锻造工艺

合集下载

锻造成型工艺介绍

锻造成型工艺介绍
T回=(0.25—0.3)T熔 使原子回复到正常排列,消除了晶格扭曲,使加工硬 化得到部分消除。
* 再结晶:
当加热温度T再: T再=0.4T熔 原子获得更多热能,开始的某些碎晶或杂质为核心 构成新晶粒,因为是通过形核和晶核长大方式进行 的,故称再结晶。
再结晶后清除了全部加工硬化。
再结晶后晶格类型不变,只改变晶粒外形。
上升, 而塑性、韧 性下降。 * 原因:滑移面附近的 晶粒碎晶块, 晶格扭曲畸变, 增大滑移阻力, 使滑移难以 进行。
● 3、金属的回复与再结晶 * 回复:
冷作硬化是一种不稳定的现象,具有自发恢复到稳定 状态的倾向。室温下不易实现。当提高温度时,原子 获得热能,热运动加剧,当加热温度T回(用K氏温标)
●加工硬化的利用、消除
*利用:冷加工后使材料强度↑硬度↑。如冷拉
钢,不能热处理强化的金属材料。
*消除:再结晶退火(P29)650—750℃
● 热变形对金属组织和性能的影响 冷变形和热变形 * 冷变形
在再结晶温度以下的变形; 冷变形后金属强度、硬度较高,低粗糙度值。但 变形程度不宜过大,否则易裂。 * 热变形 再结晶温度以上变形。 变形具有强化作用,再结晶具有强化消除作用。在热变 形时无加工硬化痕迹。 金属压力加工大多属热变形,具有再结晶组织。
模膛 飞边槽
锤头
上模
分模面,parting plane 下模
模垫
⑵ 制坯模膛 * i) 拔长模膛 增加某一部分长度。 ii)滚压模膛 减小某部分横截面积,以增大另一部分横截面积,坯料长度基本
不变。 切断金属。
此外还有成型模镗,镦粗台, 击扁面等制坯模镗。
在设计和制造零件时,应使最大正应力的方向于纤维 方向重合,最大切应力的方向于纤维方向垂直。尽量 使纤维组织不被切断。

锻造工艺及产品介绍

锻造工艺及产品介绍

锻造成形的优势
1、 金属锻压件可以完成普通冲压件做不到的壁厚不一致产品,它可 以避免激光焊接、冲压铆合螺柱等工序的发生
锻造成形的优势
2、相对于金属压铸产品的锻造件表面质量好,且我们通常会选择塑性比较好的 铝合金材料来做锻压产品, 它可以进行表面的抛光、喷砂、拉丝、阳极等表面处 理工艺
锻造成形的优势
连续式超声波清洗机
单体式超声波清洗机
锻造件结构设计原则
锻造件形状设计主要考虑的因素:
1.工艺性:重点要考虑金属流动性,特征直角处采用圆角过渡,减少成型 工序和中间的退火次数,将锻造压力减到最小为标准; 2.材料利用率及减少切削成本:减少切削加工部位及余量,降低原料损耗; 3.品质:品质和精度容易控制和保证; 4.模具结构:模具结构根据产品特征排列成平衡方式,避免金属流动性造 成模具损坏和特征偏心。
3、增加产品的金属质感,还可以对电子辐射起到屏蔽作用,这些都是 塑料件无法具有的特点。
目前新开发的手机外壳的趋势就是往金属方向发展
锻造工艺介绍
下料
清洗
退火
沾油
成型
切边/ 冲孔
检验
包装
锻造工
成型一(热锻)
冲孔
清洗
分切
成型二
退火
锻造工艺介绍
下料:
C2680 -H铜棒 下料后
清洗后
锻造工艺介绍
退火:
退火产品
锻造工艺介绍
成形二:
500T-油压机
成型模
锻造工艺介绍
分切:
冲床
冲孔模
分切前
分切后
锻造工艺介绍
结论:
热压锻造工艺之所以能够在锻件精化上发挥作用,主要原因有: (1)锻造过程接近材料的真实塑性变形,锻造过程不考虑温降影响,将复杂问题简单化, 即将材料变形本构模型简单化,有利于锻件变形过程流动规律和组织性能演变的控制; (2)热压锻造可以减少变形死区的产生,从而减少机械加工余量,起到精化锻件的作用; (如图1) (3)热压锻造大幅度减小了机床吨位,提高模具寿命以较少的变形工步成形具有复杂形状 的锻件(如图2)

