高考文科数学《解三角形》题型归纳与训练(有答案)
解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版
解三角形解答题十大题型总结【题型目录】题型一:利用正余弦定理面积公式解题题型二:解三角形与三角恒等变换结合题型三:三角形面积最大值,及取值范围问题题型四:三角形周长最大值,及取值范围问题题型五:角平分线相关的定理题型六:有关三角形中线问题题型七:有关内切圆问题(等面积法)题型八:与向量结合问题题型九:几何图形问题题型十:三角函数与解三角形结合【典例例题】题型一:利用正余弦定理面积公式解题【例1】△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3+.【详解】:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为3【例2】的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆面积为2,求b .【答案】(1)1517;(2)2.【详解】:(1)()2sin 8sin 2B A C +=,∴()sin 41cos B B =-,∵22sin cos 1B B +=,∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =;(2)由(1)可知8sin 17B =,∵1sin 22ABC S ac B =⋅=,∴172ac =,∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=,∴2b =.【例3】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =332ABC S ∆=,求ABC ∆的周长.【答案】(1)3C π=(2)5+【详解】:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 6222∆=⇒=⋅⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为5+【例4】已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,c ccosA =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆,求b ,c .【答案】(1)3A π=(2)b c ==2【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C-=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭,又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A ,故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==2【例5】(2022·陕西·安康市教学研究室高三阶段练习(文))在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边.sin sin 2A C c b C +=.(1)求角B 的大小;(2)若112,2tan tan tan b A C B+==,求ABC 的面积.,【题型专练】1.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,(1)求角A (2)若2a =,ABC ∆的面积为;求,b c .【答案】(1)(2)b=c=2【解析】:(1)由及正弦定理得sin cos sin sin sin 0A C A C B C --=,因为B A C π=--sin cos sin sin 0A C A C C --=.由于sin 0C ≠,所以1sin(62A π-=.又0A π<<,故3A π=.(2)ABC ∆的面积1sin 2S bc A ==4bc =,而2222cos a b c bc A =+-,故228b c +=.解得2b c ==.2.已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积.【答案】(1)14;(2)1【解析】:(1)由题设及正弦定理可得22b ac=又a b =,可得2,2b c a c==由余弦定理可得2221cos 24a cb B ac +-==(2)由(1)知22b ac=因为90B = ,由勾股定理得222a cb +=故222a c ac +=,得c a ==所以的面积为13.(2021新高考2卷)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则37sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.4.(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos sin B a B =+.(1)求角A 的大小;(2)若2sin a B C ==,求ABC 的面积.5.(2022·安徽省宿松中学高二开学考试)在ABC 中,角,,A B C 的对边分别为,,,tan sin a b c B A C B ==.(1)求角C 的大小;(2)若ABC 的面积为196,求ABC 外接圆的半径.题型二解三角形与三角恒等变换结合【例1】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C =22,求C .【答案】(1;(2)15︒.【分析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B ==;(2)30A C +=︒ ,sin sin(30)A C C C∴=︒-+1cos sin(30)222C C C =+=+︒=,030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒.【例2】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【分析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【例3】在ABC ∆中,满足222sin cos sin cos A B A B C -+=-.(1)求C ;(2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,,求tan α的值.【详解】(1)∵221cos B sin B =-,221cos C sin C =-,∴222sin A cos B cos C -=-变形为22211sin A sin B sin C --+=--()(),即222sin A sin B sin C ++=,利用正弦定理可得:222a b c ++=,由余弦定理可得cosC=22-,即C=34π.(2)由(1)可得cos (A+B )=2,A+B=4π,又cosAcosB=cos()cos 3225A B A B ++-=(),可得72cos(A B)10-=,同时cos (αA +)cos (αB +)=72cos(2α)cos(2αA B)cos A B 41022π+++++-=(),∴22272272cos(2α)sin2αcos(αA)cos(αB)410210222cos cos cos πααα++-+++===222222722sinαcosα2102cos sin cos sin cos ααααα--++()=222622552cos sin cos ααα+-=2510tan α+- 2tan α=5,∴2tan 5tan 62αα-+=,∴ 1tan α=或4.【题型专练】1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)3A π=;(2)sin 4C +=.【分析】【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C-=-+=-即:222sin sin sin sin sin B C A B C+-=由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈ 3A π∴=(2)2b c +=,由正弦定理得:sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C22sin cos 1C C += (()223sin 31sin C C ∴=-解得:62sin 4C =或624因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故62sin 4C +=.(2)法二:2b c += sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C ,即3sin 6C C C π⎛⎫=- ⎪⎝⎭sin 62C π⎛⎫∴-= ⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+62sin sin()464C ππ=+=.2.(2022·重庆巴蜀中学高三阶段练习)已知在锐角ABC 中,sin tan 1cos B A B =+.(1)证明:2B A =;(2)求tan tan 1tan tan B A A B-的取值范围.,再逆用正切的差角公式,结合第一问的结论得到3.在ABC 中,已知223sin cos sin cos sin 222A CB +=.(1)求证:2a c b +=;(2)求角B 的取值范围.【详解】证明:(1)223sin cossin cos sin 222C A A C B += 1cosC 1cos 3sin sin sin 222A A C B++∴+=()()sin 1cosC sin 1cos 3sin A C A B ∴+++=sin sin sin cosC sin cos 3sin A C A C A B∴+++=()sin sin sin C 3sin A C A B ∴+++=C A B π++= A C B π∴+=-()sin sin A C B∴+=sin sin 2sin A C B∴+=根据正弦定理得:2a c b +=,得证.(2)由(1)知在ABC 中,2a c b+=又222cos 2a c b B ac +-=消去b 化简得:()2231611cos 84842a c ac B ac ac +=-≥-=当且仅当a c =时取等号,又B 为三角形的内角,0,3B π⎛⎤∴∈ ⎥⎝⎦题型三:三角形面积最大值,及取值范围问题【例1】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2AB C +=,且2a =,则ABC 的面积的最大值为A .33B .32CD.【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例2】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1)3B π=;(2)33(,)82.【分析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=.0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)解法一:因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =,由三角形面积公式有:222sin()111sin 33sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅==⋅22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=⋅-=+.又因3,tan 623C C ππ<<>,故3313388tan 82C <+<,故3382ABC S <<.故ABC S 的取值范围是33,82解法二:若ABC ∆为锐角三角形,且1c =,由余弦定理可得b ==,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<,可得ABC ∆面积1sin 23S a π==∈.【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acacac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCa c ac a c Sac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=注:此题也可用椭圆轨迹方程做【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()AB .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c c c c c cc A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤注:此题也可用圆轨迹方程做【题型专练】1.已知分别为三个内角的对边,,且,则面积的最大值为____________.【解析】:由,且,故()()()a b sinA sinB c b sinC +-=-,又根据正弦定理,得()()()a b a b c b c +-=-,化简得,222b c a bc +-=,故222122b c a cosA bc +-==,所以060A =,又224b c bc bc +-=≥,故12BAC S bcsinA ∆=≤2.已知,,分别为△ABC 角,,的对边,cos 2−cos 2−cos 2=cosvos +cos −cos2,且=3,则下列结论中正确的是()A.=3B.=23C.△ABC D.△ABC 【答案】B【解答】解∵cos 2−cos 2−cos 2=cosvos +cos −cos2,∴(1−sin 2p −(1−sin 2p −(1−sin 2p =cosvos −cos(+p −(1−2sin 2p ,∴sinLin +sin 2+sin 2−sin 2=0,由正弦定理可得B +2+2−2=0,∴cos =2+2−22B=−12,又0<<,∴=23,即2=3=2+2−23=2+2+B⩾2B +B =3B ,当且仅当==1时取等号,∴B⩽1,∴=12Bsin 故选:B .3.ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B (2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+4.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin A cos B =sin B (2﹣cos A ).(1)若b +c =3a ,求A ;(2)若a =2,求△ABC 的面积的最大值.【解析】(1)∵sin A cos B =sin B (2﹣cos A ),结合正、余弦定理,可得a •2+2−22B=b •(2−2+2−22B),化简得,c =2b ,代入b +c =3a ,得a =3b ,由余弦定理知,cos A =2+2−22B =2+42−322δ2=12,∵A ∈(0,π),∴A =3.(2)由(1)知,c =2b ,由余弦定理知,cos A =2+2−22B =52−442=5412,∴△ABC 的面积S =12bc sin A =b 21−c 22=b 2=16=当b 2=209时,S 取得最大值,为43.5.在ABC ∆中,内角、、A B C 所对的边分别为,,a b c ,D 是AB 的中点,若1CD =且1()sin ()(sin sin )2a b A c b C B -=+-,则ABC ∆面积的最大值是___【答案】5如图,设CDA θ∠=,则CDB πθ∠=-,在CDA ∆和C D B ∆中,分别由余弦定理可得22221144cos ,cos()c c b a c cθπθ+-+-=-=,两式相加,整理得2222()02c a b +-+=,∴2222()4c a b =+-.①由()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭及正弦定理得()()1c b 2a b a c b ⎛⎫-=+- ⎪⎝⎭,整理得2222aba b c +-=,②由余弦定理的推论可得2221cos 24a b c C ab +-==,所以sin 4C =.把①代入②整理得2242aba b ++=,又222a b ab +≥,当且仅当a b =时等号成立,所以54222ab ab ab ≥+=,故得85ab ≤.所以118sin 22545ABCab C S ∆=≤⨯=.即ABC ∆面积的最大值是5.故答案为5.6.(2023·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c,且cos sin a b C B -=.(1)求B ;(2)若2a =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.题型四:三角形周长最大值,及取值范围问题【例1】在锐角ABC 中,内角A ,B ,C 所对的边分别为a,b ,c ,若ABC 的面积为()2224a b c +-,且4c =,则ABC 的周长的取值范围是________.【答案】4,12]+【解析】因为ABC 的面积为()2224a b c +-,所以()2221sin 42a b c ab C +-=,所以222sin 2a b c C ab +-=.由余弦定理可得222cos 2a b c C ab +-=,sin C C =,即tan C ,所以3Cπ=.由正弦定理可得sin sin sin 3a b c A B C ===,所以83832(sin sin )sin sin 8sin 3336a b A BA A A ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为ABC 为锐角三角形,所以62A ππ<<,所以sin 126A π⎛⎫<+ ⎪⎝⎭,则ssin()86A π<+,即8a b <+≤.故ABC 的周长的取值范围是4,12]+.【例2】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c sin sin cos sin B CC C A++=(1)求A ;(2)若ABC 的外接圆的半径为1,求22b c +的取值范围.c【例3】(2022·重庆八中高三阶段练习)在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sinsin ,2A Ca b A b +==(1)求角B 的大小;(2)求2a c -的取值范围.