本概念、事件的概率计 算、随机变量的分布和期望,以及统 计中的数据处理和分析方法。
07
概率统计初步
随机事件与概率
随机事件的定义与性质
了解随机事件的概念,掌握随机事件 的基本性质,如互斥事件、对立事件 等。
概率的定义与性质
古典概型与几何概型
掌握古典概型和几何概型的定义和计 算方法,能够运用古典概型和几何概 型解决简单的实际问题。
理解概率的定义,掌握概率的基本性 质,如非负性、规范性、可加性等。
高中数学必修五课件 整书全套
目录
• 绪论 • 数列与数学归纳法 • 不等式与不等式组 • 圆锥曲线与方程 • 空间向量与立体几何 • 导数与微分初步 • 概率统计初步 • 复习与总结
01
绪论
教材简介
本教材是高中数学必修五课程的配套课件,涵盖 01 了课程的所有知识点和教学要求。
课件内容以章节为单位,包括教学目标、知识点 02 讲解、例题分析、练习题等多个部分。
高中数学必修5教材简介 PPT课件 图文
![高中数学必修5教材简介 PPT课件 图文](https://img.taocdn.com/s3/m/175cc2ffb9d528ea81c77997.png)
(8)理解并掌握解一元二次不等式的过程; (9)会求一元二次不等式解集; (10)掌握求解一元二次不等式的程序框图及隐含的算法思想, 会设计求解的过程;
(11)了解从实际情境中抽象出二元一次不等式(组)模型的 过程; (12)理解二元一次不等式(组)、二元一次不等式(组)的 解集的概念; (13)了解二元一次不等式的几何意义,理解(区域)边界的 概念及实线、虚线边界的含义; (14)会用二元一次不等式(组)表示平面区域,能画出给定 的不等式(组)表示的平面区域; (15)了解线性约束条件、目标函数、线性目标函数、线性规 划、可行解、可行域、最优解的概念; (16)掌握简单的二元线性规划问题的解法; (17)了解基本不等式的代数背景、几何背景以及它的证明过 程; (18)理解算术平均数,几何平均数的概念; (19)会用基本不等式解决简单的最大(小)值的问题; (20)通过基本不等式的实际应用,感受数学的应用价值。
正弦定理的证明体现从特殊到一般的归纳过程
正弦定理可以用于两类解三角形的问题: (1)已知三角形的任意两个角与一边,求其他 两边和另一角。 (2)已知三角形的两边与其中一边的对角,计 算另一边的对角,进而计算出其他的边和角。
正弦定理略去等于2R,目的是控制难度
余弦定理的证明体现了定性到定量分析的理性 思维
2.2 发展要求
(1)了解正、余弦定理与三角形外接圆半径的关系。
(2)利用正、余弦定理讨论三角形中的边角关系。
(3)条件允许的情况下,可多做几个实习作业,以 培养学生应用知识解决实际问题的能力。
2.3 说明
(1)可以利用计算机进行近似计算,但不要求太复 杂繁琐的运算。 (2)不必增加在立几情况下求解三角形的问题,可 在立体几何学习时适当拓展。 (3)应用问题应限制在正、余弦定理的简单应用 上。 (4)实习作业不要求太复杂的问题。
(11)了解从实际情境中抽象出二元一次不等式(组)模型的 过程; (12)理解二元一次不等式(组)、二元一次不等式(组)的 解集的概念; (13)了解二元一次不等式的几何意义,理解(区域)边界的 概念及实线、虚线边界的含义; (14)会用二元一次不等式(组)表示平面区域,能画出给定 的不等式(组)表示的平面区域; (15)了解线性约束条件、目标函数、线性目标函数、线性规 划、可行解、可行域、最优解的概念; (16)掌握简单的二元线性规划问题的解法; (17)了解基本不等式的代数背景、几何背景以及它的证明过 程; (18)理解算术平均数,几何平均数的概念; (19)会用基本不等式解决简单的最大(小)值的问题; (20)通过基本不等式的实际应用,感受数学的应用价值。
正弦定理的证明体现从特殊到一般的归纳过程
正弦定理可以用于两类解三角形的问题: (1)已知三角形的任意两个角与一边,求其他 两边和另一角。 (2)已知三角形的两边与其中一边的对角,计 算另一边的对角,进而计算出其他的边和角。
正弦定理略去等于2R,目的是控制难度
余弦定理的证明体现了定性到定量分析的理性 思维
2.2 发展要求
(1)了解正、余弦定理与三角形外接圆半径的关系。
(2)利用正、余弦定理讨论三角形中的边角关系。
(3)条件允许的情况下,可多做几个实习作业,以 培养学生应用知识解决实际问题的能力。
2.3 说明
(1)可以利用计算机进行近似计算,但不要求太复 杂繁琐的运算。 (2)不必增加在立几情况下求解三角形的问题,可 在立体几何学习时适当拓展。 (3)应用问题应限制在正、余弦定理的简单应用 上。 (4)实习作业不要求太复杂的问题。