传统锻造工艺与现代锻造工艺的比较

传统锻造工艺与现代锻造工艺的比较

传统锻造工艺与现代锻造工艺的比较传统锻造工艺和现代锻造工艺是金属材料加工中常用的两种工艺,它们在工艺流程、材料利用率、成品质量等方面存在一定的差异。

本文将对传统锻造工艺和现代锻造工艺进行比较,并探讨其优缺点。

1. 工艺流程比较传统锻造工艺主要包括预热、锻打和冷却三个步骤。

在预热阶段,金属材料通过加热到一定温度,以提高其塑性;接下来进行锻打,即将金属材料放置于锻模中进行锤击或压缩,使其形成所需要的形状;最后冷却以固化成品。

现代锻造工艺则采用更加先进的方法,如热锻、冷锻、等离子锻造、气体锻造等。

这些工艺中,热锻是最常用的一种。

它与传统锻造工艺的不同之处在于,在预热阶段,金属材料的温度更高,以增加其塑性;另外,现代锻造工艺使用更精细的锻模,可以制造更复杂的形状。

2. 材料利用率比较传统锻造工艺在锻打过程中,需要预留较大的余量,以便在锤击和压缩时材料能够填充锻模的空腔。

这样一来,传统锻造工艺在材料利用率上较低。

而现代锻造工艺采用更精准的工艺流程,能够大大减少或避免余量,从而提高材料利用率。

这对于昂贵的金属材料来说十分重要,可以减少浪费,降低成本。

3. 成品质量比较传统锻造工艺由于锻打时的冲击力较大,容易产生微裂纹,对于某些高精度要求的产品不太适用。

而现代锻造工艺采用更加精细的工艺流程和先进的设备,能够在材料变形中保持相对均匀的应变场,大大减少裂纹的产生,提高了成品质量。

另外,现代锻造工艺由于使用了数控技术和自动化设备,能够精确控制温度、力度和速度等参数,使成品的尺寸精度更高。

4. 环保性比较传统锻造工艺中,由于需要使用高温煤气或电能加热金属材料,会产生大量的废气和废水,对环境造成污染。

而现代锻造工艺由于采用了清洁能源或低能耗的加热方式,较少废气和废水的排放,更符合现代社会对环境保护的要求。

综上所述,传统锻造工艺和现代锻造工艺在工艺流程、材料利用率、成品质量和环保性等方面存在一定差异。

随着科技的不断进步,现代锻造工艺具有更多优势,成为金属材料加工领域的主流工艺。

锻造工艺的基本过程

锻造工艺的基本过程

锻造工艺的基本过程锻造是一种通过对金属材料施加压力,使其发生塑性变形,从而改变其形状和尺寸的加工方法。

它是金属加工领域中最古老、最常用的一种方法之一。

本文将详细介绍锻造工艺的基本过程。

1. 材料准备在进行锻造之前,首先需要准备好所需的金属材料。

常见的锻造材料包括钢、铝、铜等。

这些材料通常以坯料或棒材的形式供应。

在选择材料时,需要考虑其化学成分、力学性能和适应性等因素。

2. 加热加热是锻造过程中非常重要的一步。

通过将金属材料加热到适当的温度,可以提高其塑性和可变形性,从而更容易进行锻造操作。

不同材料有不同的加热温度要求,通常使用电阻加热炉或气体加热炉进行加热。

3. 锻造操作3.1 锤击式锻造锤击式锻造是最常见也是最古老的一种锻造方法。

它通常使用锻锤或锻压机来施加冲击力,将加热的金属材料塑性变形成所需的形状。

在锤击式锻造中,操作人员需要将加热的金属坯料放置在模具中,然后通过锤击或压力施加力量,使金属材料发生塑性变形。

3.2 模压式锻造模压式锻造是一种通过将金属材料压入预制模具中进行塑性变形的方法。

它通常使用液压机或机械压力机来施加力量。

在模压式锻造中,操作人员需要将加热的金属坯料放置在模具中,然后通过机械或液压力量使其变形成所需的形状。

3.3 自由锻造自由锻造是一种没有使用预制模具的锻造方法。

在自由锻造过程中,操作人员根据需要手工操作金属材料,并通过施加力量使其发生塑性变形。

这种方法常用于制作复杂形状和小批量的零件。

4. 补偿处理在进行锻造过程中,由于金属材料受到较大的力量和温度变化,可能会导致内部应力和变形。

为了消除这些问题,需要进行补偿处理。

常见的补偿处理方法包括热处理、机械加工和表面处理等。

5. 检验与修整完成锻造过程后,需要对所得到的锻件进行检验。

常见的检验方法包括外观检查、尺寸测量和材料性能测试等。

如果发现问题或不合格之处,需要进行修整或重新锻造。

6. 表面处理最后一步是对锻件进行表面处理。

锻造工艺的工艺特点

锻造工艺的工艺特点

锻造工艺的工艺特点
锻造工艺是通过对金属材料进行加热、锤击、压制等操作,使其在一定条件下产生塑性变形从而形成所需形态的工艺。

以下是锻造工艺的特点:
1. 塑性较好:锻造工艺是通过对金属材料进行加热,使其变得更加柔软、易塑性变形,因此适合于制造一些比较复杂的形状。

2. 结构均匀:由于锻造工艺的加工过程比较均匀,因此所制作的零部件或产品具有结构均匀的特点。

3. 制造范围广:锻造工艺适用于制造各种尺寸、各种材质的零部件和产品。

4. 生产效率低:与其他加工工艺相比,锻造工艺的生产效率相对比较低。

5. 制品精度较高:锻造工艺制造的零部件或产品具有较高的精度,通常可以达到毫米级或亚毫米级的精度。

6. 设备成本高:锻造工艺通常需要投入较高的设备成本,包括锤击机、压力机、冲床等设备。

7. 制造周期长:由于锻造工艺需要对材料加热、制造过程复杂,在工艺特点上相对于其他加工工艺,制造周期比较长。

综上所述,锻造工艺是一种适用范围广、加工制度和结构均匀的工艺,但由于生产效率低、设备成本高等原因,使得锻造工艺在实际应用中需要仔细考虑。