【例4】(2022·四川省仁寿县文宫中学高三阶段练习(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin 2B Ca A B c ++=.(1)求角A 的大小;(2)若角B 为钝角,求b的取值范围.【题型专练】1.在ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知222cos sincos sin sin A B C A B =++.(1)求角C 的大小;(2)若c ,求ABC ∆周长的取值范围.【答案】(1)23π;(2)(2+(1)由题意知2221sin sin 1sin sin sin A B C A B -=+-+,即222sin sin sin sin sin A B C A B +-=-,由正弦定理得222a b c ab+-=-由余弦定理得2221cos 222a b c ab C ab ab +--===-,又20,3C C ππ<<∴=.(2)2,2sin ,2sin 2sin sin sin sin3a b c a A b BA B C π====∴==,则ABC ∆的周长()2sin sin 2sin sin 2sin 33L a b c A B A A A ππ⎡⎤⎛⎫⎛⎫=++=++++++ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦230,,sin 1333323A A A πππππ⎛⎫<<∴<+<<+≤ ⎪⎝⎭ ,2sin 23A π⎛⎫∴<++≤ ⎪⎝⎭,ABC ∴∆周长的取值范围是(2+.2.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【分析】【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴ 周长的最大值为3+.3.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos )a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.【详解】(1)由题意知()(cos )sin cos sin sin a C C b c A C C B C =+⇒+=+,所以()()sin cos sin sin A C C A C C +=++,即sin cos sin sin cos cos sin sin A C A C A C A C C+=++sin cos sin sin A C A C C =+,因0sin ≠C cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭又50,,666A A ππππ⎛⎫<<∴-∈- ⎪⎝⎭ ,所以66A ππ-=,所以3π=A (2)由余弦定理得:222222cos 25a b c b c A b c bc =+-⋅=+-=,即()2325b c b c +-⋅=.22b c b c +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当b c =时取等号),()()()22221253324b c b c b c b c b c +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:10b c +≤(当且仅当b c =时取等号),ABC ∴ 周长51015L a b c =++≤+=,ABC ∴ 周长的最大值为15.题型五:角平分线相关的定理【例1】在中ABC △,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,BD BC ⊥交AC 于点D ,且1BD =,则2a c +的最小值为.【详解】由题意知ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222ac B cBD ABD aBD CBD ∴=∠+∠,即1311111122222ac c a ∴⨯=⨯⨯+⨯⨯即2c a =+,所以12a c =+,所以))12422224333a c a c a c a c c a ⎛⎫⎫+++=+++≥+=⎪⎪⎝⎭⎝⎭【例2】△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC .(Ⅰ)求sin sin BC∠∠;(Ⅱ)若60BAC ∠= ,求B ∠.【详解】(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC∠=-∠+∠∠=所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠由(I )知2sin sin B C ∠=∠,所以3tan ,30.3B B ∠=∠= 【例3】(河南省豫北名校普高联考2022-2023学年高三上学期测评(一)文科数学试卷)在ABC 中,内角,,A B C的对边分别为,,a b c ,且______.在①cos cos 2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△ ;③tan tan tan A C A C +-这三个条件中任选一个,补充在上面的问题中,并进行解答.(1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.ABC ABD BCD S S S =+ ,12π1sin 232ac c ∴=⋅即333444ac c a =+,a c ac ∴+=,a ac +∴()11444552a c a c a c ac c a ⎛⎫∴+=++=++≥+ ⎪⎝⎭【题型专练】1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,23BAC π∠=,BAC ∠的平分线交BC 于点D ,1AD =,则b c +的最小值为.【详解】ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222bc A cAD BAD bAD CAD ∴=∠+∠,即11111222222bc c ∴⨯=⨯⨯+⨯⨯,即bc b c =+,所以111b c ∴=+,所以()111124b cb c b c b c c b ⎛⎫+=++=+++≥+= ⎪⎝⎭2.ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,ABD ∆面积是ADC ∆面积的2倍.(1)求sin sin BC;(2)若AD =1,DC =22,求BD 和AC 的长.【详解】,1sin 2ACD S AC AD CAD ∆=⋅⋅∠,∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =,∴BD =.设AC x =,则2AB x =,在△ABD 与△ACD中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅222232cos 2x AD CD AC ADC AD CD -+-∠==⋅∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,2232x -=,解得1x =,即1AC =.题型六:有关三角形中线问题遇到角平分线问题一般有两种思路:思路一:中线倍长法思路二:利用平面向量【例1】在ABC ∆中,,,a b c 分别是内角,,A B C 所对的边,且满足cos 0cos 2B bC a c+=+,(1)求角B 的值;(2)若2c =,AC 边上的中线32BD =,求ABC ∆的面积.【详解】(1)cos cos sin 00cos 2cos 2sin sin B b B BC a c C A C+=⇔+=++,()cos 2sin sin sin cos 0B A C B C ⇒++=2sin cos cos sin sin cos 0A B B C B C ⇒++=()2sin cos sin 0A B B C ⇒++=.()1sin 2cos 10,sin 0,cos 2A B A B ⇒+=≠∴=-.所以23B π=,(2)解法一:中线倍长法:延长BD 到E ,使BD=DE ,易知四边形AECD 为平行四边形,在BEC ∆中,EC=2,,因为23ABC π∠=,所以3BCE π∠=,由余弦定理2222cos BE EC BC EC BC BCE =+-⋅⋅∠,即223222cos3a a π=+-⋅⋅,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=解法二:BC BA BD +=,所以()22BC BA BD +=B+=即︒++=⎪⎪⎭⎫ ⎝⎛120cos 223222ac a c ,即⎪⎭⎫⎝⎛-⨯⨯++=21424432a a ,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=【例2】(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2π3A =.(1)若6a =,ABC的面积为D 为边BC 的中点,求AD 的长度;(2)若E 为边BC上一点,且AE =,:2:BE EC c b =,求2b c +的最小值.【题型专练】1.(2022·广东广州·一模)在ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足cos sin 2B Cb a B +=.(1)求A ;(2)若a =,3BA AC ⋅=,AD 是ABC 的中线,求AD 的长.2.(2022·黑龙江·哈师大附中高三阶段练习)在①()()()()sin sin sin a c A B a b A B -+=-+;②2S BC =⋅;③cos sin b C a c B =;这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC 中,角、、A B C 的对边分别为,,a b c ,且______.(1)求角B 的大小;(2)AC 边上的中线2BD =,求ABC 的面积的最大值.题型七:有关内切圆问题(等面积法)【例1】在▵B中,sin2=B=1,B=5,则A.B=25B.▵B 的面积为32C.▵BD.▵B【答案】B【解答】解:∵sin2=∴cos=1−2sin22=1−2×2=35,又B=1,B=5,∴由余弦定理,B2=B2+B2−2B⋅B⋅cos=52+12−2×5×1×(35)=20,∴B=25,故A正确;∵cos=35且为三角形内角,∴sin=1−cos2=45,所以△B的面积为=1=12×1×5×45=2,故B错误;根据正弦定理B sin=2o其中表示外接圆的半径)得:2=45=即△B C正确;如图,设△B内切圆圆心为,半径为,连接B,B,B,因为内切圆与边B ,B ,B 相切,故设切点分别为,,,连接B ,B ,B ,可知:B =B =B =,且B ⊥B ,B ⊥B ,,根据题意:△B =12B ⋅B ⋅sin =12×5×1×45=2,利用等面积可得:△B +△B +△B =△B ,即:12B ⋅+12B ⋅+12=2,∴=4B+B+B==D 正确.故选ACD .【例2】(2022·四川·绵阳中学高二开学考试(理))已知在ABC 中,()254cos 4sin A B C ++=.(1)求角C 的大小;(2)若ABC 的内切圆圆心为O ,ABC 的外接圆半径为4,求ABO 面积的最大值.【题型专练】1.三角形有一个角是︒60,夹在这个角的两边长分别为8和5,则()A.三角形另一边长为6B.三角形的周长为20C.三角形内切圆面积为3D.【答案】B【解答】解:因为三角形有一个角是︒60,夹在这个角的两边长分别为8和5,A .由余弦定理得:三角形另一边长为82+52−2×8×5×cos60°=7,故A 错误;B .三角形的周长为8+5+7=20,故B 正确;C .设三角形内切圆的半径为,由面积法得到:12×8×5×sin60°=12×20×,解得=3,所以内切圆的面积为,故C 正确;D .设三角形外接圆的半径为,则由正弦定理得到7sin60°=2,解得=,故D 错误.故选BC .2.(2022·全国·清华附中朝阳学校模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos a cC Cb-=.(1)求角B 的大小;(2)若2b =,记r 为ABC 的内切圆半径,求r 的最大值.题型八:与向量结合问题【例1】锐角ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =与(cos ,sin )n A B = 平行.(1)求角A ;(2)若a =ABC ∆周长的取值范围.【解析】解:(1)因为://m n,所以:sin cos 0a B A =,由正弦定理,得:sin sin cos 0A B B A -=,又因为:sin 0B ≠,从而可得:tan A =,由于:0A π<<,所以:3A π=.(2)因为:由正弦定理知sin sin sin 3b c aB C A====,可得:三角形周长sin )3l a b c B C =++=+,又因为:23C B π=-,所以:2sin sin sin sin()36B C B B B ππ+=+-=+,因为:ABC ∆为锐角三角形,所以:62B ππ<<,2(,)633B πππ+∈,3sin sin (2B C +∈,所以:l ∈.【例2】(2022·河北沧州·高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos ,3b c A a C a -==.(1)求角A ;(2)若点D 满足1233BD BA BC =+,求BCD △面积的最大值.【题型专练】1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC = ,1cos 3B =,3b =.求:(1)a 和c 的值;(2)cos()B C -的值.【解析】解:(1)2BA BC= ,1cos 3B =,3b =,可得cos 2ca B =,即为6ac =;2222cos b a c ac B =+-,即为2213a c +=,解得2a =,3c =或3a =,2c =,由a c >,可得3a =,2c =;(2)由余弦定理可得2229947cos 22339a b c C ab +-+-===⨯⨯,sin C ==,sin B ==,则17224223cos()cos cos sin sin 393927B C B C B C -=+=⨯+⨯.2.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若1AB AC BA BC ==.解答下列问题:(1)求证:A B =;(2)求c 的值;(3)若||AB AC +=ABC ∆的面积.【解析】证明:(1)因AB AC BA BC =,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得sin cos sin cos B A A B =,故sin()0A B -=,因为A B ππ-<-<,故0A B -=,故A B =.⋯(4分)(2)因1AB AC = ,故cos 1bc A =,由余弦定理得22212b c a bc bc+-=,即2222b c a +-=;又由(1)得a b =,故22c =,故c =.⋯(10分)(3)由||AB AC += 22||||2||6AB AC AB AC ++=,即2226c b ++=,故224c b +=,因22c =,故b =,故ABC ∆是正三角形,故面积23342ABC S ∆=⨯=.⋯(16分)题型九:几何图形问题【例1】在ABC ∆中,3B π∠=,15AB =,点D 在边BC 上,1CD =,1cos 26ADC ∠=.(1)求sin BAD ∠;(2)求ABC ∆的面积.【解析】解:(1)由1cos 26ADC ∠=,可得153sin 26ADC ∠==,则11sin sin()sin cos cos sin 333226BAD ADC ADC ADC πππ∠=∠-=∠-∠=-⨯.(2)在ABD ∆中,由正弦定理可得sin sin BD AB BAD ADB =∠∠=,解得7BD =,所以718BC =+=,所以ABC ∆的面积11sin 158sin 223S AB BC ABD π=⋅⋅∠=⨯⨯⨯=【例2】如图,在ABC ∆中,6B π∠=,AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(1)求sin BAD ∠;(2)求BD ,AC 的长.【解析】解:(1)在ADC ∆中,因为1cos 7ADC ∠=,所以sin 7ADC ∠=,所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B=∠-∠433117272=-⨯1114=.(2)在ABD ∆中,由正弦定理得11sin 1411sin 437AB BADBD ADB⋅∠===∠,在ABC ∆中,由余弦定理得:222222cos 13213492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯.所以7AC =.【例3】如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2BD DC =,ACD ∆sin sin BADCAD∠∠的值.【解析】解:(1)ABC ∆ 中,1cos 3B =,22sin 3B ∴=.34ADC π∠= ,4ADB π∴∠=.ABD ∆=,83AD ∴=;(2)设DC a =,则2BD a =,2BD DC = ,ACD ∆,1222323a ∴=⨯⨯⨯,2a ∴=AC ∴==由正弦定理可得42sin sin BAD ADB=∠∠,sin 2sin BAD ADB ∴∠=∠.242sin sin CAD ADC =∠∠,2sin 4CAD ADC ∴∠=∠,sin sin ADB ADC ∠=∠ ,∴sin sin BADCAD∠=∠【例4】如图,在平面四边形ABCD 中,45A ∠=︒,90ADC ∠=︒,2AB =,5BD =.(1)求sin ADB ∠;(2)若DC =,求BC .