高中数学必修五全套课件ppt讲义幻灯片
![高中数学必修五全套课件ppt讲义幻灯片](https://img.taocdn.com/s3/m/971ab1cf82d049649b6648d7c1c708a1284a0a04.png)
除b记作a|b,表示存在整数k,使得b=ak。
02 03
同余概念
同余是数论中的一个重要概念,表示两个整数除以某个正整数余数相同。 例如,a和b对模m同余记作a≡b(mod m),表示存在整数k,使得 a=b+km。
素数概念
素数是只有1和本身两个正因数的自然数,是数论研究的基础对象之一。 例如,2、3、5、7等都是素数。
绝对值不等式解法
绝对值不等式的定义
01
含有绝对值符号的不等式。
绝对值不等式的解法
02
根据绝对值的定义,将绝对值不等式转化为分段函数或一元一
次不等式组进行求解。
绝对值不等式的性质
03
包括对称性、非负性等。
04
函数与导数应用
函数概念及性质回顾
函数定义
函数是一种特殊的对应关 系,它表达了自变量与因 变量之间的依赖关系。
数列的性质
包括周期性、有界性、单调性等。
等差数列与等比数列
等差数列定义
01 相邻两项之差为常数的数列。
等差数列的通项公式
02 an=a1+(n-1)d,其中d为公差。
等差数列的性质
包括对称性、可加性等。
03
等比数列定义
04 相邻两项之比为常数的数列。
等比数列的通项公式
05 an=a1*q^(n-1),其中q为公比。
函数y=Asin(ωx+φ)的图象:振 幅、周期、相位变换对图象的影
响。
函数y=Asin(ωx+φ)的图象
振幅变换
A的变化对函数图象的影响,包括上下平移和伸缩 变换。
周期变换
ω的变化对函数图象的影响,包括左右平移和伸 缩变换。
相位变换
【人教B版】数学必修五(全书)课件(含本书所有课时)精美立体PPT
![【人教B版】数学必修五(全书)课件(含本书所有课时)精美立体PPT](https://img.taocdn.com/s3/m/b864ea3f240c844769eaeeeb.png)
等差数列
1、①、数列是怎样定义的? 如何从函数观点认识数列? 给出数列有哪两种主要方法 ?
3 你 的 恒 心 ,与 你的心 态有关 坚持不下去的另一个原因,恐怕是因为 我们想 太多。 健身两周,就希望身材赛过谁;看了两 本书, 就期待 生活有 什么不 同;勤 奋两个 月,就 算计着 什么时 候能够 功成名 就…… 人心都是肉长的,若是在它上面加了太 多的砝 码,它 就会不 堪重负 。 欲望太多,就不容易看到希望。 村上春树的第一部作品《且听风吟》和 第二部 作品《1 973年 的弹子 球》问 世后, 虽然让 他有了 一定的 知名度 ,但都 没有获 得日本 文学大 奖。 对此他十分淡然,觉得能写出让自己满 意的作 品才更 加重要 。 他后来在回忆这段经历时说,那时他还 在经营 餐厅, 甚至觉 得没得 奖也挺 好,至 少不会 没完没 了的接 待采访 和约稿 ,影响 了生意 。 听起来像玩笑,但实际上,无论写书, 还是跑 步,他 只是为 了迎合 自己, 达到为 自己设 定的目 标就好 。
解:在OAC中,
∵
sinb60°=
a
B1
sin∠OCA B2
C1 C2
60°
∴ sin∠OCA= 8 s7in60°≈0.9897, O a
A
过∴O作∠OOBC∥AA=C°,或∠°AO,B=°或°, ∴ ∠OAC=°或°,
∴ a·b= a b cos∠AOB=-44.0或-52.
例 3:已知向量a与a+b夹角为60°, 且 a =8,b =7,求a与b的夹角及a·b.
AAA AA AA
AA
ccccc cbc bbb bb
c
bc
b
B a CB a C
B aC
c2 = a2+b2 c2 > a2+b2 c2 < a2+b2
高中数学必修五全套ppt课件
![高中数学必修五全套ppt课件](https://img.taocdn.com/s3/m/047071775f0e7cd1842536c4.png)
• 1.任意三角形的内角和为________;三条边满足:两边之和________第三边,两边之差________第三 边,并且大边对________,小边对________.
• 2.直角三角形的三边长a,b,c(斜边)满足________定理,即________.
• [答案] 1.180° 大于 小于 大角 小角 2.勾股 a2+b2=c2
所以,b=
22,△ABC
外接圆的半径
R=
2 2.