锻造工艺的概念和分类

锻造工艺的概念和分类

锻造工艺的概念和分类
锻造工艺是一种通过施加力量和热量将金属材料变形成所需形状的制造方法。

锻造工艺可以分为以下几种分类:
1. 锻造温度分类:根据输入能量的形式,可以将锻造工艺分为冷锻、热锻和半热锻三类。

冷锻是在室温下进行的锻造工艺;热锻是在高温下进行的锻造工艺,其温度通常在再结晶温度以上;半热锻是介于冷锻和热锻之间的温度下进行的锻造工艺。

2. 锻造设备分类:根据施加力量的方式和设备的类型,可以将锻造工艺分为手工锻造、机械压力锻造、液压锻造和气动锻造等几类。

3. 锻造方法分类:根据金属材料在锻造过程中的变形方式,可以将锻造工艺分为自由锻造、模锻、粉末冶金锻造和特殊锻造等几类。

自由锻造是指将金属材料置于锻模之间施加锻击力来实现变形的锻造方法;模锻是在金属材料周围设置一定形状的模具,通过挤压和压缩变形金属来实现锻造的工艺;粉末冶金锻造是通过将金属粉末和粘结剂混合后进行成型和锻造的工艺;特殊锻造是指一些特殊的锻造方法,如旋压锻、横剪锻、搓锻等。

4. 锻造产品分类:根据产品的形状和用途,可以将锻造工艺分为轴类锻件、盘类锻件、复杂形状锻件和板类锻件等几类。

轴类锻件主要是指长度大于直径的圆柱体形锻件,如轴、销、凸轮等;盘类锻件主要是指直径大于长度的扁圆形锻件,如齿轮、法兰等;复杂形状锻件主要是指形状复杂、截面变化较大的锻
件;板类锻件主要是指长宽比大于3的薄板形锻件。

以上是常见的锻造工艺的分类,根据具体情况和需求,还可以进一步细分和分类。

锻造工艺

锻造工艺

一、自由锻只用简单的通用性工具,或在锻造设备上、下砧间直接使坯料变形而获得所需的几何形状及内部质量的锻件,称为自由锻。

1、基本工序可分为拔长、镦粗、冲孔、弯曲等。

拔长:也称为延伸,它是使坯料横断面积减小、长度增加的锻造工序。

镦粗:是使毛坯高度减小,横断面积增大的锻造工序。

冲孔:是利用冲头在镦粗后的坯料上冲出透也或不透孔的锻造方法。

弯曲:采用一定的工模具将毛坯弯成所规定的外形的锻造工序。

2、自由锻的特点及应用特点:工艺灵活性较大,生产准备的时间较短;生产率低,锻件精度不高,不能锻造形状复杂的锻件。

应用:自由锻是大型锻件的主要生产方法。

这是因为自由锻可以击碎钢锭中粗大的铸造组织,锻合钢锭内部气孔、缩松等空洞,并使流线状组织沿锻件外形合理分布。

二、胎模锻胎模锻是在自由锻设备上使用可移动模具(胎模)生产模锻件的一种锻造方法。

特点:与自由锻相比较优点①由于坯料在模膛内成形,所以锻件尺寸比较精确,表面比较光洁,流线组织的分布比较合理,所以质量较高。

②由于锻件形状由模膛控制,所以坯料成形较快,生产率比自由锻高1~5倍。

③胎模锻能锻出形状比较复杂的锻件。

④锻件余块少,因而加工余量较小,既可节省金属材料,又能减少机加工工时。

缺点:需要吨位较大的锻锤;只能生产小型锻件;胎模的使用寿命较低;工作时一般要靠人力搬动胎模,因而劳动强度较大。

应用:胎模锻用于生产中、小批量的锻件。

三、锤上模锻简称模锻,它是在模锻外向锤上利用模具(锻模)使毛坯变形而获得锻件的锻造方法。

特点:与自由锻、胎模锻比较有如下优点①生产效高②表面质量高,加工余量小,余块少甚至没有,尺寸准确,锻件公差比自由锻小2/3~3/4,可节省大量金属材料和机械加工工时。

③操作简单,劳动强度比自由锻和胎模锻都低。

缺点:①模锻件的重量受到一般模锻设备能力的限制,大多在50~70kg以下;②锻模需要贵重的模具钢,加上模膛的加工比较困难,所以锻模的制造周期长、成本高;③模锻设备的投资费用比自由锻大。

锻造工艺学(完整版)课件

锻造工艺学(完整版)课件
确保原材料质量符合要求,减 少缺陷的产生。
控制锻造工艺参数
如温度、压力、时间等,以获 得最佳的锻造效果。
制定检验标准
对锻造产品进行严格的质量检 验,确保产品符合标准。
持续改进
根据质量反馈,不断优化锻造 工艺和质量控制措施。
质量检测方法
目视检测
通过肉眼或低倍放大镜观察产品表面和内部 质量。
无损检测
利用X射线、超声波等无损检测技术对产品 内部进行检测。
有色金属
复合材料
如铜、铝、锌等,具有良好的导热性和塑 性,适用于制造要求轻量化和美观的零件 。
由两种或多种材料组成,具有优异的性能 ,如高强度、高刚性和轻量化,适用于航 空、航天等高科技领域。
锻造工具
锻锤
是最常用的锻造工具之 一,通过敲击使材料变 形,达到锻造的目的。
压力机
通过施加压力使材料变 形,适用于大型和重型
提高材料利用率和降低成本
通过合理的锻造工艺,可以减少材料浪费,降低生产成本。
锻造工艺的历史与发展
古代锻造工艺
现代锻造工艺
人类早期的锻造工艺主要采用简单的 锤击和砧打方式,用于制作工具和武 器。
随着科技的不断进步,锻造工艺在材 料、设备、工艺控制等方面取得了重 大突破,广泛应用于航空、航天、汽 车、能源等领域。
分类
锻造工艺学根据不同的分类标准可以 分为多种类型,如按变形温度可分为 热锻、温锻和冷锻;按变形程度可分 为自由锻、模锻和精密锻造等。
锻造工艺的重要性
提高金属材料的力学性能
通过塑性变形消除金属内部的缺陷,提高其力学性能,如强度、 韧性等。
实现复杂形状零件的成形
锻造工艺能够将金属材料加工成具有复杂形状和尺寸要求的零件, 满足各种工程应用需求。