【解析】解:(1)ABD ∆中,45A ∠=︒,2AB =,5BD =,由正弦定理得sin sin AB BDADB A=∠,即25sin sin 45ADB =∠︒,解得2sin 5ADB ∠=;(2)由90ADC ∠=︒,所以2cos sin 5BDC ADB ∠=∠=,在BCD ∆中,由余弦定理得:222222cos 52525BC BD DC BD DC BDC =+-⋅⋅∠=+-⨯⨯,解得5BC =.【例5】在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【答案】(1)5;(2)5.【分析】(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin45sin ADB =∠o,所以2sin 5ADB ∠=.由题设知,90ADB ∠<o ,所以cos 5ADB ∠==;(2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD ∆中,由余弦定理得22222cos 25825255BC BD DC BD DC BDC =+-⋅⋅⋅∠=+-⨯⨯=.所以5BC =.【题型专练】1.如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值;(2)若cos BAD ∠=21sin 6CBA ∠=,求BC 的长.【解析】解:1AD =,2CD =,AC =(1)在ADC ∆中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠= .∴cos CAD ∠=;(2)设BAC α∠=,则BAD CAD α=∠-∠,cos 21sin 7321sin 143sin 2CAD BAD CAD BAD α∠=∠=-∴∠=∠=∴=,在ABC ∆中,由正弦定理,sin sin BC ACCBAα=∠,解得:3BC =.即BC 的长为3.2.在平面四边形ABCD中,,2,2,AB BC AB BD BCD ABD ABD ⊥==∠=∠∆的面积为2.(1)求AD 的长;(2)求CBD ∆的面积.【解析】解:(1)由已知11sin 2sin 222ABD S AB BD ABD ABD ∆=∠=⨯∠= ,所以sin ABD ∠=(0,2ABD π∠∈,所以cos ABD ∠=在ABD ∆中,由余弦定理得:2222cos 5AD AB BD AB BD ABD =+-∠= ,所以AD =.(2)由AB BC⊥,得2ABD CBD π∠+∠=,所以5sin cos 5CBD ABD ∠=∠=,又42,sin 2sin cos 5BCD ABD BCD ABD ABD ∠=∠∠=∠∠=,()222BDC CBD BCD ABD ABD ABD CBD ππππ∠=-∠-∠=--∠-∠=-∠=∠,所以CBD ∆为等腰三角形,即CB CD =,在CBD ∆中,由正弦定理得:sin sin BD CDBCD CBD=∠∠,所以sin 51155455,sin 4sin 42244585CBDBD CBDCD S CB CD BCD BCD∆∠====∠=⨯⨯⨯=∠.3.如图,在平面四边形ABCD 中,2AB =,6BC =,4AD CD ==.(1)当四边形ABCD 内接于圆O 时,求四边形ABCD 的面积S ;(2)当四边形ABCD 的面积最大时,求对角线BD的长.【解析】(本题满分为14分)解:(1)连接BD ,由余弦定理可得:222222cos 24224cos BD AB AD AB AD A A =+-=+-⨯⨯⨯ ,222222cos 46246cos BD BC CD BC CD C C =+-=+-⨯⨯⨯ ,可得:2016cos 5248cos A C -=-,2⋯分又四边形ABCD 内接于圆O ,则又A C π+=,所以:2016cos 5248cos()A A π-=--,化简可得:1cos 2A =-,又(0,)A π∈,所以23A π=,3C π=,4⋯分所以12124sin 46sin 2323ABD BCD S S S ππ∆∆=+=⨯⨯⨯+⨯⨯⨯=,6⋯分(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=+ ,可得:222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-=+- ,8⋯分可得:22221124sin 46sin 2224224cos 46246cos S A C A C ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,可得:sin 3sin 423cos cos S A CC A⎧=+⎪⎨⎪=-⎩,平方后相加,可得:24106sin sin 6cos cos 16S A C A C +=+-,即:266cos()16S A C =-+,10⋯分又(0,2)A C π+∈,当A C π+=时,216S 有最大值,即S 有最大值.此时,A C π=-,代入23cos cos C A =-,可得:1cos 2C =,又(0,)C π∈,可得:3C π=,12⋯分在BCD ∆中,可得:222222cos 46246cos 283BD BC CD BC CD C π=+-=+-⨯⨯⨯= ,可得BD =.14⋯分4.如图所示,已知圆内接四边形ABCD ,记tan tan tan tan 2222A B C D T =+++.(1)求证:22sin sin T A B=+;(2)若6AB =,3BC =,4CD =,5AD =,求T 的值及四边形ABCD 的面积S.【解析】解:(1)sincos sin cos222222tan tan tan tan tan cot tan cot 22222222sin sin cos sin cos sin 2222A AB BA B A B A A B B T A A B B A Bππ--=+++=+++=+++=+.(2)由于:6AB =,3BC =,4CD =,5AD =,由题知:cos cos 0BAD BCD ∠+∠=,可得:22222222470227AB AD BD BC CD BD BD AB AD BC CD +-+-+=⇒= ,则3cos 7A =,sin A =则1()sin 2S AD AB CD BC A =+= ,则1610()sin sin 219S AB BC AD CD ABC ABC =+∠=∠=,22sin sin T A B =+==5.如图,角A ,B ,C ,D 为平面四边形ABCD 的四个内角,6AB =,3BC =,4CD =.(1)若60B =︒,30DAC ∠=︒,求sin D ;(2)若180BAD BCD ∠+∠=︒,5AD =,求cos BAD ∠.【解析】解:(1)在ABC ∆中,222361cos 2362AC B +-==⨯⨯,222363627AC ∴=+-⨯=,AC ∴=ACD ∆中,由正弦定理sin sin DAC D CD AC∠=,sin sin sin 30AC D DAC CD ∴=⋅∠=︒=.(2)在ABD ∆中,22256cos 256BD BAD +-∠=⨯⨯,在BCD ∆中,22234cos 234BD BCD +-∠=⨯⨯,180BAD BCD ∠+∠=︒ ,cos cos 0BAD BCD ∴∠+∠=,∴22222256340256234BD BD +-+-+=⇒⨯⨯⨯⨯可得:222(2536)5(916)0120BD BD +-++-=,可得:22261252550BD BD ⨯-+⨯-=,可得27247BD =,则BD =22224725365637cos 256607BDBAD +-+-∴∠===⨯⨯.6.某市欲建一个圆形公园,规划设立A ,B ,C ,D 四个出入口(在圆周上),并以直路顺次连通,其中A ,B ,C 的位置已确定,2AB =,6BC =(单位:百米),记ABC θ∠=,且已知圆的内接四边形对角互补,如图,请你为规划部门解决以下问题.(1)如果4DC DA ==,求四边形ABCD 的区域面积;(2)如果圆形公园的面积为283π万平方米,求cos θ的值.【解析】解:(1)连结BD ,可得四边形ABCD 的面积为:11sin sin 22ABD CBD S S S AB AD A BC CD C ∆∆=+=+ , 四边形ABCD 内接于圆,180A C ∴+=︒,可得sin sin A C =.11sin sin 22S AB AD A BC CD C =+ 1()sin 2AB AD BC CD A =+1(2464)sin 2A =⨯+⨯16sin A =.(*)⋯在ABD ∆中,由余弦定理可得:222222cos 24224cos 2016cos BD AB AD AB AD A A A =+-=+-⨯⨯=- ,同理可得:在CDB ∆中,222222cos 64264cos 5248cos BD CB CD CB CD C C C =+-=+-⨯⨯=- ,2016cos 5248cos A C ∴-=-,结合cos cos(180)cos C A A =︒-=-,得64cos 32A =-,解得1cos 2A =-,(0,180)A ∈︒︒ ,120A ∴=︒,代入(*)式,可得四边形ABCD面积16sin120S =︒=.(2) 设圆形公园的半径为R ,则面积为283π万平方米,可得:2283R ππ=,可得:2213R =,∴由正弦定理2sin AC R B ==sin θ==由余弦定理可得:AC ==sin θ∴==214sin 159cos θθ=-,22sin cos 1θθ+= ,∴2159cos cos 114θθ-+=,整理可得:2214cos 9cos 10θθ-+=,∴解得:1cos 7θ=,或12.7.ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.【答案】(1)23π,4;(2)3.【解析】(1)sin 3cos 0,tan 3A A A +=∴=- ,20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =.(2)2222cos c b a ab C =+- ,162842272cos C ∴=+-⨯⨯⨯,22cos ,72cos 77AC C CD C∴=∴===,12CD BC ∴=,1134223222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=,132ABD ABC S S ∆∆∴==.8.四边形的内角与互补,.(1)求和;(2)求四边形的面积.【答案】(1)60C =︒,7BD =;(2)23.【详解】:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC=+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得54cosC +,求cos C 的值,进而求C 和的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形等于ABD ∆和CBD ∆的面积.(1)由题设及余弦定理得2222cos BD BC CD BC CD C=+-⋅.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②。
解三角形(文科)解答题30题--高考数学复习提分复习资料 教师版
专题2解三角形(文科)解答题30题1.(广西邕衡金卷2023届高三第二次适应性考试数学(文)试题)记ABC 的面积为S ,其内角,,A B C 的对边分别为a ,b ,c ,已知1c =,)2214a b S +-=.(1)求C ;(2)求ABC 面积的最大值.2.(内蒙古自治区赤峰市2022届高三模拟考试数学(文科)4月20日试题)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求tan B 的值;(2)设3a =,1c =,求b 和△ABC 的面积.3.(山西省运城市2022届高三5月考前适应性测试数学(文)试题(A 卷))在ABC中,内角A ,B ,C 的对边分别为a ,b ,c ,cos sin cos sin )a C A A c A =-.(1)求A ;(2)a =,ABC 的外接圆圆心为点P ,求PBC 的周长.4.(贵州省贵阳市白云区2023届高三上学期阶段性质量监测数学(文)试题)在ABC中,内角、、A B C 的对边分别为a 、b 、c ,在条件:①sin cos a C A ;()sin 0B C A ++=;③222sin sin sin sin sin B C B C A +-=,从上述三个条件中任选一个作为题目的补充条件,你的选择是______,并解答下面问题:(1)求角A 的大小;(2)若b c a +=ABC 的面积.5.(江西省宜春市丰城中学2022届高三高考模拟数学(文)试题)在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,sin sin 2B Cb a B +⋅=,(1)求角A ;(2)若2AB AC ⋅=,求a 的最小值.6.(山西省太原市2022届高三下学期三模文科数学试题)已知锐角ABC中,()()sin sinA B A B+=-=.(1)求tan tanAB;(2)若7AB=,求ABC的面积S.7.(陕西省西安市莲湖区2022届高三下学期高考模拟考试文科数学试题)在①()cos 2cos A B C =+,②sin cos a C A =这两个条件中任选一个作为已知条件,然后解答问题.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,______.(1)求角A ;(2)若2b =,4c =,求ABC 的BC 边上的中线AD 的长.8.(陕西省西安地区八校2022届高三下学期5月联考文科数学试题)如图,在平面四边形ABCD 中,E 为AD 2AB =,3BC AE ==,5CD DE ==.(1)若2BE =,求()tan ABE BEA ∠+∠的值;(2)若120BCD ∠=︒,求BE 的长.(2)连接BD .在BCD △中,3BC =,CD 2235235cos1203430BD =+-⨯⨯⨯︒=-由余弦定理,得22232cos 23BE AEB BE +-∠=⨯⨯余弦定理,得22257cos BE BED +-==∠9.(2023·河南信阳·河南省信阳市第二高级中学校联考一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=.(1)求证:2A B =;(2)若3cos 4B =,点D 为边AB 上的一点,CD 平分ACB ∠,1CD =,求边长b .中,由正弦定理可得:在ACD10.(2022·贵州贵阳·贵阳一中校考模拟预测)在①10ac =,②a =③()sin sin 6sin b A C B +=这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值及三角形ABC 的面积;若问题中的三角形不存在,请说明理由.问题:是否存在,ABC 它的内角A ,B ,C 的对边分别为a ,b ,c ,且cos2,3,sin Bb bc C==___________?注:如果选择多个条件分别解答,按第一个解答计分.11.(广东省潮州市2022届高三下学期二模数学试题)已知在ABC 中,A ,B ,C 为三个内角,a ,b ,c 为三边,2cos c b B =,2π3C =.(1)求角B 的大小;(2)在下列两个条件中选择一个作为已知,求出BC 边上的中线的长度.①ABC 的面积为4;②ABC 的周长为4+的三个12.(贵州省铜仁市2023届高三上学期期末质量监测数学(文)试题)设ABC的面积为S.且有关系式:内角A,B,C所对的边长为a,b,c,ABC2+=+.cos2cos22cos2sin sinA B C A B(1)求C;(2)求2cS的最小值.13.(广西四市2022届高三4月教学质量检测数学(文)试题)设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=.(1)证明:()sin 2sin sin A B B A -=;(2)若3A B =,求B 的值.14.(广西南宁市第十九中学2023届高三数学(文)信息卷(三)试题)在ABC 中,内角A ,B ,C 所对的边分别为a 、b 、c ,已知2222cos cos b c a ac C c A +-=+.(1)求角A 的大小;(2)若5a =,2c =,求ABC 的面积.15.(江西省南昌市2022届高三第二次模拟测试数学(文)试题)如图,锐角OAB 中,OA OB =,延长BA 到C ,使得3AC =,4AOC π∠=,sin 3OAC =∠.(1)求OC ;(2)求sin BOC ∠.16.(江西省重点中学盟校2022届高三第二次联考数学(文)试题)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,从条件①:sin sin 2B C b a B +=,条件②:1cos 2b a Cc =+,条件③:tan (2)tan b A c b B =-这三个条件中选择一个作为已知条件.(1)求角A ;(2)若3AB AC ⋅=,求a 的最小值.17.(江西省景德镇市2023届高三上学期第二次质检数学(文)试题)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin tan cos 2cos C B C A =-且角A 为锐角.(1)求角B ;(2)若ABC b 的最小值.18.(宁夏银川一中2022届高三二模数学(文)试题)ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积tan S B =⋅.(1)求B ;(2)若a 、b 、c 成等差数列,ABC ∆的面积为32,求2b .19.(宁夏平罗中学2022届高三下学期第三次模拟数学(文)试题)已知函数()f x m n =⋅,向量()sin cos n x x x =+ ,()cos sin ,2sin m x x x =-,在锐角ABC 中内角,,A B C 的对边分别为,,a b c ,(1)若()1f A =,求角A 的大小;(2)在(1)的条件下,a =c b +的最大值.20.(内蒙古包头市2022届高三第一次模拟考试文科数学试题(A 卷))如图所示,经过村庄B 有两条夹角为60︒的公路BA 和BC ,根据规划拟在两条公路之间的区域内建一工厂F ,分别在两条公路边上建两个仓库D 和E (异于村庄B ),设计要求3FD FE DE ===(单位:千米).(1)若30BDE ∠=︒,求BF 的值(保留根号);(2)若设BDE θ∠=,当θ为何值时,工厂产生的噪音对村庄B 的居民影响最小(即工厂F 与村庄B 的距离最远),并求其最远距离.