3.解三角形 (1)定义:一般地,把三角形三个角 A、B、C 和它们的对边 a、b、c 叫做三角形的元素.已知三角形的几个元素求其他元 素的过程叫做解三角形. (2)利用正弦定理可以解决的两类解三角形问题: ①已知任意两角与一边,求其他两边和一角. ②已知任意两边与其中一边的对角,求另一边的对角(从而 进一步求出其他的边和角). (3)已知两边及其中一边对角,判断三角形解的个数的方 法:①应用三角形中大边对大角的性质以及正弦函数的值域判 断解的个数.
3 2<
23,
∴△ABC 有一解.
(2)sinB=bsina150°=1,∴△ABC 无解.
(3)sinB=bsina60°=190×
23=5 9 3,而
35 2<
9
3<1,
∴当 B 为锐角时,满足 sinB=593的 B 的取值范围为
60°<B<90°.
∴对应的钝角 B 有 90°<B<120°,也满足 A+B<180°,所以
• 当△ABC是钝角三角形时,如图(2)所示,也可类似证明.
• 对正弦定理的理解: • (1)适用范围:正弦定理对任意的三角形都成立. • (2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式. • (3)揭示规律:正弦定理指出的是三角形中三条边与对应角的正弦之间的一个关系式,它描述了三角形中边与
高中数学人教版必修五:基本不等式(共23张PPT)
![高中数学人教版必修五:基本不等式(共23张PPT)](https://img.taocdn.com/s3/m/74431d49f5335a8102d2209e.png)
基本不等式:
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
人教版高中数学教材必修5电子课本(高清版)
![人教版高中数学教材必修5电子课本(高清版)](https://img.taocdn.com/s3/m/7f65fd55fbd6195f312b3169a45177232f60e48c.png)
能力目标
培养学生的数学运算能力、逻辑推理能力、数学建模能力和数学创新能力。
2024/1/28
情感目标
培养学生对数学的兴趣和爱好,提高学生的数学素养和审美情趣。
5
教材特点与亮点
突出基础性
注重基础知识和基本技 能的训练,为后续学习
打下坚实的基础。
2024/1/28
强调思想性
通过数学史话、数学家 介绍等内容,渗透数学 思想和文化,培养学生
留出足够的时间进行复习 和模拟考试,查漏补缺。
30
应试技巧与心态调整方法
应试技巧
认真审题,明确题目要求和考查的知识点。
注意答题规范,步骤清晰,表达准确。
2024/1/28
31
应试技巧与心态调整方法
学会取舍,先易后难,确保基础题得分。
心态调整方法
2024/1/28
保持自信,相信自己经过认真备考一定能够取得好成绩。
题目2
已知等差数列 {an} 的前 n 项和为 Sn ,且 a1 = 1,S3 = 9,求数列 {an} 的通项公式及前 n 项和 Sn。
18
不等式与不等式组练习题
题目1
解不等式 |x - 2| + |x + 3| ≥ 7。
题目3
解不等式组 {x^2 - 3x + 2 > 0, x^2 - 5x + 6 < 0}。
的数学素养。
注重实践性
设置丰富的实际问题情 境,引导学生运用数学
知识解决实际问题。
6
体现时代性
引入现代数学和科技发 展的成果,反映数学在 现代社会中的应用和价
值。
02
知识点详解
2024/1/28
7
培养学生的数学运算能力、逻辑推理能力、数学建模能力和数学创新能力。
2024/1/28
情感目标
培养学生对数学的兴趣和爱好,提高学生的数学素养和审美情趣。
5
教材特点与亮点
突出基础性
注重基础知识和基本技 能的训练,为后续学习
打下坚实的基础。
2024/1/28
强调思想性
通过数学史话、数学家 介绍等内容,渗透数学 思想和文化,培养学生
留出足够的时间进行复习 和模拟考试,查漏补缺。
30
应试技巧与心态调整方法
应试技巧
认真审题,明确题目要求和考查的知识点。
注意答题规范,步骤清晰,表达准确。
2024/1/28
31
应试技巧与心态调整方法
学会取舍,先易后难,确保基础题得分。
心态调整方法
2024/1/28
保持自信,相信自己经过认真备考一定能够取得好成绩。
题目2
已知等差数列 {an} 的前 n 项和为 Sn ,且 a1 = 1,S3 = 9,求数列 {an} 的通项公式及前 n 项和 Sn。
18
不等式与不等式组练习题
题目1
解不等式 |x - 2| + |x + 3| ≥ 7。
题目3
解不等式组 {x^2 - 3x + 2 > 0, x^2 - 5x + 6 < 0}。
的数学素养。
注重实践性
设置丰富的实际问题情 境,引导学生运用数学
知识解决实际问题。
6
体现时代性
引入现代数学和科技发 展的成果,反映数学在 现代社会中的应用和价
值。
02
知识点详解
2024/1/28
7
高中数学必修五全册课件PPT(全册)人教版