锻造工艺的特点及应用场合

锻造工艺的特点及应用场合

锻造工艺的特点及应用场合锻造工艺是一种通过对金属进行变形加工的工艺,其特点是具有高强度、高韧性、高耐磨性的特点。

在锻造工艺中,金属材料在受到一定的压力和变形力的作用下,会发生塑性变形,从而形成所需的形状和尺寸。

锻造工艺广泛应用于航空航天、汽车、船舶、机械制造、军工等领域,是一种非常重要的金属加工工艺。

锻造工艺的特点主要包括以下几个方面:1. 高强度:通过锻造工艺加工的金属零件具有较高的强度,因为在锻造过程中,金属晶粒会发生再排列,从而提高了材料的密实性和强度。

2. 高韧性:由于锻造过程中金属材料会产生塑性变形,因此锻造零件具有较好的韧性,能够承受一定的冲击和振动。

3. 高耐磨性:锻造工艺可以提高金属表面的硬度,从而增加了材料的耐磨性,使锻造零件在磨损和摩擦方面表现出色。

4. 精度高:锻造工艺可以制造复杂形状的零件,并且可以得到较高的尺寸精度,因此广泛用于制造高精度的工程零件。

在航空航天领域,锻造工艺常用于制造飞机发动机零件、飞机结构件、火箭发动机零件等。

例如,飞机的发动机叶片就是采用锻造工艺制造的,因为锻造工艺可以制造出强度高、耐高温、耐腐蚀的叶片,满足航空航天领域对零件高强度、高耐高温性能的要求。

在汽车制造领域,锻造工艺常用于制造汽车发动机零件、变速箱零件、悬挂系统零件等。

例如,汽车的转向轴、传动轴等重要零件都是采用锻造工艺制造的,因为锻造工艺可以使这些零件具有较高的强度和耐磨性,保证汽车在使用过程中的安全性和可靠性。

在船舶制造领域,锻造工艺常用于制造船用发动机零件、轴承零件、锚链等。

例如,船用发动机的曲轴、活塞、连杆等关键零件都是采用锻造工艺制造的,因为锻造工艺可以提高这些零件的强度和耐腐蚀性能,适应海洋恶劣环境下的使用需求。

在机械制造领域,锻造工艺常用于制造重型机械零件、农机零件、工程机械零件等。

例如,锻造工艺可以制造出具有高强度和耐磨性的轴承零件、齿轮零件、螺栓螺母等,保证机械设备在使用过程中的稳定性和可靠性。

锻造工艺知识点总结

锻造工艺知识点总结

锻造工艺知识点总结1. 材料准备在锻造工艺中,材料的选择对成品的质量和性能有着直接的影响。

常见的锻造材料包括碳钢、合金钢、不锈钢、铝合金、铜合金等。

在选择材料时,需要考虑其机械性能、化学成分、热处理性能等因素。

同时,还需要根据锻造零件的形状、尺寸和用途来确定材料的种类和规格。

在准备材料时,需要注意保持材料的表面清洁,并严格控制材料的质量。

2. 设备操作锻造设备是进行锻造工艺的关键设备,其操作技术和安全生产是非常重要的。

常见的锻造设备包括锻造机、冷镦机、液压机等。

在设备操作过程中,需要严格遵守操作规程,正确使用设备,保持设备的良好状态。

同时,还需要对设备进行定期检查和维护,及时发现和排除设备故障,确保设备的安全和稳定运行。

3. 工艺参数在进行锻造工艺时,需要控制一定的工艺参数,以确保锻造件的质量和形状。

常见的工艺参数包括温度、压力、锻造速度、模具形状等。

在锻造过程中,需要根据不同的材料和锻造件的形状和尺寸来确定合适的工艺参数。

通过合理控制工艺参数,可以有效地提高锻造件的性能和表面质量。

4. 质量控制质量控制是锻造工艺的重要环节,对于保证锻造件的质量和性能至关重要。

在进行锻造过程中,需要对每一道工序进行质量检验和控制,确保每一个工艺环节的质量达标。

在锻造件成形后,还需要对其进行尺寸测量、力学性能测试、表面质量检查等多项质量检验,以验证其质量和性能是否满足要求。

总之,锻造工艺是一项复杂而又重要的金属加工工艺,需要掌握一定的知识和技能。

在实际生产中,需要严格按照工艺流程和操作规程进行操作,确保锻造件的质量和性能。

希望通过本文的总结,能够对锻造工艺有更深入的了解和认识,为相关从业人员提供一定的参考和指导。

锻造工艺的概念

锻造工艺的概念

锻造工艺的概念一、引言锻造工艺是一种通过对金属材料进行加热、变形和冷却等操作,来改变金属内部晶体结构和外形的工艺技术。