(精确到0.1 1.732≈)21.(内蒙古赤峰市2022届高三下学期5月模拟考试数学(文科)试题)ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且()()()sin sin sin b c C B c a A +-=-(1)求B ;(2)若2a =,b =ABC 的面积.22.(山西省晋中市2022届高三下学期5月模拟数学(文)试题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .在①23coscos cos 24A C A C --=;②()22sin sin sin 3sin sin A C B A C +=+;③2cos 2b C c a +=这三个条件中任选一个作为已知条件.(1)求角B 的大小;(2)若a c +=ABC 周长的最小值.23.(陕西省宝鸡中学2022届高三下学期高考模拟文科数学试题)已知())cos ,cos ,,cos a x x b x x ==-,()f x a b =⋅ ,(1)求()f x 的单调递增区间;(2)设ABC 的内角,,A B C所对的边分别为,,a b c ,若()12f A =,且a 22b c +的取值范围.24.(广西桂林市第十八中学2020-2021学年高二上学期第一次阶段性考试数学(文)试题)已知ABC 的三个内角、、A B C 的对边分别为a b c 、、,若角A B C ,,成等差数列,且2b =,(1)求ABC 的外接圆直径;(2)求a c +的取值范围.25.(甘肃省天水市田家炳中学2022-2023学年高三下学期开学考试数学(文科)试题)记ABC 的内角,,A B C 的对边分别为,,a b c .已知()()sin sin a B C b c B +=+,D 为边BC 的中点.(1)证明:2A B =;(2)若π3A =,AD ABC 的周长l .26.(河南省平顶山市汝州市2022届高三3月联考文科数学试题)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积S AB AC →→=⋅.(2)延长AC 至点D ,使得CD =AC ,且BD =2BC ,若c =6,求△ABC 的周长.27.(甘肃省酒泉市2022届高三5月联考文科数学试题)在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知cos cos 26A C b C ππ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭.(2)若a b =,P 为ABC 内一点,2PA =,4PC =,则从下面①②③中选取两个作为条件,证明另外一个成立:①BP CP ⊥;②PB =;③150∠= BPA .28.(青海省海东市第一中学2022届高考模拟(一)数学(文)试题)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,221cos 2a b bc ac B -+=.(1)求角A ;(2)若sin b A B =,求ABC 面积的最大值.29.(河南省2022-2023年度高三模拟考试数学(文科)试题)已知ABC 的内角,,A B C 所对的边分别为,,a b c ,且(sin sin )sin sin a A C c C b B -+=.(1)求角B ;(2)若5b =,求ABC 周长的最大值.30.(河南省郑州市2023届高三第一次质量预测文科数学试题)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且cos sin b c a B B +=+.(1)求角A 的大小;(2)若D 是BC 边上一点,且2CD DB =,若2AD =,求△ABC 面积的最大值.因为2CD DB=,23 AD AB=由222133AD AB AC⎛⎫=+⎪⎝⎭,所以。
高考数学三角函数与解三角形多选题知识归纳总结含答案
高考数学三角函数与解三角形多选题知识归纳总结含答案一、三角函数与解三角形多选题1.如图,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a b =,且()3cos cos 2sin a C c A b B +=,D 是ABC 外一点,1DC =,3DA =,则下列说法正确的是( )A .ABC 是等边三角形B .若23AC =A ,B ,C ,D 四点共圆 C .四边形ABCD 面积最大值为5332+ D .四边形ABCD 面积最小值为5332- 【答案】AC 【分析】利用三角函数恒等变换化简已知等式可求sin B ,再利用a b =,可知ABC 为等边三角形,从而判断A ;利用四点A ,B ,C ,D 共圆,四边形对角互补,从而判断B ;设AC x =,0x >,在ADC 中,由余弦定理可得2106cos x D =-,利用三角形的面积公式,三角函数恒等变换的,可求ABCD S 四边形,利用正弦函数的性质,求出最值,判断CD .【详解】由正弦定理2sin ,2sin ,2sin a R A b R B c R C ===, 3(sin cos sin cos )2sin sin A C C A B B +=⋅,332sin ,sin B B =∴=, a b =,B 是等腰ABC 的底角,(0,)2B π∴∈,,3B ABC π∴=∴△是等边三角形,A 正确;B 不正确:若,,,A BCD 四点共圆,则四边形对角互补, 由A 正确知21,cos 32D D π∠==-, 但由于1,3,3DC DA AC ===22211cos 232DC DA AC D DA DC +-===-≠-⋅⋅,∴B 不正确. C 正确,D 不正确:设D θ∠=,则2222cos 106cos AC DC DA DC DA θθ=+-⋅⋅=-,(106cos )cos 422ABC S θθ∴=⋅-=-△, 3sin 2ADC S θ=△,3sin 2ABCADCABCD S S Sθθ∴=+=-+四边形13(sin cos 2θθ=⋅-+,3sin()3πθ=-+(0,),sin()(3πθπθ∈∴-∈,3ABCD S <≤+四边形,∴C 正确,D 不正确; 故选:AC.. 【点睛】本题主要考查正弦定理,余弦定理,三角函数恒等变换,正弦函数的图象和性质在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.2.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( ) A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确;对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 44c c BAD c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又cos BAD ∠≥BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.3.在ABC ∆中,角,,A B C 所对边分别为,,a b c .已知():():()4:5:6b c c a a b +++=,下列结论正确的是( ) A .::7:5:3a b c = B .0AC AB ⋅<C .753A B C == D .若8+=b c ,则ABC ∆面积是4【答案】ABD 【分析】设4,5,6(0)b c k c a k a b k k +=+=+=>,求出a ,b ,c 的值,可得A ;由正弦定理,sin :sin :sin ::7:5:3A B C a b c ==,可判定C ,由余弦定理1cos 2A =-,cos 0AC AB bc A ⋅=<,可判定B ;由8+=b c ,结合A 结论,可计算b ,c , 1sin 2ABC S bc A ∆=,可判定D【详解】设4,5,6(0)b c k c a k a b k k +=+=+=>,则753,,222a kb kc k === ,故::7:5:3a b c =,即A 选项正确;又222222259491444cos 5322222k k kb c a A bc k k +-+-===-⨯⨯,故cos 0AC AB bc A ⋅=<,B 选项正确;由正弦定理,sin :sin :sin ::7:5:3A B C a b c ==,C 选项错误; 若8+=b c ,则2k =,故5,3,120ob c A ===,所以1sin 2ABC S bc A ∆==,D 选项正确 故选:ABD 【点睛】本题考查了正弦定理、余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于较难题4.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且::4:5:6a b c =,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC 是钝角三角形C .ABC 的最大内角是最小内角的2倍D .若6c =,则ABC外接圆半径为7【答案】ACD 【分析】由正弦定理可判断A ;由余弦定理可判断B ;由余弦定理和二倍角公式可判断C ;由正弦定理可判断D. 【详解】解:由::4:5:6a b c =,可设4a x =,5b x =,6c x =,()0x >, 根据正弦定理可知sin :sin :sin 4:5:6A B C =,选项A 描述准确;由c 为最大边,可得2222221625361cos 022458a b c x x x C ab x x +-+-===>⋅⋅,即C 为锐角,选项B 描述不准确;2222222536163cos 22564b c a x x x A bc x x +-+-===⋅⋅,291cos 22cos 121cos 168A A C =-=⨯-==, 由2A ,C ()0,π∈,可得2A C =,选项C 描述准确;若6c =,可得2sin c R C===,ABC ,选项D 描述准确. 故选:ACD. 【点睛】本题考查三角形的正弦定理和余弦定理,二倍角公式,考查化简运算能力,属于中档题.5.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos α=B .sin cos αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()10αβ+=-,所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭ 又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()0αβ+=<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.6.已知函数()26f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .函数()f x 的最小正周期为πB .函数()f xC .函数()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称 D .函数()f x 的图象关于直线712x π=对称 【答案】BD 【分析】首先要熟悉()26g x x π⎛⎫=- ⎪⎝⎭的图象和性质,将()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,并判断选项. 【详解】由题意,将()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,故函数()f x 的最小正周期为2π,故A 错误;函数()f x B 正确;函数()f x 的图象是由()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),所以不是中心对称图形,故C 错误; 由7012f π⎛⎫=⎪⎝⎭知D 正确, 故选:BD . 【点睛】思路点睛:要判断函数()f x 的性质,需先了解函数()26g x x π⎛⎫=- ⎪⎝⎭的性质,并且知道函数()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,函数的周期变为原来的一半,()g x 的对称轴和对称中心都是函数()f x 的对称轴.7.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC 【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD. 【详解】 A.A B >,a b ∴>,根据正弦定理sin sin a bA B=,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确. 故选:ABC 【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.8.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭ 由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).二、数列多选题9.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .2【答案】AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.10.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( ) A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021 D .数列{}n a 的第50项为2550 【答案】AC 【分析】用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得.【详解】因为11n n a a a n +=++,11a =,所以11n n a a n +-=+,所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误,12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-= ⎪⎝⎭,B 错,C 正确.故选:AC .【点睛】 本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。
高考数学三角函数与解三角形多选题之知识梳理与训练含答案
高考数学三角函数与解三角形多选题之知识梳理与训练含答案一、三角函数与解三角形多选题1.在ABC 中,下列说法正确的是( )A .若AB >,则sin sin A B > B .存在ABC 满足cos cos 0A B +≤ C .若sin cos A B <,则ABC 为钝角三角形D .若2C π>,则22sin sin sin C A B >+【答案】ACD 【分析】A 项,根据大角对大边定理和正弦定理可判断;B 项,由A B π+<和余弦函数在()0,π递减可判断;C 项,显然2A π≠,分02A π<<和2A π>两种情况讨论,结合余弦函数的单调性可判断;D 项,根据2A B π+<和正弦函数的单调性得出0sin cos A B <<和0sin cos B A <<,再由放缩法可判断. 【详解】解:对于A 选项,若A B >,则a b >,则2sin 2sin R A R B >,即sin sin A B >,故A 选项正确;对于B 选项,由A B π+<,则A B π<-,且(),0,A B ππ-∈,cos y x =在()0,π上递减,于是cos cos A B >-,即cos cos 0A B +>,故B 选项错误﹔ 对于C 选项,由sin cos A B <,得cos cos 2A B π⎛⎫-< ⎪⎝⎭,cos y x =在()0,π上递减, 此时:若02A π<<,则2A B π->,则2A B π+<,于是2C π>; 若2A π>,则cos cos 2A B π⎛⎫-< ⎪⎝⎭,则2A B π->, 于是2A B π>+,故C 选项正确;对于D 选项,由2C π>,则2A B π+<,则022A B ππ<<-<,sin y x =在0,2π⎛⎫⎪⎝⎭递增,于是sin sin 2A B π⎛⎫<- ⎪⎝⎭, 即0sin cos A B <<,同理0sin cos B A <<, 此时,22sin sin()sin cos cos sin sin sin sin sin sin sin C A B A B A B A A B B A B=+=+>⋅+⋅=+所以D 选项正确. 故选:ACD 【点睛】关键点点睛:正余弦函数的单调性,正弦定理的边角互化,大边对大角定理以及大角对大边定理,不等式的放缩等等,综合使用以上知识点是解决此类题的关键.2.设函数()2sin 1xf x x x π=-+,则( )A .()43f x ≤B .()5f x x ≤C .曲线()y f x =存在对称轴D .曲线()y f x =存在对称中心【答案】ABC 【分析】 通过()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭可发现函数()y f x =具有对称轴及最大值,再利用函数对称中心的特点去分析()y f x =是否具有对称中心,再将()5f x x ≤化为32sin 555x x x x π≤-+,通过数形结合判断是否成立.【详解】函数解析式可化为:()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭,因为函数sin y x =π的图象关于直线12x =对称,且函数21324y x ⎛⎫=-+ ⎪⎝⎭的图象也关于直线12x =对称,故曲线()y f x =也关于直线12x =对称,选项C 正确; 当12x =时,函数sin y x =π取得最大值1,此时21324y x ⎛⎫=-+ ⎪⎝⎭取得最小值34,故()14334f x ≤=,选项A 正确; 若()5f x x ≤,则32sin 555x x x x π≤-+,令()32555g x x x x =-+,则()()221510553210g x x x x x '=-+=-+>恒成立,则()g x 在R 上递增,又()00g =,所以当0x <时,()00g <;当0x >时,()0g x >; 作出sin x π和32555x x x -+的图象如图所示:由图象可知32sin 555x x x x π≤-+成立,即()5f x x ≤,选项B 正确;对于D 选项,若存在一点(),a b 使得()f x 关于点(),a b 对称,则()()2f a x f a x b -++=,通过分析发现()()f a x f a x -++不可能为常数,故选项D 错误. 