![高中数学必修五全册课件PPT(全册)人教版](https://img.taocdn.com/s3/m/6e22920d54270722192e453610661ed9ad515510.png)
答:此船可以继续一直沿正北方向航行
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
高中数学ppt课件必修5
![高中数学ppt课件必修5](https://img.taocdn.com/s3/m/57f5fb42f68a6529647d27284b73f242336c3106.png)
空集
不含任何元素的集合称为空集 。
相等
如果两个集合A和B的元素完全 相同,则称集合A与集合B相等
。
5
集合的基本运算
01
02
03
04
并集
由所有属于集合A或属于集合 B的元素所组成的集合。
交集
由所有既属于集合A又属于集 合B的元素所组成的集合。
补集
对于一个集合A,由全集U中 所有不属于A的元素组成的集
23
06
数列与数学归纳法
2024/1/28
24
数列的概念及通项公式
数列的定义
按照一定顺序排列的一列数。
数列的通项公式
表示数列中任意一项与项数之间关系的公式。
常见数列类型
等差数列、等比数列、常数列等。
2024/1/28
25
等差数列与等比数列的性质
等差数列的性质
任意两项的差为常数;中项性质;前n项和公式等。
01
具有某种特定属性的事物的总体,称为集合。
集合的表示方法
Байду номын сангаас02
列举法和描述法。
集合中的元素
03
具有确定性、互异性和无序性。
4
集合间的基本关系
子集
对于两个集合A和B,如果集合 A的任何一个元素都是集合B的 元素,则称集合A是集合B的子
集。
2024/1/28
真子集
如果集合A是集合B的子集,且 A不等于B,则称集合A是集合B 的真子集。
02
余弦函数y=cosx的图像
也是一个以2π为周期的波动曲线,形状像波浪。在[0,π]区间内单调递
减,在[π,2π]区间内单调递增。
2024/1/28
高中数学必修五课件:2.4《等比数列(一)》(人教A版必修5)
![高中数学必修五课件:2.4《等比数列(一)》(人教A版必修5)](https://img.taocdn.com/s3/m/8f23ed3feff9aef8941e0648.png)
特别提醒:(1)利用等比中项可在成等比数列
的三数中“知二求一”.
(2)只有同号的两数才存在等比中项,且等比
中项有两个值,即 G=± ab.
3.通项公式的应用 通项公式 an=a1qn-1 反映了等比数列an的各项 与其序号 n 的函数关系,公式中含有 a1、q、n、an 四个量,常用作“知三求一”. 特别提醒:等比数列的通项公式体现了等比数 列的所有特性,可解决等比数列的有关问题,因而 要熟记公式,灵活地运用公式解决问题.
错因分析:注意b2的符号已经确定,且b2<0,忽视 了这一隐含条件,就容易产生上面的错误.
正解:∵-1,a1,a2,-4 成等差数列,设公差为 d, 则 a2-a1=d=13[(-4)-(-1)]=-1, ∵-1,b1,b2,b3,-4 成等比数列, ∴b22=(-1)×(-4)=4,∴b2=±2. 若设公比为 q,则 b2=(-1)q2,∴b2<0.
2 2 若 G 是 a5,a7 的等比中项,则应有 G2=a5·a7= a1q4·a1q6=a12q10=962·1210=9. ∴a5,a7 的等比中项是±3.
方法点评:(1)首项a1和q是构成等比数列的基本 量,从基本量入手解决相关问题是研究等比数列的基 本方法.
(2)本题要注意同号的两个数的等比中项有两个, 它们互为相反数,而异号的两个数没有等比中顶.
典例剖析
题型一 等比数列的通项公式
【例
1】
等比数列an
中
,a2=4,a5=-12,求通项
公式. 解:由 a2=4,a5=-12知aa11qq= 4=4-,12 ,
a1=-8, 解得q=-12,
∴所求通项公式为 an=-8·-12n-1.
方法点评:像等差数列的计算一样,等比数列中 基本量的计算是最重要、最基本的问题.
的三数中“知二求一”.
(2)只有同号的两数才存在等比中项,且等比
中项有两个值,即 G=± ab.
3.通项公式的应用 通项公式 an=a1qn-1 反映了等比数列an的各项 与其序号 n 的函数关系,公式中含有 a1、q、n、an 四个量,常用作“知三求一”. 特别提醒:等比数列的通项公式体现了等比数 列的所有特性,可解决等比数列的有关问题,因而 要熟记公式,灵活地运用公式解决问题.
错因分析:注意b2的符号已经确定,且b2<0,忽视 了这一隐含条件,就容易产生上面的错误.
正解:∵-1,a1,a2,-4 成等差数列,设公差为 d, 则 a2-a1=d=13[(-4)-(-1)]=-1, ∵-1,b1,b2,b3,-4 成等比数列, ∴b22=(-1)×(-4)=4,∴b2=±2. 若设公比为 q,则 b2=(-1)q2,∴b2<0.
2 2 若 G 是 a5,a7 的等比中项,则应有 G2=a5·a7= a1q4·a1q6=a12q10=962·1210=9. ∴a5,a7 的等比中项是±3.