锻造工艺从古代以来就被广泛应用于金属加工领域,不仅可以提高金属的强度和韧性,还可以制造出各种形状复杂的构件。

本文将从锻造工艺的定义、分类、过程和应用等方面对其进行全面、详细、完整和深入的探讨。

二、锻造工艺的定义锻造工艺是指通过将金属材料加热至其塑性状态,然后施加压力使其产生塑性变形,最终获得所需形状的制造工艺。

锻造工艺在金属加工中占有重要地位,它可以改变金属的内部晶体结构,提高材料的力学性能,增加金属的密度,减小材料的晶格缺陷,从而使金属具有更好的强度、韧性和硬度等特性。

三、锻造工艺的分类锻造工艺根据加热温度、应用于金属材料的压力和形变速率的不同,可以分为以下几种类型:1. 热锻热锻是指在金属材料高温状态下进行的锻造工艺。

通过加热金属材料至其变形温度以上,使其变得柔软,并施加一定的压力和形变速率,以实现金属的塑性变形。

2. 冷锻冷锻是指在常温下进行的锻造工艺。

相对于热锻而言,冷锻的材料硬度较高,精度较高,并且可以避免由于高温引起的氧化和变形。

3. 温锻温锻是介于热锻和冷锻之间的锻造工艺。

在温度较低的条件下进行锻造,既可以降低材料的变形力度,又能够保持一定的塑性和可变形性。

4. 等静压锻造等静压锻造是指利用静态液压力将金属材料加热至高温进行锻造的工艺。

与其他类型的锻造工艺相比,等静压锻造可以制造出更为复杂的形状,并且材料的力学性能更加均匀。

四、锻造工艺的过程锻造工艺主要包括以下几个基本过程:1. 加热将金属材料加热至其变形温度以上,使其达到塑性状态,以便于进行后续的变形。

2. 变形通过施加压力,使金属材料发生塑性变形。

变形过程可以通过锤击、挤压、滚压等不同的方式进行。

3. 冷却将变形后的金属材料进行快速冷却,以固化其内部结构,提高强度和硬度。

4. 补正对变形后的金属材料进行修整和修饰,使其达到所需的精度和形状要求。

锻造工艺

锻造工艺

第一章,锻造用材料准备1`锻造是金属塑性成形工艺的一种,属于体积成形技术. 锻造就是要使金属由一种形态在无切削的情况下变形为另一种形态的过程,通常需要大型设备。

2`为什么要锻造改善组织性能;提高材料利用率。

3`模锻根据使用的设备:锤上模锻——模锻锤./螺旋压力机上模锻——螺旋压力机./锻压机上模锻——模锻压力机、平锻机、模锻液压机等4`锻造生产流程:备料—加热—锻造—热处理—清理—校正—质检5`优势:锻件的力学性能高/ 模锻具有较高的生产效率/可提高材料利用率不足:工艺难度大/工作条件差/对环境有一定的影响6锻造用原材料从材质上分黑色金属/有色金属有色金属:铝合金镁合金铜及其合金钛合金镍合金等..从形态上分:钢锭(大型锻件)/轧材、挤压棒材和锻坯(中小型锻件).7锻造用钢锭8钢锭的内部缺陷(1)偏析:各处的成分、杂质分布不均匀(2)夹杂:冶炼中氧化物、硫化物、硅酸盐等非金属夹杂外来夹杂物(3)气体:钢锭中的有害气体(氢、氧等)(4)气泡:主要分布在钢锭的冒口、底部及中心部位(5)缩孔:在最后凝固的冒口区,由于冷凝结晶时没有钢液补充而形成孔洞性缺陷组织,同时含有大量杂质。

(6)疏松:主要集中在钢锭中心部位,产生的原因与缩孔相同,它使钢锭组织致密度降低。

9晶粒度:用于描述晶粒大小的参数,常用的是1~8级。

常用的表示方法:8级的晶粒实际平均长度0.0196mm。

1级的晶粒实际平均长度0.222mm。

单位体积的晶粒数目(ZV)单位面积内的晶粒数目(ZS)晶粒的平均线长度(或直径)10下料方法剪切下料是一种普遍采用的方法(专用剪床、曲柄压力机、液压机、锻锤)优点:(a)效率高、操作简单(b)断口无金属损耗、模具费用低(c)对设备要求低缺点:(a)坯料局部被压扁(b)端面不平整(c)剪断面常有毛刺和裂缝(d)下料不准确锯切法(圆盘锯、弓形据、带锯)优点:(a)下料长度准确(b)端面平整缺点:(a)生产效率低(b)锯口有材料损耗切割法(利用气割器或普通焊枪,把坯料局部加热至熔化温度,逐步使之熔断。