故选:ABC. 【点睛】本题考查函数的综合应用,涉及函数的单调性与最值、对称轴于对称中心、函数与不等式等知识点,难度较大. 对于复杂函数问题一定要化繁为简,利用熟悉的函数模型去分析,再综合考虑,注意数形结合、合理变形转化.3.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.4.设函数()sin 6f x M x πω⎛⎫=+ ⎪⎝⎭(0,0)M ω>>的周期是π,则下列叙述正确的有( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 的最大值为MC .()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减 D .5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】BCD 【分析】已知只有周期的条件,只能求出ω,其中M 未知;A 选项代值判定;B 选项由解析式可知;C 选项由()f x 的单调递减区间在32,2,22k k k Z ππππ⎛⎫++∈⎪⎝⎭上化简可得;D 选项由()f x 的对称中心为(),0,k k Z π∈化简可得. 【详解】 由题可知2T ππω==,解得2ω=,即()sin 26f x M x π⎛⎫=+ ⎪⎝⎭当0x =时,()0sin 20sin 662Mf M M ππ⎛⎫=⨯+== ⎪⎝⎭,故选项A 错误; 因为()sin 26f x M x π⎛⎫=+⎪⎝⎭,所以最大值为M ,故选项B 正确; 由解析式可知()f x 在3222,262k x k k Z πππππ+≤+≤+∈ 即2,63x k k ππππ⎡⎤∈++⎢⎥⎣⎦上单调递减,当0k =时,选项C 正确; 由解析式可知()f x 的对称中心的横坐标满足26x k ππ+=,即212k x ππ=- 当1k =时,512x π=,对称中心为5,012π⎛⎫⎪⎝⎭,故选项D 正确. 故选:BCD 【点睛】本题考查()()sin f x A x =+ωϕ型三角函数的性质,其中涉及最值、对称轴、对称中心,属于较难题.5.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可.【详解】 因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z , 令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确. 故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.6.函数()sin 24f x x π⎛⎫=+⎪⎝⎭,则( ) A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到 B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称D .函数2()y x f x =+在08π⎛⎫ ⎪⎝⎭,上为增函数 【答案】BCD 【分析】对四个选项,一一验证:对于选项A ,利用三角函数相位变化即可;对于选项B ,利用正弦函数的对称轴经过最高(低)点判断; 对于选项C ,利用正弦函数的对称中心直接判断; 对于选项D ,利用复合函数的单调性“同增异减”判断; 【详解】由题意,对于选项A ,函数sin 2y x =的图象向右平移4π个单位可得到()sin 2sin 2cos 242f x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以选项A 错误;对于选项B ,sin 21884f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,取到了最大值,所以函数()y f x =的图象关于直线8x π=轴对称,所以选项B 正确;对于选项C ,08f π⎛⎫-= ⎪⎝⎭,所以函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称,所以选项C 正确;对于选项D ,函数2yx 在08π⎛⎫ ⎪⎝⎭,上为增函数,08x π⎛⎫∈ ⎪⎝⎭,时,2442x πππ⎛⎫+∈ ⎪⎝⎭,,单调递增,所以函数2()y x f x =+在08π⎛⎫⎪⎝⎭,上为增函数,所以选项D 正确. 故选:BCD. 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.7.将函数()2πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π6个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .π4g ⎛⎫= ⎪⎝⎭B .π,06⎛⎫⎪⎝⎭是函数()g x 图象的一个对称中心 C .函数()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增D .函数()g x 在ππ,63⎡⎤-⎢⎥⎣⎦上的值域是⎡⎢⎣⎦【答案】BC 【分析】首先求得函数()sin 23g x x π=-⎛⎫⎪⎝⎭,再根据选项,整体代入,判断函数的性质. 【详解】()2sin 2sin 2633g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,1sin 462g ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故A 错误;sin 0633g πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;0,4x π⎡⎤∈⎢⎥⎣⎦时,2,,33622x πππππ⎡⎤⎡⎤-∈-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()g x 在0,4⎡⎤⎢⎥⎣⎦π上单调递增,故C 正确;,63x ππ⎡⎤∈-⎢⎥⎣⎦时,22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当232x ππ-=-时,函数取得最小值-1,当233x ππ-=1,2⎡-⎢⎣⎦.故选:BC 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.8.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(3代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin 3ϕ=3sin 2ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫ ⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.9.已知函数)()lg1( 2.7)x x f x x e e e -=+-+≈⋯,若不等式(sin cos )2(sin 2)f f t θθθ+<--对任意R θ∈恒成立,则实数t 的可能取值为( )A .1BC .3D .4【答案】CD 【分析】令)()lgx x g x x e e -=+-,则()()1f x g x =+,可判断()g x 是奇函数且单调递增,不等式可变形可得(sin cos )(sin 2)g g t θθθ+<-,所以sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,换元法求出()h θ的最大值,()max t h θ>即可. 【详解】令)()lgx x g x x e e -=+-,则()()1f x g x =+,()g x 的定义域为R ,))()()lglgx x x x g x g x x e e x e e ---+=+-++-0=,所以()()g x g x -=-,所以()g x 是奇函数, 不等式(sin cos )2(sin 2)f f t θθθ+<--等价于[](sin cos )1(sin 2)1f f t θθθ+-<---,即(sin cos )(sin 2)(sin 2)g g t g t θθθθ+<--=-,当0x >时y x =单调递增,可得)lgy x =单调递增,x y e =单调递增,x y e -=单调递减,所以)()lgx x g x x e e -=+-在()0,∞+单调递增,又因为)()lg x x g x x e e -=+-为奇函数,所以)()lgx x g x x e e -=+-在R 上单调递增,所以sin cos sin 2t θθθ+<-,即sin cos sin 2t θθθ>++, 令()sin cos sin 2h θθθθ=++,只需()max t h θ>,令sin cos m θθ⎡+=∈⎣,则21sin 2m θ=+,2sin 21m θ=-,所以()21h m m m =+-,对称轴为12m =-,所以m =()max 211h m ==,所以1t >可得实数t 的可能取值为3或4,故选:CD【点睛】关键点点睛:本题解题的关键点是构造函数()g x 奇函数且是增函数,将原不等式脱掉f 转化为函数恒成立问题.10.设函数()()sin f x A x =+ωϕ,x ∈R (其中0A >,0>ω,2πϕ<),在,62ππ⎛⎫ ⎪⎝⎭上既无最大值,也无最小值,且()026f f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则下列结论错误的是( ) A .若()()()12f x f x f x ≤≤对任意x ∈R ,则21min x x π-=B .()y f x =的图象关于点,03π⎛-⎫ ⎪⎝⎭中心对称 C .函数()f x 的单调减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D .函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是2π 【答案】ABD【分析】根据条件先求函数的解析式,对于A:判断出()1f x 为最小值,()2f x 为最大值,即可;对于B:根据函数的对称性进行判断;对于C:求出角的范围,结合三角函数的单调性进行判断;对于D:根据函数的对称性即对称轴之间的关系进行判断.【详解】因为函数()f x 在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值, 所以,62ππ⎛⎫ ⎪⎝⎭是函数的一个单调区间,区间长度为263πππ-=, 即函数的周期2233T ππ≥⨯=,即223ππω≥,则03ω<≤ 因为()06f f π⎛⎫= ⎪⎝⎭,所以06212ππ+=为函数的一条对称轴;则1223πππωϕωϕπ+=+=①②由①②解得:=2=3πωϕ,,即()sin 23f x A x π⎛⎫=+ ⎪⎝⎭,函数的周期=T π. 对于A: 若()()()12f x f x f x ≤≤对任意x ∈R 恒成立,则()1f x 为最小值,()2f x 为最大值,所以12||22T k x x k π-==,则21x x -必为2π的整数倍,故A 错误,可选A; 对于B:3x π=-时,()sin 03f x A π⎛⎫=-≠ ⎪⎝⎭,故,03π⎛-⎫ ⎪⎝⎭不是()y f x =的对称中心,B 错误,可选B;对于C:当7,1212x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,322,2322x k k πππππ⎡⎤+∈++⎢⎥⎣⎦,此时()y f x =单调递减,C 正确,不选C;对于D: 函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是44T π=,故D 错误,可选D故选:ABD【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②(2)求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.。
高三数学解三角形练习题及答案解析
高三数学解三角形练习题及答案解析一、选择题1.在△ABC中,sinA=sinB,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形答案D2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形答案B解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,there4;tanA=tanB=tanC, there4;A=B=C.3.在△ABC中,sinA=34,a=10,则边长c的取值范围是()A.152,+ infin;B.(10,+ infin;)C.(0,10)D.0,403答案D解析∵csinC=asinA=403, there4;c=403sinC.there4;04.在△ABC中,a=2bcosC,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案A解析由a=2bcosC得,sinA=2sinBcosC,there4;sin(B+C)=2sinBcosC,there4;sinBcosC+cosBsinC=2sinBcosC,there4;sin(B-C)=0, there4;B=C.5.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC等于()A.6∶5∶4B.7∶5∶3C.3∶5∶7D.4∶5∶6答案B解析∵(b+c)∶(c+a)∶(a+b)=4∶5∶6,there4;b+c4=c+a5=a+b6.令b+c4=c+a5=a+b6=k(k>0),则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.there4;s inA∶sinB∶sinC=a∶b∶c=7∶5∶3.6.已知三角形面积为14,外接圆面积为 pi;,则这个三角形的三边之积为()A.1B.2C.12D.4答案A解析设三角形外接圆半径为R,则由 pi;R2= pi;,得R=1,由S△=12absinC=abc4R=abc4=14,there4;abc=1.二、填空题7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.答案23解析∵cosC=13, there4;sinC=223,there4;12absinC=43, there4;b=23.8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60 deg;,a=3,b=1,则c=________.答案2解析由正弦定理asinA=bsinB,得3sin60 deg;=1sinB,there4;sinB=12,故B=30 deg;或150 deg;.由a>b,得A>B, there4;B=30 deg;,故C=90 deg;,由勾股定理得c=2.9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.答案7解析∵△ABC的外接圆直径为2R=2,there4;asinA=bsinB=csinC=2R=2,there4;asinA+b2sinB+2csinC=2+1+4=7.10.在△ABC中,A=60 deg;,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.答案126解析a+b+csinA+sinB+sinC=asinA=6332=12.∵S△ABC=12absinC=12x63x12sinC=183,there4;sinC=12, there4;csinC=asinA=12,there4;c=6.三、解答题11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.证明因为在△ABC中,asinA=bsinB=csinC=2R,所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA=sin(B+C)-sinCcosBsin(A+C)-sinCcosA=sinBcosCsinAcosC=sinBsinA=右边.所以等式成立,即a-ccosBb-ccosA=sinBsinA.12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.解设三角形外接圆半径为R,则a2tanB=b2tanAhArr;a2sinBcosB=b2sinAcosAhArr;4R2sin2AsinBcosB=4R2sin2BsinAcosAhArr;sinAcosA=sinBcosBhArr;sin2A=sin2BhArr;2A=2B或2A+2B= pi;hArr;A=B或A+B= pi;2.there4;△ABC为等腰三角形或直角三角形.能力提升13.在△ABC中,B=60 deg;,边与最小边之比为(3+1)∶2,则角为()A.45 deg;B.60 deg;C.75 deg;D.90 deg;答案C解析设C为角,则A为最小角,则A+C=120 deg;,there4;sinCsinA=sin120 deg;-AsinA=sin120 deg;cosA-cos120 deg;sinAsinA=32tanA+12=3+12=32+12,there4;tanA=1,A=45 deg;,C=75 deg;.14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C= pi;4,cosB2=255,求△ABC的面积S.解cosB=2cos2B2-1=35,故B为锐角,sinB=45.所以sinA=sin( pi;-B-C)=sin3 pi;4-B=7210.由正弦定理得c=asinCsinA=107,所以S△ABC=12acsinB=12x2x107x45=87.1.在△ABC中,有以下结论:(1)A+B+C= pi;;(2)sin(A+B)=sinC,cos(A+B)=-cosC;(3)A+B2+C2= pi;2;(4)sinA+B2=cosC2,cosA+B2=sinC2,tanA+B2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.。
高三文科数学复习解三角形知识要点及基础题型归纳整理