方法点评:(1)首项a1和q是构成等比数列的基本 量,从基本量入手解决相关问题是研究等比数列的基 本方法.
(2)本题要注意同号的两个数的等比中项有两个, 它们互为相反数,而异号的两个数没有等比中顶.
典例剖析
题型一 等比数列的通项公式
【例
1】
等比数列an
中
,a2=4,a5=-12,求通项
公式. 解:由 a2=4,a5=-12知aa11qq= 4=4-,12 ,
a1=-8, 解得q=-12,
∴所求通项公式为 an=-8·-12n-1.
方法点评:像等差数列的计算一样,等比数列中 基本量的计算是最重要、最基本的问题.
高中数学必修5课件全册(人教A版)
![高中数学必修5课件全册(人教A版)](https://img.taocdn.com/s3/m/722e6533a4e9856a561252d380eb6294dd882274.png)
综上:这三数排成的等差数列为: 4 , 1, 2 或 2, 1, 4
第三十页,共150页。
Ⅱ 、运用等差、等比数列的性质
例2(1)已知等差数列 {满an足}
a1 a2 ,a10则1 0( )
C
A. a1 a101 0 B. a2 a100 0 C. a3 a99 0 D. a51 51
D
CD AD sin
h cos sin sin( )
B
A
C
第二十一页,共150页。
例3 (2007年山东卷)如图,甲船以每小时
海里的30速度2 向正北方航行,乙船按固定方向匀速直
线航行,当甲船位于A1处时,乙船位于甲船的北偏
西105°方向的B1处,此时两船相距20海里.当甲
船航行20分钟到达A2处时,乙船航行到甲
9
例6 在△ABC中,已知△ABC的面积 S= 3 AB BC,且存在实数λ使得
2
a+c=λb,求λ的取值范围.
(1,2]
第十六页,共150页。
作业:
P20习题1.2A组:12,13,14.
第十七页,共150页。
第一章 解三角形
单元复习
第三课时
第十八页,共150页。
解三角形的实际应用
第十九页,共150页。
an am ap aq an am 2ap
Sk , S2k Sk , S3k S2k 仍成等差
Sn
n(a1 2
an )
na1
n(n
1)d 2
G2 ab
an am ap aq an am ap2
Sk , S2k Sk , S3k S2k 仍成等比
Sn
a1
(1
q
n
高中数学必修五课件
![高中数学必修五课件](https://img.taocdn.com/s3/m/e3e672e7dc3383c4bb4cf7ec4afe04a1b071b09f.png)
建模技巧
根据实际问题,选择合适的决策变量,建立目标 函数和约束条件。
3
模型转化
对于一些非标准形式的线性规划问题,需要通过 模型转化将其转化为标准形式。
求解线性规划问题方法
单纯形法
单纯形法是求解线性规划问题的基本 方法,需要掌握其基本原理和计算步 骤。
对偶理论
对偶理论是线性规划中的重要内容, 通过求解对偶问题可以得到原问题的 解。
重点难点分析及学习建议
重点
一元二次不等式、数列、数学归 纳法、平面解析几何初步等是必 修五的重点内容,需要重点关注
和掌握。
难点
圆锥曲线与方程、概率统计等部 分可能存在一定的难度,需要加
强练习和理解。
学习建议
针对重点和难点内容,建议制定 详细的学习计划,多做练习题, 及时复习和总结。同时,积极参 与课堂讨论和探究活动,加深对
的例子。
高阶导数
03
介绍高阶导数的概念和求法,并给出相应的例子。
导数在函数中的应用
导数与单调性
通过导数判断函数的单调性, 并给出相应的例子。
导数与极值
通过导数判断函数的极值点, 并给出求极值的方法。
导数与最值
通过导数求函数的最值,并给 出相应的例子。同时介绍导数 在实际问题中的应用,如优化 问题等。
三角形的面积公式
如底乘高的一半、两边及其夹角正弦值的乘积的 一半等。
实际应用问题举例
测量问题
利用解三角形的方法, 解决测量中的高度、距
离等问题。
振动问题
利用三角函数的周期性 ,描述物体的振动现象
。
交流电问题
利用正弦、余弦函数描 述交流电的电压、电流 等物理量随时间的变化
规律。
其他领域应用
根据实际问题,选择合适的决策变量,建立目标 函数和约束条件。
3
模型转化
对于一些非标准形式的线性规划问题,需要通过 模型转化将其转化为标准形式。
求解线性规划问题方法
单纯形法
单纯形法是求解线性规划问题的基本 方法,需要掌握其基本原理和计算步 骤。
对偶理论
对偶理论是线性规划中的重要内容, 通过求解对偶问题可以得到原问题的 解。
重点难点分析及学习建议
重点
一元二次不等式、数列、数学归 纳法、平面解析几何初步等是必 修五的重点内容,需要重点关注
和掌握。
难点
圆锥曲线与方程、概率统计等部 分可能存在一定的难度,需要加
强练习和理解。
学习建议
针对重点和难点内容,建议制定 详细的学习计划,多做练习题, 及时复习和总结。同时,积极参 与课堂讨论和探究活动,加深对
的例子。
高阶导数
03
介绍高阶导数的概念和求法,并给出相应的例子。
导数在函数中的应用
导数与单调性
通过导数判断函数的单调性, 并给出相应的例子。
导数与极值
通过导数判断函数的极值点, 并给出求极值的方法。
导数与最值
通过导数求函数的最值,并给 出相应的例子。同时介绍导数 在实际问题中的应用,如优化 问题等。
三角形的面积公式
如底乘高的一半、两边及其夹角正弦值的乘积的 一半等。
实际应用问题举例
测量问题
利用解三角形的方法, 解决测量中的高度、距
离等问题。
振动问题
利用三角函数的周期性 ,描述物体的振动现象
。
交流电问题
利用正弦、余弦函数描 述交流电的电压、电流 等物理量随时间的变化
规律。
其他领域应用
新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法
![新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法](https://img.taocdn.com/s3/m/ca250e3189eb172dec63b703.png)
2.1数列的概念与
简单表示法(二)
第一页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
A. 380
B. 39 C. 32 D. 18
第二页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
第十三页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式: a1 1,
第十四页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2,
第十五页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
给出,
写出这个数列的前五项.