锻造工艺过程

锻造工艺过程

锻造工艺过程全文共四篇示例,供读者参考第一篇示例:锻造工艺是一种将金属加热至柔软状态后,通过压力加工、挤压或冲击等方式来改变金属的形态和力学性能的加工方法。

锻造工艺是金属加工工艺中最古老、最基本的方法之一,其在现代工业生产中仍然占有重要地位。

从最初简单的手工锻造到现代高度自动化的数控锻造,锻造工艺经历了多年的发展和进步,已经成为制造业中不可或缺的重要环节。

锻造工艺的基本过程包括原料预处理、加热、成型、冷却和后续处理等环节。

下面我们来详细介绍一下锻造工艺的整个过程。

原材料的选择和预处理是锻造工艺的第一步。

在进行锻造加工之前,必须对原料进行严格的筛选和检查,确保原料的质量和性能符合要求。

通常情况下,我们会选择具有良好可锻性和变形性的金属材料作为锻造原料,如碳素钢、合金钢、铝合金等。

在选择好原料后,需要对原料进行预处理,包括锻造前的切割、清洗和加热等工序。

接下来是加热阶段。

在锻造加工中,金属原料需要被加热至其变软和容易塑性变形的状态。

通常情况下,金属原料会被加热到适当的温度范围,以确保在锻造过程中材料保持足够的可塑性。

加热的方式主要有火焰加热、电阻加热和感应加热等方法。

然后是成型阶段。

在金属材料被加热至适当温度后,会被送入锻造机器中进行成型加工。

根据不同的锻造工艺和要求,成型过程有很多种方式,如自由锻造、模压锻造、冷锻、热锻等。

通过锻造机器的压力和模具的设计,金属原料会在加热后通过变形和压力塑造成所需形状和尺寸。

冷却是锻造工艺的下一个重要环节。

在成型完成后,金属件会被送入冷却设备中进行快速冷却,以稳定金属结构和提高金属性能。

冷却的方式一般采用水冷却或气冷却等方法,可以有效控制金属的晶粒大小和结构组织,从而提高材料的强度、硬度和韧性。

最后是后续处理。

在金属件经过锻造加工后,通常需要经过一些后续处理工序来进一步提高其性能和质量。

后续处理工序包括清洗、表面处理、热处理、精加工和检验等环节。

通过这些工序,可以使金属件表面更光滑、更均匀,同时通过热处理和精加工等方式提高其机械性能和耐磨性。

锻造工艺方式方法

锻造工艺方式方法

锻造工艺方式方法锻造是一种通过加热金属材料后进行塑性变形的工艺,其目的是获得所需的形状和尺寸,并提高材料的机械性能。

在锻造过程中,金属材料通常会被加热至其塑性温度以上,然后施加外力来改变其形状。

锻造工艺方式和方法主要包括锤击锻造、压力锻造、转矩锻造和挤压锻造等。

锤击锻造是一种传统的锻造工艺,它利用锻锤对金属材料进行变形。

在锤击锻造中,金属材料被加热至适当温度后,放置在锻锤工作台上,锻锤将其重复击打以改变其形状。

这种方式适用于制造较大、较重的金属零件,如汽车发动机曲轴。

压力锻造是一种利用机械压力对金属材料进行塑性变形的工艺。

它通常使用液压机或机械压力机,将金属材料放置在工作台上,施加压力来改变其形状。

压力锻造可以用于制造各种形状和尺寸的金属零件,如齿轮、连杆等。

转矩锻造是一种应用于锻造大型轴类零件的方法。

它是通过将金属材料夹持在一对旋转的杆件之间,然后施加扭矩来使其塑性变形。

这种方式可以制造出大直径的轴类零件,如风电机组主轴。

挤压锻造是一种在两个模具之间通过压力使金属材料挤压成为所需形状的工艺。

这种方式适用于制造复杂形状的零件,如铁路轨枕等。

在锻造过程中,还可以使用不同的锻造技术,如冷锻、热锻和等温锻造。

冷锻是在室温下进行的锻造,适用于低碳钢和合金钢等强韧性较好的材料。

热锻是在高温下进行的锻造,可以增强金属材料的塑性,适用于锻造高碳钢和不锈钢等材料。

等温锻造是在材料到达准确的温度后进行的锻造,以确保材料在整个锻造过程中保持稳定的温度。

总而言之,锻造工艺方式和方法根据金属材料的要求和所需零件的形状尺寸的不同而选择,通过锤击、压力、转矩和挤压等方式塑性变形金属材料,从而制造出高强度、高精度的金属零件。

锻造工艺介绍

锻造工艺介绍

锻造工艺介绍
锻造工艺,是指利用金属的塑性,使之成为具有一定形状、尺寸和性能的工件,以达到改变其形状、尺寸或改善其组织性能的方法。

锻造是在常温下,利用金属或非金属的塑性变形,使之产生塑性流动、压力加工或两者并用的加工方法。

锻造工艺有自由锻、模锻、冷锻、挤压等。

在自由锻中,坯料被压缩成坯,其形状和尺寸可得到控制;在模锻中,坯料被加热到锻造温度并在模锻压力作用下成形;在挤压中,挤压模具和金属从变形模腔中挤出而获得各种形状的工件。