解三角形知识刚要一.公式与结论1.角与角关系:A +B +C = π;2.边与边关系:(1)大角对大边,大边对大角(2)两边之和大于第三边,两边只差小于第三边解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解3.正弦定理:正弦定理:R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 变形:①角化边 C R c BR b A R a sin 2sin 2sin 2=== ②边化角 R c C Rb B R a A 2sin 2sin 2sin ===③C B A c b a sin :sin :sin ::=①已知两角和一边;解三角形②已知两边和其中一边的对角.如:△ABC 中,①B b A a cos cos =,则△ABC 是等腰三角形或直角三角形 ②B a A b cos cos =,则△ABC 是等腰三角形。
4.余弦定理:2222cos a b c bc A =+- 222cos 2b c a A bc +-= 2222cos b a c ac B =+- 222cos 2a c b B ac +-= 2222cos c a b ab C =+- 222cos 2a b c C ab +-= 注意整体代入,如:21cos 222=⇒=-+B ac b c a(1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角五.三角形面积5.面积公式 1.B ac A bc C ab S ABC sin 21sin 21sin 21===∆ 2. r c b a S ABC )(21++=∆,其中r 是三角形内切圆半径.注:由面积公式求角时注意解的个数6相关的结论:1.角的变换在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
高中数学解三角形精选题目(附答案)
高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)
专题7解三角形一、解答题1.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A,由(1)得2250b c ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B.(1)若23C ,求B ;(2)求222a b c 的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos 2A B A B 化成 cos sin A B B ,再结合π02B ,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B ,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ,即 1sin cos cos sin sin cos cos 2B A B A B A BC ,而π02B ,所以π6B ;(2)由(1)知,sin cos 0BC ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B ,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B B B BB .当且仅当22cos 2B 时取等号,所以222a b c的最小值为5.3.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C .(1)求sin A 的值;(2)若11b ,求ABC 的面积.【答案】(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab以及4a 可解出a ,即可由三角形面积公式in 12s S ab C 求出面积.(1)由于3cos 5C ,0πC ,则4sin 5C.因为4a ,由正弦定理知4sin A C,则sin 45A C .(2)因为4a ,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a ,即26550a a ,解得5a ,而4sin 5C ,11b ,所以ABC 的面积114sin 51122225S ab C .4.(2022·北京·高考真题)在ABC 中,sin 2C C.(1)求C ;(2)若6b ,且ABC 的面积为ABC 的周长.【答案】(1)6 (2)6+【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.(1)解:因为 0,C ,则sin 0C2sin cos C C C ,可得cos 2C ,因此,6C .(2)解:由三角形的面积公式可得13sin 22ABC S ab C a,解得a .由余弦定理可得2222cos 48362612c a b ab C ,c所以,ABC 的周长为6a b c .5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B.(1)求ABC 的面积;(2)若sin sin A C,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b ac B A C,即可求解.(1)由题意得22221231,,2S a S S,则222123S S S a b c 即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则22cos 3B ,1cos 4ac B ,则12sin 28ABC S ac B ;(2)由正弦定理得:sin sin sin b a c B A C,则229sin sin sin sin sin 423b a c ac B A C A C ,则3sin 2b B ,31sin 22b B .6.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得 sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B ,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C.(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a cb bc a b c a a b c ,化简得:2222a b c ,故原等式成立.7.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB m ,15AD m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20 ,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)【答案】(1)23.3m(2)当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.14【解析】【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD ,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值.(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD 则AE EH ,所以直角ADE 与直角HED △全等所以20ADE HDE在直角HED △中,tan 2015tan 20EH DH90250HDF ADE在直角FHD △中,tan 5015tan 50HF ADsin 20sin 5015tan 20tan 5015cos 20cos50EF EH HFsin 2050sin 20cos50cos 20sin 501515cos 20cos50cos 20cos50sin 70151523.3cos 20cos50cos50(2)设ADE ,902HDF ,则15tan AE ,15tan 902FH 115151515tan 15tan 90215tan 222tan 2EFD S EF DHV 11515tan 22ADE S AD AE V 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEF S S S22512253tan 4tan 42当且当13tan tan ,即tan 时取得等号,此时15tan 158.73AE即当tan 3 时,梯形AEFD 的面积取得最小值2则此时梯形FEBC 的面积有最大值1530255.142所以当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.148.(2022·全国·模拟预测)在 ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且 sin sin sin 6b a b c A B C S .(1)求角B 的大小;(2)若1a b ,2c b ,求cos A ,cos C 的值.【答案】(1)3(2)17,1114【解析】【分析】(1)由三角形的面积公式结合正弦余弦定理化简即可得到答案;(2)由余弦定理计算即可.(1)由in 12s S ab C ,又 sin sin sin 3sin b a b c A B C ab C ,由0b ,则 sin sin sin 3sin a b c A B C a C .由正弦定理得 3a b c a b c ac ,所以222a c b ac .由余弦定理得2221cos 222a cb ac B ac ac ,因为0B ,所以3B .(2)因为222a c b ac ,1a b ,2c b ,所以 2221212b b b b b ,解得7b ,所以8a ,5c .所以2222227581cos 2707b c a A bc ,22222287511cos 211214a b c C ab .9.(2022·全国·模拟预测)在ABC 中,角A B C ,,的对边长分别为a b c ,,,ABC 的面积为S ,且24cos cos tan S a B ab A B.(1)求角B 的大小;(2)若322AB BC ,,点D 在边AC 上,______,求BD 的长.请在①AD DC ;②DBC DBA ;③BD AC 这三个条件中选择一个,补充在上面的横线上,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3B (2)答案不唯一,具体见解析【解析】【分析】(1)根据面积公式可得2cos cos cos c B a B b A ,利用正弦定理以及和角关系可得1cos 2B ,进而可求.(2)根据余弦定理可求出AC ,然后在ABD △和在DBC △中分别用余弦定理即可求①.根据面积公式即可求解②③.(1)因为24cos cos tan S a B ab A B ,所以214sin 2cos cos sin cos ac B a B ab A B B,所以22cos cos cos ac B a B ab A ,即2cos cos cos c B a B b A .由正弦定理,得2sin cos sin cos sin cos C B A B B A ,所以 2sin cos sin sin C B A B C .因为 0,πC ,所以sin 0C ,所以1cos 2B.又 0,πB ,所以π3B.(2)若选①.法一:在ABC 中,由余弦定理,得2222233π132cos 222cos 2234AC AB BC AB BC B ,所以ACAD DC 在ABD △中,由余弦定理,得2222cos AB BD DA BD DA ADB ,即2134cos 16BD BD ADB .在DBC △中,由余弦定理,得2222cos BC BD DC BD DC CDB ,即2913cos 416BD CDB .又πADB CDB ,所以cos cos 0ADB CDB .所以29134248BD ,所以374BD .法二:因为AD DC ,所以D 为AC 的中点,所以 12BD BA BC ,所以222124BD BA BC BA BC 19337422cos6044216.所以BD BD 若选②.在ABC 中,ABC ABD CBD S S S ,即1π1π1πsin sin sin 232626BA BC BA BD BD BC ,即1311131222222222BD BD ,解得BD 若选③.在ABC 中,由余弦定理,得2222cos AC AB BC AB BC B2233π13222cos 2234 ,所以AC .因为1sin 2ABC S BA BC B △12ABC S BD AC △,BD 10.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C A B C ,a b .(1)求角B ;(2)若3a ,7b ,D 为AC 边的中点,求BCD △的面积.【答案】(1)23B (2)1538【解析】【分析】(1)根据同角三角函数的关系,结合两角和差的正余弦公式化简即可(2)由余弦定理可得5c ,再根据BCD △的面积为ABC 面积的一半,结合三角形的面积公式求解即可(1)由cos 2cos tan sin C A B C,有tan sin cos 2cos B C C A ,两边同乘cos B 得sin sin cos cos 2cos cos B C B C A B ,故 cos 2cos cos B C A B ,即cos 2cos cos A A B .因为a b ,所以A 为锐角,cos 0A ,所以1cos 2B .又因为 0,B ,所以23B .(2)在ABC 中,由余弦定理2221cos 22a c b B ac ,即2949162c c ,故23400c c ,解得5c 或8c 舍).故11235sin 223BCD ABC S S △△11.(2022·福建·三明一中模拟预测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos c b a C .(1)求角A ;(2)若M 为BC 的中点,AM ABC 面积的最大值.【答案】(1)π3A 【解析】【分析】(1)解法一:根据正弦定理边化角求解即可;解法二:利用余弦定理将cos C 用边表示再化简即可;(2)解法一:根据基底向量的方法得1()2AM AB AC ,两边平方化简后可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可;解法二:设BM MC m ,再分别在ABM ,ACM △和ABC 中用余弦定理,结合cos cos 0AMB AMC 可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可(1)解法一:因为22cos c b a C ,由正弦定理得:sin 2sin 2sin cos C B A C ,所以sin 2sin()2sin cos C A C A C 2sin cos 2cos sin 2sin cos 2cos sin A C A C A C A C ,因为sin 0C ,所以12cos 1,cos 2A A,为0πA ,所以π3A .解法二:因为22cos c b a C ,由余弦定理得:222222a b c c b a ab,整理得222bc b c a ,即222a b c bc ,又由余弦定理得2222cos a b c bc A所以12cos 1,cos 2A A,因为0πA ,所以π3A .(2)解法一:因为M 为BC 的中点,所以1()2AM AB AC ,所以222124AM AB AB AC AC ,即22132cos 43c b bc ,即2212b c bc ,而222b c bc ,所以122bc bc 即4bc ,当且仅当2b c 时等号成立所以ABC 的面积为113sin 4222ABC S bc A △即ABC 解法二:设BM MC m ,在ABM 中,由余弦定理得2232cos c m AMB ,①在ACM △中,由余弦定理得2232cos b m AMC ,②因为πAMB AMC ,所以cos cos 0AMB AMC 所以①+②式得22262b c m .③在ABC 中,由余弦定理得22242cos m b c bc A ,而π3A ,所以2224m b c bc ,④联立③④得:22222212b c b c bc ,即2212b c bc ,而222b c bc ,所以122bc bc ,即4bc ,当且仅当2b c 时等号成立.所以ABC 的面积为11sin 4222ABC S bc A △ABC 12.(2022·北京市第十二中学三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a B A .(1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求ABC 的面积.条件①:3a ;条件②:b ;条件③:2cos 3C ;条件④:2c .【答案】(1)6B(2)答案不唯一,见解析【解析】【分析】(1)由正弦定理化简可得出tan B 的值,结合角B 的取值范围可求得角B 的值;(2)选①②,利用余弦定理可判断ABC 不唯一;选①③或②③或③④,利用三角形的内角和定理可判断ABC 唯一,利用正弦定理结合三角形的面积可判断ABC 的面积;选①④,直接判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积;选②④,利用余弦定理可判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积.(1)解:由cos sin a B A 及正弦定理可得sin cos sin A B A B ,A ∵、 0,B ,则sin 0A ,cos 0 B B ,tanB 6B .(2)解:若选①②,由余弦定理可得2222cos b a c ac B ,即210c ,解得 c ,此时,ABC 不唯一;若选①③,已知3a ,6B,21cos 32C ,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A C B C C由正弦定理sin sin b a B A 可得 92sin sin 11a B b A,所以, 9211sin 32211ABC S ab C △;若选①④,已知3a ,6B,2c ,此时ABC 唯一,1322sin ABC S ac B;若选②③,已知b 6B ,21cos 32C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A CBC C 由正弦定理sin sin b c B C 可得sin 410sin 3b C c B ,所以,120385sin 29ABC S bc A △;若选②④,已知b 6B,2c ,由余弦定理可得2222cos b a c ac B ,可得240a ,0a ∵,解得a ABC 唯一,1sin2ABC S ac B △若选③④,已知6B ,2c ,231cos 322C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,5sin 3C, 152sin sin sin cos cos sin 666A CBC C ,由正弦定理sin sin b c B C 可得sin sin 5c B b C ,1sin 210ABC S bc A △.13.