第二十四页,编辑于星期日:十三点 十七分。
讲解范例:
例1.已知数列{an}的第一项是1,以后
的各项由公式
1 an 1 an1 给出,
写出这个数列的前五项.
1, 2, 3 , 5 , 8 . 235
第二十五页,编辑于星期日:十三点 十七分。
小结:
若记数列 {an }的前n项之和为 Sn ,则
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,,
第十六页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,, an an1 2
第十七页,编辑于星期日:十三点 十七分。
他项.
3. 用递推公式求通项公式的方法: 观察法、累加法、迭乘法.
简单表示法(二)
第一页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
A. 380
B. 39 C. 32 D. 18
第二页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
第十三页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式: a1 1,
第十四页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2,
第十五页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
给出,
写出这个数列的前五项.
第二十四页,编辑于星期日:十三点 十七分。
讲解范例:
例1.已知数列{an}的第一项是1,以后
的各项由公式
1 an 1 an1 给出,
写出这个数列的前五项.
1, 2, 3 , 5 , 8 . 235
第二十五页,编辑于星期日:十三点 十七分。
小结:
若记数列 {an }的前n项之和为 Sn ,则
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,,
第十六页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,, an an1 2
第十七页,编辑于星期日:十三点 十七分。
他项.
3. 用递推公式求通项公式的方法: 观察法、累加法、迭乘法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
夹角的余弦的积
2.公式表达
a2=_____________, b2+c2-2bccosA
b2=_____________, a2+c2-2accosB
c2=_____________. a2+b2-2abcosC
3.变形
cosA=_b_2___c2___a 2_;cosB=_a_2__c_2__b_2_;cosC=_a_2__b_2__c_2_.
[A=90°,C=60°,c= ]
(2) b=40,c=20,C=45°.
无解
注:三角形中角的正弦值小于1时,角可能有两解
课堂小结
(1)正弦定理:
a sin A
b sin B
c sin C
=2R
(2)正弦定理应用范围:
① 已知两角和任意边,求其他两边和一角 ② 已知两边和其中一边的对角,求另一边
的对角。(注意解的情况)
sin A
sin B
a b c 2R sin A sin B sin C
B
a
O
C
b
C′
另证2:
A
c
b
haBiblioteka B Da证明:∵而
C ∴
同理
∴
剖析定理、加深理解
1.正弦定理可以解决三角形中的问题: ① 已知两边和其中一边的对角,求另一边 的对角,进而可求其他的边和角 ② 已知两角和一边,求其他角和边
2bc
2ac
2ab
【即时小测】 1.思考下列问题: (1)在△ABC中,若a2<b2+c2,则△ABC是锐角三角形吗? 提示:不一定.因为△ABC中a不一定是最大边,所以 △ABC不一定是锐角三角形.
1.1正正.1弦弦正定定弦理理定理
在Rt△ABC中,各角与其对边(角A的对边一 般记为a,其余类似)的关系:
A
c
c
不难得到:
c b
C
B
a
在非直角三角形ABC中有这样的关系吗?
C
b
A c
a B
若三角形是锐角三角形, 如图1,
A
过点A作AD⊥BC于D,
B
此时有
sin B
AD c
, sin C
AD b
已知两边和其中一边 的对角,求其他边和角
C
得 sin B bsin A 16
3 sin30
3
a
16
2
16 3
16
16
A 30°
所以B=60°,或B=120°
B
B
当B=60°时 C=90° c 32.
当B=120°时 C=30°
c asinC 16. sin A
变式: a=30, b=26, A=30°,解三角形.