锻造是用锻件所具有的塑性变形来代替原金属材料中的部分结晶应力或结晶压力,从而改变原材料内部组织结构以提高其性能和使用寿命的一种加工方法。

锻造按其作用不同可分为机械锻造(或称机械加工)和热锻造(或称热加工)。

锻造是使金属坯料产生塑性变形以获得一定形状和尺寸锻件的方法。

在金属塑性变形过程中,由于变形程度不同,可获得不同形状和尺寸的锻件。

锻造分为自由锻和模锻两种。

— 1 —
自由锻是利用金属塑性变形后产生的弹性回复力使锻件成形的一种方法。

— 2 —。

各种锻造知识点总结

各种锻造知识点总结

各种锻造知识点总结一、锻造工艺及原理1.1 锻造的定义与分类锻造是一种通过对金属材料进行冷、热变形,改变其内部晶体结构,以获得所需形状和性能的金属加工工艺。

根据温度的不同,锻造可分为冷锻和热锻;根据材料状态的不同,又可分为手工锻造和机械化锻造。

1.2 锻造的原理与过程锻造的原理是将金属材料置于一定温度下,施加一定的应力,使其在固态条件下发生形变,从而改变其晶体结构和形状。

锻造过程包括预热、成形、精整和冷却等阶段。

通过预热减少材料的变形阻力,使其更容易变形;成形阶段是对金属材料进行塑性变形,获得所需的形状;精整阶段则是对成形后的工件进行去除表面氧化皮或瑕疵,并调整尺寸精度;最后一阶段是冷却,使工件保持所需的形状。

1.3 锻造的变形特点锻造加工时,通过施加应力,使得金属在温度条件下发生变形,这种变形具有以下特点:①高应力,可以产生大变形;②温度对金属的变形性能有显著影响;③变形速率和变形量大。

1.4 锻造的应用领域锻造是一种重要的金属加工工艺,被广泛应用于各个领域,如汽车制造、航空航天、轨道交通、石油化工、工程机械等。

在这些领域,锻造工艺可以制造出强度高、密度均匀、无气孔、无层状组织等优点的零部件,保证了产品的质量和性能。

二、锻造设备及工艺流程2.1 锻造设备(1)锻造机:锻造机是用于施加压力对金属材料进行塑性变形的设备,根据动力来源和结构特点,可以分为液压式锻造机、摩擦式锻造机、螺旋压力机、气动锤、液压锤等。

(2)锻模:用于对金属进行塑性变形,获得所需形状的工具。

根据形状和用途的不同,可以分为开口模、闭口模、冷锻模、热锻模等,可用于锻造各种形状的工件。

(3)加热炉:用于对金属进行预热,使其达到适宜的变形温度。

根据加热方式,可分为电阻加热炉、燃气加热炉、感应加热炉等。

2.2 锻造工艺流程(1)原料准备:选择适宜的金属材料,调整合金成分,进行预热处理。

(2)锻造操作:将金属材料放入加热炉中预热,然后放入锻造机中进行锻造操作。

锻造工艺

锻造工艺

锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形,以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。

锻造和冲压同属塑性加工性质,统称锻压。

锻造是机械制造中常用的成形方法。

通过锻造能消除金属的铸态疏松、焊合孔洞,锻件的机械性能一般优于同样材料的铸件。

机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

锻造按坯料在加工时的温度可分为冷锻和热锻。

冷锻一般是在室温下加工,热锻是在高于坯料金属的再结晶温度上加工。

有时还将处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。

不过这种划分在生产中并不完全统一。

钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

锻造按成形方法则可分为自由锻、模锻、冷镦、径向锻造、挤压、成形轧制、辊锻、辗扩等。

坯料在压力下产生的变形基本不受外部限制的称自由锻,也称开式锻造;其他锻造方法的坯料变形都受到模具的限制,称为闭模式锻造。

成形轧制、辊锻、辗扩等的成形工具与坯料之间有相对的旋转运动,对坯料进行逐点、渐近的加压和成形,故又称为旋转锻造。

锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。

材料的原始状态有棒料、铸锭、金属粉末和液态金属。

一般的中小型锻件都用圆形或方形棒料作为坯料。

棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。

只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。

铸锭仅用于大型锻件。

铸锭是铸态组织,有较大的柱状晶和疏松的中心。

因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。

经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。

锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。

中国传统锻造工艺

中国传统锻造工艺

中国传统锻造工艺中国传统锻造工艺,是一门古老而独特的技艺,它源远流长,历经千年,至今仍然被广泛应用于各行各业,其中最具代表性的当属黄铜锻造、铁器锻造和铜器锻造三大类。