(2022·内蒙古·海拉尔第二中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为,,a b c ,且sin cos (cos )sin .232B BC C (1)当π3B,求sin sin C A 的值(2)求B 的最大值.【答案】(1)sin C +sin A =1(2)2π3【解析】【分析】(1)代入π3B ,解得313sin cos 223C C ,对sin sin C A 变形得到1sin sin sin cos 12C A C C ,求出答案;(2)对题干条件两边同乘以2cos2B ,变形得到sin sin sin C A B ,利用正弦定理得到a c ,利用余弦定理和基本不等式求出B 的最大值.(1)由题意得:ππsin coscos )sin 66C C ,1cos 2C C则π31sin sin sin sin sin cos sin cos 1322C A C C C C C C(2)sin cos cos )sin 22B B C C ,两边同乘以2cos 2B 得:22sin cos cos )2sin cos 222B B B C C ,即 sin 1cos cos )sin C B C B ,整理得:sin sin sin C A B ,由正弦定理得:3a cb ,由余弦定理得: 2222222cos 1226ac b ac a c b b B ac ac ac,因为 22143a c acb ,当且仅当ac 时等号成立,此时21cos 162b B ac ,由于 0,πB ,而cos y x 在 0,π上单调递减,故B 的最大值为2π314.(2022·广东·大埔县虎山中学模拟预测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222ab a b c .(1)求角C ;(2)若△ABC 的面积534S ,且c △ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用余弦定理求得cos C 的值,进而求得角C 的值;(2)依据题给条件得到关于a b ,的方程组,求得+a b 的值,进而求得△ABC 的周长.(1)因为222ab a b c ,由余弦定理,得到2221cos 22a b c C ab ,又0πC ,所以π3C ;(2)因为△ABC 的面积4S ,且c π3C所以有221sin 212S ab C ab a b ,联立22526ab a b ,则6a b ,所以△ABC 的周长为6a b c 15.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C .(1)求角A 的大小;(2)若2B D D C ,2AD ,且AD 平分BAC ,求ABC 的面积.【答案】(1)60A (2)332【解析】【分析】(1)由两角和的正切公式化简后求解(2)由AD 是角平分线得到2c b ,再利用面积公式求解(1)tan tantan tan tan tan 0tan()1tan tan B C B C B C B C B C故tan A 60A ;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h ,11sin 22ABC S AC AD DAC CD h 又AD 是角平分线,所以BAD DAC所以AB BD AC DC,即2c b ,又ABC ABD ACD S S S ,则111sin 602sin 302sin 30222bc c b ,解得b c ,133sin 6022ABC S bc △.16.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,3a ,2b ,sin A m .(1)若ABC 唯一确定,求m 的值;(2)设I 是ABC 的内切圆圆心,r 是ABC 内切圆半径,证明:当21c r 时,IC IA IB .【答案】(1)1(2)证明见解析【解析】【分析】(1)若01m ,根据sin A m ,b a ,可知A 可以为锐角,也可以为钝角,ABC 有两种情况,若1m ,则三角形为直角三角形,ABC 有唯一解.(2)由21c r 可推导出ABC 为直角三角形,故可计算出,,IC IA IB 的值,即得证.(1)设AB 边上的高为c h ,则sin 20c h b A m .当1m 时,由勾股定理,若A 为锐角,则c A 为钝角,则c ABC 存在两种情况,不能被唯一确定.当1m 时,ABC 为直角三角形,其中A 为直角顶点,c 可以唯一确定,即ABC 唯一确定,故m 的值为1.(2)当21c r 时,由余弦定理,22223cos 23a b c r r C ab ,故由同角三角函数的关系可得sin C所以ABC 的面积1sin 2S ab C另一方面, 132S a b c r r r3r r ,两边平方可得 213r r r r ,解得r ,21c r ABC 是以A 为直角顶点的直角三角形.因此有222112922IC,IC22211322IA 2IA ;22211322IB ,IB 所以有IC IA IB 成立.17.(2022·上海市光明中学模拟预测)已知在三角形ABC 中,2a b ,三角形的面积12S .(1)若4b ,求 tan A B ;(2)若3sin 5C ,求sin sin A B ,.【答案】(1)(2)25sin 5A ,sin B 或6205sin 205A ,sin B 【解析】【分析】(1)根据面积公式及4b ,得到3sin 4C ,分C 为锐角和C 为钝角时,求出cos C ,进而求出tan C ,求出 tan A B ;(2)由面积公式求出b a ,分C 为锐角和C 为钝角,由余弦定理和正弦定理求出答案.(1)∵2113sin 2sin 16sin 12sin 224S ab C b C C C 而sin tan()tan(π)tan cos CA B C C C分情况讨论,当C 为锐角时,cos 0cos C C∴tan()A B当C 为钝角时,cos 0cos C Ctan()A B (2)22113sin 2sin 12225S ab C b C b ,因为0b ,所以b a分情况讨论,当C 为锐角时,4cos 0cos 5C C由余弦定理,222cos 366c a b ab C c由正弦定理,10sin sin sin sin sin sin 5a b c A A B C A B ,sin 5B当C 为钝角时,4cos 0cos 5C C ,由余弦定理,222cos 164c a b ab C c由正弦定理,sin sin sin sin a b c A A B C,sin B 18.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c,已知cos sin B b C .(1)求C 的大小;(2)若ABC为锐角三角形且c 22a b 的取值范围.【答案】(1)3C(2)(5,6]【解析】【分析】(1)利用正弦定理边化角,再分析求解即可;(2)22224sin 4sin 3a b A A,再利用三角函数求值域即可.(1)cos sin B b C及正弦定理可得sin sin sin )B C B C A B Ccos sin B C B C ,所以sin sin cos B C B C ,因为B 、(0,)C ,则sin 0Bsin 0C C,则tan C 3C.(2)依题意,ABC为锐角三角形且c2sin sin sin a b c A B C ,所以2sin a A ,2sin 2sin()2sin 3b B A C A,所以222221cos 21cos 234sin 4sin 44322A A a b A A142cos 2222cos 222c 2cos 2222os 23A A A A A2c 42co os 242sin 246s 2cos 2sin 2A A A A A A,由于23A B ,所以022032A A,解得62A ,所以23A ,52666A ,所以푠� 2�∈12,1,所以2sin 2(1,2]6A ,所以2sin 24(5,6]6A.所以22a b 的取值范围是(5,6].19.(2022·辽宁实验中学模拟预测)在① sin sin sin sin A C a b c B C ,② 2222cos 2a b c a c B a,③ sin cos 6a B C B b这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________.(1)求B(2)若b ABC 的平分线交AC 于点D ,且5BD,求ABC 的面积.【答案】(1)=3B【解析】【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件②,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件③,先用三角形的内角之和为 ,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S △△△,结合余弦定理和三角形的面积公式即可(1)选择条件①:根据正弦定理,可得:a c abc b c 可得:222a c b ac 根据余弦定理,可得:2221cos 22a cb B ac 0,,=3B B 选择条件②:根据余弦定理,可得:2cos (2)cos =cos 2abC a c B b C a根据正弦定理,可得:(2sin sin )cos sin cos A C B B C整理可得:2sin cos sin()sin A B B C A可得:1cos 2B 0,,=3B B选择条件③:易知:A B C可得:sin cos()6a A B b根据正弦定理,可得:sin sin cos(sin 6A A B B可得:1sin cos()sin 62B B B B整理可得:tan B 0,,=3B B(2)根据题意,可得:ABC ABD BCDS S S △△△可得:1143143sin sin sin 23256256ac a 整理可得:54a c ac 根据余弦定理,可得:2222cosb ac ac ABC可得:2213=a c ac ,即2()313a c ac 可得:225()482080ac ac 解得:4ac 或5225ac (舍)故1=sin 23ABC S ac △20.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos 2B C B C A .(1)求角A 的大小;(2)若a 2bc 的最大值.【答案】(1)3A (2)【解析】【分析】(1)利用两角和的余弦公式、二倍角的余弦公式可得出关于cos A 的方程,结合1cos 1A 可求得cos A 的值,再结合角A 的取值范围可求得角A 的值;(2)由正弦定理结合三角恒等变换化简得出 2b c B ,结合正弦型函数的有界性可求得2b c 的最大值.(1)解:由已知可得 cos 25cos cos sin sin cos 25cos A B C B C A B C 2cos 25cos 2cos 5cos 13A A A A ,即22cos 5cos 20A A ,0A ∵,则1cos 1A ,解得1cos 2A ,因此,3A .(2)解:由正弦定理可得2sin sin sin b c aBC A,所以, 24sin 2sin 4sin 2sin 4sin 2sin 3b c B C B B A B B 4sin sin 5sin B B B B B B,其中 为锐角,且tan,因为3A ,则203B ,23B ,所以,当2B 时,即当2B 时,2b c 取得最大值。
高三解三角形专项练习附答案
高三解三角形专项练习附答案一、选择题1.在△ABC中,sinA=sinB,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形答案D2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形答案B解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,∴tanA=tanB=tanC,∴A=B=C.3.在△ABC中,sinA=34,a=10,则边长c的取值范围是()A.152,+∞B.(10,+∞)C.(0,10)D.0,403答案D解析∵csinC=asinA=403,∴c=403sinC.∴04.在△ABC中,a=2bcosC,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案A解析由a=2bcosC得,sinA=2sinBcosC,∴sin(B+C)=2sinBcosC,∴sinBcosC+cosBsinC=2sinBcosC,∴sin(B-C)=0,∴B=C.5.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC等于()A.6∶5∶4B.7∶5∶3C.3∶5∶7D.4∶5∶6答案B解析∵(b+c)∶(c+a)∶(a+b)=4∶5∶6,∴b+c4=c+a5=a+b6.令b+c4=c+a5=a+b6=k(k>0),则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.∴sinA∶sinB∶sinC=a∶b∶c=7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为()A.1B.2C.12D.4答案A解析设三角形外接圆半径为R,则由πR2=π,得R=1,由S△=12absinC=abc4R=abc4=14,∴abc=1.二、填空题7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.答案23解析∵cosC=13,∴sinC=223,∴12absinC=43,∴b=23.8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60°,a=3,b=1,则c=________.答案2解析由正弦定理asinA=bsinB,得3sin60°=1sinB,∴sinB=12,故B=30°或150°.由a>b,得A>B,∴B=30°,故C=90°,由勾股定理得c=2.9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.答案7解析∵△ABC的'外接圆直径为2R=2,∴asinA=bsinB=c sinC=2R=2,∴asinA+b2sinB+2csinC=2+1+4=7.10.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.答案126解析a+b+csinA+sinB+sinC=asinA=6332=12.∵S△ABC=12absinC=12×63×12sinC=183,∴sinC=12,∴csinC=asinA=12,∴c=6.三、解答题11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.证明因为在△ABC中,asinA=bsinB=csinC=2R,所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA=sin(B+C)-sinCcosBsin(A+C)-sinCcosA=sinBcosCsinAcosC=sinBsinA=右边.所以等式成立,即a-ccosBb-ccosA=sinBsinA.12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.解设三角形外接圆半径为R,则a2tanB=b2tanAa2sinBcosB=b2sinAcosA4R2sin2AsinBcosB=4R2sin2BsinAcosAsinAcosA=sinBcosBsin2A=sin2B2A=2B或2A+2B=πA=B或A+B=π2.∴△ABC为等腰三角形或直角三角形.能力提升13.在△ABC中,B=60°,最大边与最小边之比为(3+1)∶2,则最大角为()A.45°B.60°C.75°D.90°答案C解析设C为最大角,则A为最小角,则A+C=120°,∴sinCsinA=sin120°-AsinA=sin120°cosA-cos120°sinAsinA=32tanA+12=3+12=32+12,∴tanA=1,A=45°,C=75°.14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π4,cosB2=255,求△ABC的面积S.解cosB=2cos2B2-1=35,故B为锐角,sinB=45.所以sinA=sin(π-B-C)=sin3π4-B=7210.由正弦定理得c=asinCsinA=107,所以S△ABC=12acsinB=12×2×107×45=87.1.在△ABC中,有以下结论:(1)A+B+C=π;(2)sin(A+B)=sinC,cos(A+B)=-cosC;(3)A+B2+C2=π2;(4)sinA+B2=cosC2,cosA+B2=sinC2,tanA+B2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.。
解三角形知识点总结及典型例题
课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。
中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。
(完整版)解三角形高考大题-带答案