A.
3
B.
6
C. 或 2 D. 或 5
33
66
a
练习3.在△ABC中,cosB
b
cos A,则△ABC的形状是(
)
A.等腰三角形
B.直角三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
1.1.2 余弦定理
【知识提炼】 余弦定理 1.文字表述 三角形中任何一边的平方等于___________________减 去这两边与它们的___________其__他__两的边两的倍平. 方的和
正弦定理的应用一:
已知两角和任意边,
求其他两边和一角
例 1.在△ABC 中,已知c = 10,
A
= 45。, C = 30。,解三角形 (精确到
0.01). C
b
a
Ac
B
B 105o,A 10 2,B 5( 6 2)
.
例 2. 已知a=16, b=16 3, A=30° .
解三角形. 解:由正弦定理
解:由正弦定理
C
26
30
得 sin B bsin A 26sin30 13 A 30°
B
a
30 30
所以B=25.7°, 或B=180°-25.7°=154.3°
由于154.3°+30°>180° 故B只有一解(如图) C=124.3°, c a sin C 49.57.
sin A
变式: a=30, b=26, A=30°,解三角形.
课后思考
已知两边和其中一边的对角,求其 他边和角时,三角形什么情况下有 一解,二解,无解?
例:在△ABC中,已知a=2,b= 2 2,A=45°, 求B和c。
变式1:在△ABC中,已知a=4,b= 2 2,A=45°, 求B和c。
变式2:在△ABC中,已知a= 求B和c。
,b=2 2 ,A=45°,
1 2
absin C
1 bc sin 2
A
1 2
ac sin
B
正弦定理: a b c = 2R sin A sin B sin C
(2)正弦定理的应用
课后作业
P10 习题1.1A组 1, 2(1)(2)
已知两边和其中一边的对角,求其他边和角 练习
根据下列条件解三角形 (1)b=13,a=26,B=30°.
解:由正弦定理
C
26
30
得 sin B bsin A 26sin30 13 A 30°
B
a
30 30
∵a > b ∴ A > B , 三角形中大边对大角
所以B=25.7°, C=124.3°,
c a sin C 49.57. sin A
课堂小结
(1)三角形常用公式:A B C
SABC
剖析定理、加深理解
2.A+B+C=π 3.大角对大边,大边对大角
剖析定理、加深理解
4.一般地,把三角形的三个角A,B,C 和它们的对边a,b,c叫做三角形的元 素。已知三角形的几个元素求其他元素 的过程叫做解三角形。
剖析定理、加深理解
5.正弦定理的变形形式 6.正弦定理,可以用来判断三角形的形 状,其主要功能是实现三角形边角关系 的转化
所以AD=csinB=bsinC, 即
b c, sin B sinC
c
b
图1 D
C
同理可得 a c ,
sin A sinC
若三角形是钝角三角形,且角C是钝角如图2, 过点A作AD⊥BC,交BC延长线于D,
此时也有
sin B
AD c
且
sin(
C)
AD b
sinC
仿(2)可得
A
c b
B 图2 C D
正弦定理应用二:
已知两边和其中一边对角,求另一边的对角,进
而可求其他的边和角。(要注意可能有两解)
自我提高!
练习1、在△ABC中,若A:B:C=1:2:3,则 a:b:c =( )
A.1:2:3
B.3:2:1
C.1: 3 :2
D.2: 3 :1
练习2.在△ ABC中,若 3 a=2bsinA,则B=( )
正弦定理:
在一个三角形中,各边和它所对角的 正弦的比相等.
即
思考:你能否找到其他证明正弦定理的方法?
另证1:
(R为△ABC外接圆半径)
证明:作外接圆O, 过B作直径BC′,连接AC′,
Q BAC 90,C C
c
sin C sin C c
2R
A
c 2R sin C
同理 a 2R, b 2R
2.公式表达
a2=_____________, b2+c2-2bccosA
b2=_____________, a2+c2-2accosB
c2=_____________. a2+b2-2abcosC
3.变形
cosA=_b_2___c2___a 2_;cosB=_a_2__c_2__b_2_;cosC=_a_2__b_2__c_2_.
[A=90°,C=60°,c= ]
(2) b=40,c=20,C=45°.
无解
注:三角形中角的正弦值小于1时,角可能有两解
课堂小结
(1)正弦定理:
a sin A
b sin B
c sin C
=2R
(2)正弦定理应用范围:
① 已知两角和任意边,求其他两边和一角 ② 已知两边和其中一边的对角,求另一边
的对角。(注意解的情况)
sin A
sin B
a b c 2R sin A sin B sin C
B
a
O
C
b
C′
另证2:
A
c
b
haBiblioteka B Da证明:∵而
C ∴
同理
∴
剖析定理、加深理解
1.正弦定理可以解决三角形中的问题: ① 已知两边和其中一边的对角,求另一边 的对角,进而可求其他的边和角 ② 已知两角和一边,求其他角和边
2bc
2ac
2ab
【即时小测】 1.思考下列问题: (1)在△ABC中,若a2<b2+c2,则△ABC是锐角三角形吗? 提示:不一定.因为△ABC中a不一定是最大边,所以 △ABC不一定是锐角三角形.