第一步,制作模具。

在锻造之前,需要先进行模具制作。

模具是锻造的重要工具,锻造产品的质量和形状都直接取决于模具的质量。

古代锻造匠人用精湛的技艺和匠心独具的灵感制作出美丽的模具,用这些模具锻造出的器具不仅美观实用,还富有文化内涵。

第二步,熔炼金属。

在进行铸造和锻造时,需要用到金属材料。

古代锻造匠人使用木炭火加热金属,使金属熔化,然后倒入模具中铸造或锻造成所需形状。

这种方法虽然比较原始,但在一定程度上保证了金属的质量和纯度。

第三步,锻造加工。

当金属熔炼后,锻造匠人将其倒入锻造工具中,用锤子、铁锤等工具,将金属不断敲打、伸展,将其成形,制作出各种器具。

这一环节是锻造的核心,古代锻造匠人在这一过程中需要经过数年的磨练才能掌握。

第四步,表面精加工。

经过锻造的金属器具,表面通常会出现各种瑕疵和凹凸不平的地方,需要进行精加工。

古代锻造匠人利用磨刀石、打磨工具等,将器具表面进行抛光、打磨,使其表面光滑,美观。

中国传统锻造工艺在历史长河中扮演着重要的角色。

对于现代人来说,虽然传统锻造已经被现代工艺所代替,但古代锻造匠人留下的精湛技艺和匠心独具的艺术作品,都值得我们去品味和欣赏。

同时,传统锻造工艺无论是在材料的选择、工具的制作以及工艺的流程等方面,都有其固有的优越性,我们应该尝试将其和现代工艺结合,不断创新和发展,让它在现代社会中得到更加广泛的应用和发扬光大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的塑性,所以锻造温度范围最好在这个区间。 如图是在铁碳合金基础上制订的碳钢锻造温度 范围。
(三)锻件的冷却和锻后热处理
1.锻件的锻后冷却方法
常用的锻件冷却方法,按其冷却速度的由快到慢的顺序分为空冷、
堆冷、坑冷(或箱冷)、灰冷(或沙冷)、炉冷、等温退火等六种。
2.锻件的锻后热处理 锻件的锻后热处理目的是调整锻件的硬度,以利于锻件切削加工; 调整锻件内应力;改善锻件内部组织,细化晶粒;对于不再进行最终热 处理的锻件,应保证达到规定的力学性能要求。 锻件最常采用的热处理方法有退火、正火、调质等。
三.锻前加热、锻后冷却和热处理
(一)锻前加热的目的与方法
1.锻前加热的目的 提高金属的塑性,降低变形力,以利于锻造和获得良好热可分为两大类:火焰炉加 热,电加热。
(二)锻造温度范围的确定
锻造温度范围是指始锻温度和终锻温度间
的一段温度间隔。钢料在高温单相区具有良好
锻锤一次打击能量为
据能量守恒定律得:
,一次打击下坯料变形功为
,根
(三)工厂中常见的简便公式
1.胎模锻
2.模锻 (1)模锻锤吨位经验公式
(2)布留哈诺夫和列别尔斯基公式 圆形锻件: 非圆形锻件: 3.热模锻曲柄压力机和锻锤换算公式 自由锻: 模 锻:
总结
本章主要讲述锻造工艺的基础知识、锻造的工艺过程和工艺方法, 以及常用锻造设备的构造、原理和应用。重点掌握锻造材料、下料方法 和锻造温度的确定及锻造设备的选用。
(一)直线往复运动的锻造设备
(1)动载撞击的锻造设备; (2)动、静载联合的锻造设备; (3)高效能冲击的锻造设备。
(二)旋转运动的锻造设备
这类设备运转时,锻模分别安装在两个或两个以上作相对旋转运动 的辊轴上。
二.主要锻造设备的结构原理和应用
1.锻锤
利用蒸汽或液压等传动机构,使落下部分 产生运动并积蓄动能,将此动能施加到锻件上,
2.锻造用有色金属
锻造用有色金属主要有铜、铝及其合金等。 (1)铜及铜合金 纯铜、黄铜、青铜。 (2)铝及铝合金 纯铝、铝合金。
二.下料
在锻造前,一般要在专门的下料设备上把金属棒料切成所需长度。
常用的下料方法介绍如下:
1.锯切; 2.剪切;
3.冷折下料;
4.砂轮切割; 5.气割; 6.精密剪切下料。 除上述切割方法外,还有等离子切割法、电子束切割法、阳极切割法等。
压铸模与其他模具
第四章 锻造工艺
目 录


第一节 锻造前的准备和锻后热处理 第二节 锻造工艺的基本工序和工步 第三节 锻造设备简介
第一节 锻造前的准备和锻后热处 理
一.锻造生产用的原材料
锻造生产用的原材料可分为锻造用钢和锻造用有色金属。
1.锻造用钢
钢材按化学成分可分为碳素钢和合金钢。 碳素钢按质量分数高低可分为低碳钢、中碳钢、高碳钢。 按合金元素总的质量分数的多少,合金钢可分为低、中、高合金钢。
(一)热模锻曲柄压力机、螺旋压力机、液压机吨位的确定
1.所需锻压力F0
2.公称吨位F
(二)锻锤吨位的确定
锻锤是利用下落部分在高速下落时和锻模模腔内坯料发生撞击而使
坯料成形的。它的打击力随着坯料抵抗情况而变化,空击或冷击时,打
击力最大。所以它不是按打击力来选择设备,而是一次打击时能释放出 的最大能量来确定锻锤吨位的。
第二节 锻造工艺的基本工序和工 步
一.锻造工艺的种类和特点
锻造工艺按加工方法的不同,又可分为自由锻、胎模锻和模锻。
二.锻造工序和工步的内容
一般情况下锻件生产流程为:备料-加热-锻造工序-后续工序。
第三节 锻造设备简介
一.锻造设备分类
锻造设备种类很多,按照工作部分运动方式不同,锻造设备可分为 直线往复运动和相对旋转运动两大类。
使锻件产生变形的锻压机器称为锻锤。
2.热模锻曲柄压力机
热模锻曲柄压力机又称锻
压机,其结构如图所示。电动
机通过带轮、传动轴和一对齿 轮带动曲柄连杆机构,使滑块 作上、下往复运动。
三.锻造设备吨位的确定
各种锻造工序在变形过程中所需的锻压力,主要取决于两个因素: 坯料屈服强度σs和锻件在与锻压力垂直的平面上的投影A。
相关文档
最新文档