1.1正正.1弦弦正定定弦理理定理
在Rt△ABC中,各角与其对边(角A的对边一 般记为a,其余类似)的关系:
A
c
c
不难得到:
c b
C
B
a
在非直角三角形ABC中有这样的关系吗?
C
b
A c
a B
若三角形是锐角三角形, 如图1,
A
过点A作AD⊥BC于D,
B
此时有
sin B
AD c
, sin C
AD b
已知两边和其中一边 的对角,求其他边和角
C
得 sin B bsin A 16
3 sin30
3
a
16
2
16 3
16
16
A 30°
所以B=60°,或B=120°
B
B
当B=60°时 C=90° c 32.
当B=120°时 C=30°
c asinC 16. sin A
变式: a=30, b=26, A=30°,解三角形.
A.
3
B.
6
C. 或 2 D. 或 5
33
66
a
练习3.在△ABC中,cosB
b
cos A,则△ABC的形状是(
)
A.等腰三角形
B.直角三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
1.1.2 余弦定理
【知识提炼】 余弦定理 1.文字表述 三角形中任何一边的平方等于___________________减 去这两边与它们的___________其__他__两的边两的倍平. 方的和
正弦定理的应用一:
已知两角和任意边,
求其他两边和一角
例 1.在△ABC 中,已知c = 10,
A
= 45。, C = 30。,解三角形 (精确到
0.01). C
b
a
Ac
B
B 105o,A 10 2,B 5( 6 2)
.
例 2. 已知a=16, b=16 3, A=30° .
解三角形. 解:由正弦定理
解:由正弦定理
C
26
30
得 sin B bsin A 26sin30 13 A 30°
B
a
30 30
所以B=25.7°, 或B=180°-25.7°=154.3°
由于154.3°+30°>180° 故B只有一解(如图) C=124.3°, c a sin C 49.57.
sin A
变式: a=30, b=26, A=30°,解三角形.
课后思考
已知两边和其中一边的对角,求其 他边和角时,三角形什么情况下有 一解,二解,无解?
例:在△ABC中,已知a=2,b= 2 2,A=45°, 求B和c。
变式1:在△ABC中,已知a=4,b= 2 2,A=45°, 求B和c。
变式2:在△ABC中,已知a= 求B和c。
,b=2 2 ,A=45°,
1 2
absin C
1 bc sin 2
A
1 2
ac sin
B
正弦定理: a b c = 2R sin A sin B sin C
(2)正弦定理的应用
课后作业
P10 习题1.1A组 1, 2(1)(2)
已知两边和其中一边的对角,求其他边和角 练习
根据下列条件解三角形 (1)b=13,a=26,B=30°.
解:由正弦定理
C
26
30
得 sin B bsin A 26sin30 13 A 30°
B
a
30 30
∵a > b ∴ A > B , 三角形中大边对大角
所以B=25.7°, C=124.3°,
c a sin C 49.57. sin A
课堂小结
(1)三角形常用公式:A B C
SABC
剖析定理、加深理解
2.A+B+C=π 3.大角对大边,大边对大角
剖析定理、加深理解
4.一般地,把三角形的三个角A,B,C 和它们的对边a,b,c叫做三角形的元 素。已知三角形的几个元素求其他元素 的过程叫做解三角形。
剖析定理、加深理解
5.正弦定理的变形形式 6.正弦定理,可以用来判断三角形的形 状,其主要功能是实现三角形边角关系 的转化
所以AD=csinB=bsinC, 即
b c, sin B sinC
c
b
图1 D
C
同理可得 a c ,
sin A sinC
若三角形是钝角三角形,且角C是钝角如图2, 过点A作AD⊥BC,交BC延长线于D,
此时也有
sin B
AD c
且
sin(
C)
AD b
sinC
仿(2)可得
A
c b
B 图2 C D
正弦定理应用二:
已知两边和其中一边对角,求另一边的对角,进
而可求其他的边和角。(要注意可能有两解)
自我提高!
练习1、在△ABC中,若A:B:C=1:2:3,则 a:b:c =( )
A.1:2:3
B.3:2:1
C.1: 3 :2
D.2: 3 :1
练习2.在△ ABC中,若 3 a=2bsinA,则B=( )
正弦定理:
在一个三角形中,各边和它所对角的 正弦的比相等.
即
思考:你能否找到其他证明正弦定理的方法?
另证1:
(R为△ABC外接圆半径)
证明:作外接圆O, 过B作直径BC′,连接AC′,
Q BAC 90,C C
c
sin C sin C c
2R
A
c 2R sin C
同理 a 2R, b 2R