解二角形咼考大题,带答案1.(宁夏17)(本小题满分12分)如图,△ ACD 是等边三角形,△ ABC 是等腰直角三角形,AB 2.(I)求 cos Z CAE 的值; (n)求 AE .解:(I )因为 Z BCD 90° 60° 150° ,CB AC CD ,所以 Z CBE 15° .所以 c°s Z CBE cos(45° 30°)(n)在△ ABE 中,AB 2 ,故AE 细30°c°s152 -6 226 2.12分42.(江苏 17) (14 分)某地有三家工分别位于矩形 ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20 km , BC=10km ,为了处理三家工厂的污水,现要在矩形 ABCD 的区域上(含边界),且A 、B 与 等距离的一点O 处建造一个污水处理厂,并铺设排污管道 AO 、BO 、OP ,设排污管道的总 长为ykm 。
(1 )按下列要求写出函数关系式:① 设Z BAO= 0 (rad),将y 表示成B 的函数关系式; ② 设OP=x(km),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度 最短。
【解析】:本小题考查函数的概念、解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。
由正弦定理AE sin( 45° 15°)2 sin( 90° 15°)Z ACB 90°,BD 交 AC 于 E ,故OB10 c°s又 OP 10 10tan ,所以 y OA OB OP10 10 10 10tanc°sc°sA ---------------- BCB(1)①由条件知PQ垂直平分AB,若Z BAO=~2~3.(辽宁17)(本小题满分12分)4.(全国I 17)(本小题满分12分) 设厶ABC 的内角A , B , C 所对的边长分别为 a, b, c ,且acosB 3, bsi nA 4. (I )求边长a ;(n )若 △ ABC 的面积S 10,求△ ABC 的周长I .解:(1 )由acosB 3与bsi nA 4两式相除,有:3 a cos B a cos B b cos B , cotB20 10sin 10 (0②若 OP=x(km),贝U OQ=10-x ,所以 OA OB所求函数关系式为yx 2 . x 220x 200(2)选择函数模型①, y'10cos cos (20 2cos令y' 0得sin1 Q0_246当(0,—)时 y'0, y 是B 的减函数;当62010 -7) ,(10 x)2 102 x 2 20x 20010(2si n 1)2cos0 , y 是B 的增函数;此时点O 位于线段 AB 的中垂线上,且距离AB 边邛km 处。
2020年高考文科数学《解三角形》题型归纳与训练
12020年高考文科数学《解三角形》题型归纳与训练【题型归纳】题型一 利用正、余弦定理解三角形 例1 在ABC ∆中,cos2=C ,1=BC ,5=AC ,则=AB A. BCD.【答案】A【解析】因为213cos 2cos 121255=-=⨯-=-C C ,所以由余弦定理, 得22232cos 251251()325=+-⋅=+-⨯⨯⨯-=AB AC BC AC BC C ,所以=AB A .例2 ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若54cos =A ,135cos =C ,1=a ,则=b . 【答案】1321【解析】∵4cos 5A =,5cos 13C =,所以3sin 5A =,12sin 13C =, 所以()63sin sin sin cos cos sin 65B AC A C A C =+=+=, 由正弦定理得:sin sin b a B A =解得2113b =. 例3 ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知()sin sin sin cos 0B A C C +-=,2a =,c =C =( ).A .π12B .π6C .π4D .π3【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即sin (sin cos )sin 04C A A C A π⎛⎫+=+= ⎪⎝⎭,所以34A π=.由正弦定理sin sin a c A C =,得23sin 4=π1sin 2C =,得6C π=.故选B . 【易错点】两角和的正弦公式中间的符号易错【思维点拨】已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 题型二 角的正弦值和边的互化例1 ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a A B b A+=,则=ab A. B. CD【答案】B【解析】由正弦定理,得22sin sin sin cos A B B A A +=,即22sin (sin cos )B A A A ⋅+=,sin B A =,∴sin sin b B a A==. 例2 设的内角所对边的长分别为.若,则则角_____.【答案】【解析】,,所以.例3 在中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-. (1)求角B 的大小;(2)设2a =,3c =,求b 和sin(2)A B -的值.【答案】(1)3B π=(2)b =,sin(2)14A B -=【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =ABC ∆,,A B C ,,a b c 2b c a +=3sin 5sin ,A B =C =π323sin 5sin A B =π32212cos 2,53222=⇒-=-+=⇒=+=⇒C ab c b a C a c b b a π32ABC ∆3又因为(0π)B ∈,,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =由πsin cos()6b A a B =-,可得sin A =a c <,故cos A =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=. 所以,sin(2)sin 2cos cos 2sin AB A B A B -=-=1127-= 例4 在中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2cos (cos cos ).C a B+b A c = (1)求C ; (2)若c ABC △=ABC △的周长. 【答案】(1)π3C =(2)5a b c ++= 【解析】(1)()2cos cos cos C a B b A c +=由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=∵πA B C ++=,()0πA B C ∈、、,∴()sin sin 0A B C +=> ∴2cos 1C =,1cos 2C =∵()0πC ∈, ∴π3C =.⑵ 由余弦定理得:2222cos c a b ab C =+-⋅ 221722a b ab =+-⋅()237a b ab +-=1sin 2S ab C =⋅∴6ab = ∴()2187a b +-= ∴ABC △周长为5a b c ++=+题型三 利用正弦、余弦定理判定三角形的形状例1 设,内角A ,B ,C 所对的边分别为a ,b ,c .若, 则的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不确定【答案】B【解析】∵,ABC ∆ABC ∆cos cos sin b C c B a A +=ABC ∆cos cos sin b C c B a A +=∴由正弦定理得,∴,∴,∴,∴是直角三角形.例2 设,内角A ,B ,C 所对的边分别为a ,b ,c ,若A bccos <,则为( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形 【答案】C 【解析】由A b c cos <,得A BC cos sin sin <, 所以A B C cos sin sin <,即()A B B A cos sin sin <+,所以0cos sin <B A , 因为在三角形中0sin >A ,所以0cos <B ,即B 为钝角,所以ABC ∆为钝角三角形.例3 在ABC ∆中,已知A b B a tan tan 22=,则ABC ∆的形状为( )A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形 【答案】D【解析】由已知可得AABB B Acos sin sin cos sin sin 22=,B B A A cos sin cos sin =,B A 2sin 2sin =即B A 22=或π=+B A 22,可得B A =或2π=+B A ,所以ABC ∆的形状为等腰三角形或直角三角形.【易错点】诱导公式易出错【思维点拨】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.题型四 和三角形面积有关的问题例1 ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =A .2π B .3π C .4π D .6π 【答案】C2sin cos sin cos sin B C C B A +=2sin()sin B C A +=2sin sin A A =sin 1A =ABC ∆ABC ∆ABC ∆5【解析】根据题意及三角形的面积公式知2221sin 24a b c ab C +-=,所以222sin cos 2a b c C C ab +-==,所以在ABC ∆中,4C π=.故选C . 例2 在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()6c a b =-+,3C π=,则ABC∆的面积是A .3B .239C .233 D .33 【答案】C【解析】由22()6c a b =-+可得22226a b c ab +-=-①,由余弦定理及3C π=可得222a b c ab+-=②.所以由①②得6ab =,所以1sin 23ABC S ab π∆== 例3 ABC ∆的内角的对边分别为 ,已知,. (1)求;(2)设为边上一点,且,求的面积. 【答案】(1)4(2)3【解析】(1)由,得,即,又,所以,得.由余弦定理得. 又因为代入并整理得,解得.(2)因为,由余弦定理得. 因为,即为直角三角形,则,得. 从而点为的中点,【易错点】给出三角函数值求角、余弦定理求边 【思维点拨】三角形面积公式的应用原则,,A B C ,,a b c sin 0A A =a =2b =c D BC AD AC ⊥ABD △sin 0A A =π2sin 03A ⎛⎫+= ⎪⎝⎭()ππ3A k k +=∈Z ()0,πA ∈ππ3A +=2π3A =2222cos a b c bc A =+-⋅12,cos 2a b A ===-()2125c +=4c =2,4AC BC AB ===222cos 2a b c C ab +-==AC AD ⊥ACD △cos AC CD C =⋅CD D BC 111sin 222ABD ABC S S AB AC A ==⨯⨯⨯⨯=△(1)对于面积公式B ac A bc C ab S ABC sin 21sin 21sin 21===∆,一般是已知哪一个角就使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【巩固训练】题型一 利用正、余弦定理解三角形1.在中,若,则A .B .CD .【答案】B【解析】由正弦定理得:2. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2a b ==,sin cos B B +=A 的大小为 . 【答案】6π【解析】由sin cos B B +=12sin cos 2B B +=,即sin 21B =,因02B π<<,所以2,24B B ππ==.又因为2,a b ==由正弦定理得2sin sin 4A π=, 解得1sin 2A =,而,a b <则04A B π<<=,故6a π=. 3.在ABC ∆中,π4B =,BC 边上的高等于13BC ,则cos =A ( ). C.- D.-【答案】C【解析】如图所示.依题意,3AB BC =,3AC BC =. ABC ∆60,45,A B BC ︒︒∠=∠==AC =2sin sin sin 60sin 45BC AC ACAC A B ︒︒=⇔=⇔=7在ABC △中,由余弦定理得222cos 2AB AC BC A AB AC +-==⋅222225210BC BC BC BC +--==-故选C.4.在ABC ∆中,内角所对的边分别为.已知,,. (1)求和的值; (2)求的值. 【答案】见解析【解析】(1)在中,因为,故由,可得.由已知及余弦定理,得,所以.由正弦定理,得. (2)由(Ⅰ)及,得,所以, ,故5. 如图中,已知点D 在BC 边上,AC AD ⊥,sin 3BAC ∠=,AB =3AD =,则的长为_______.【答案】3,,A B C ,,a b c a b >5,6a c ==3sin 5B =b sin A πsin 24A ⎛⎫+ ⎪⎝⎭ABC △a b >3sin 5B =4cos 5B =2222cos 13b a c ac B =+-=b =sin sin a bA B=sin sin 13a B A b ==a c <cos A =12sin 22sin cos 13A A A ==25cos 212sin 13A A =-=-πππsin 2sin 2cos cos 2sin 44426A A A ⎛⎫+=+= ⎪⎝⎭ABC ∆BD C【解析】∵sin sin()cos 23BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得,题型二 角的正弦值和边的互化1. 在,内角所对的边长分别为,,a b c .若sin cos a B C +1sin cos 2c B A b =,且a b >,则B ∠= A .B .C .D .【答案】A【解析】边换sin 后约去,得,所以,但B 非最大角,所以.2. 在,内角所对的边长分别为,,a b c ,若bc b a 322=-,且B C sin 32sin =,则角A 的大小为________. 【答案】6π【解析】由B C sin 32sin =,根据正弦定理得,b c 32=,代入bc b a 322=-得227b a =,由余弦定理得:232cos 222=-+=bc a c b A ,∴6π=A .3.已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,cos a C +sin 0C b c --=.(1)求A ;(2)若2=a ,ABC ∆的面积为3,求b 、c . 【答案】(1)︒60 (2)2b c == 【解析】(1)由正弦定理得:222cos 2AB AD BD BAD AB AD+-∠=•2223BD ∴==ABC ∆,,A B C 6π3π23π56πsin B 1sin()2A C +=1sin 2B =6B π=ABC ∆,,A B C9cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C C A A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔= 2222cos 4a b c bc A b c =+-⇔+=,解得:2b c ==.题型三 利用正、余弦定理判定三角形的形状1.在ABC ∆中,若222sin sin sin A B C +<,则△ABC 的形状是( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定 【答案】A【解析】由已知可得222c b a <+,02cos 222<-+=abc b a C ,所以△ABC 的形状是钝角三角形 2. 在ABC ∆中,a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,若()A b a B a c cos 2cos -=-,则ABC ∆的形状为( ) A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】∵()A b a B a c cos 2cos -=-,∴由正弦定理得()A B A B A C cos sin sin 2cos sin sin -=-, ∴()()A B A B A B A cos sin sin 2cos sin sin -=-+,∴()0sin sin cos =-A B A ,∴0cos =A 或A B sin sin =,∴ABC ∆为等腰或直角三角形. 题型四 和三角形面积有关的问题1.ABC ∆中,a ,b ,c 分别为内角A ,B ,C所对的边长.已知3,cos 2a A B A π===+. (1)求b 的值; (2)求ABC ∆的面积.【答案】(1)23=b (2)223 【解析】(1)在ABC ∆中,由题意知sin A ==, 又因为2B A π=+,所有sin sin()cos 2B A A π=+==,由正弦定理可得3sin sin a Bb A===. (2)由2B A π=+得,cos cos()sin 2B A A π=+=-=, 由A B C π++=,得()C A B π=-+.所以sin sin[()]sin()C A B A B π=-+=+sin cos cos sin A B A B =+(=13=. 因此,ABC ∆的面积111sin 3223S ab C ==⨯⨯=. 2. ABC ∆在内角的对边分别为,已知. (1)求;(2)若,求△面积的最大值. 【答案】(1)4π(2【解析】(1)因为cos sin a b C c B =+,所以由正弦定理得:sin sin cos sin sin A B C C B =+,所以sin()sin cos sin sin B C B C C B +=+,即cos sin sin sin B C C B =,因为sin C 0,所以,解得B =; ,,A B C ,,a b c cos sin a b C c B =+B 2b =ABC 1≠tan 1B =4π(2)由余弦定理得:,即,由不等式得:,当且仅当时,取等号,所以,解得,所以△ABC的面积为,所以△.3. 设ABC∆的内角CBA,,所对边的长分别为,,a b c,且有2sin cosB A=sin cos cos sinA C A C+.(1)求角A的大小;(2)若2b=,1c=,D为BC的中点,求AD的长.【答案】(1)3π=A(2)27=AD【解析】(1),,(0,)sin()sin0A CB A B AC Bππ+=-∈⇒+=>2sin cos sin cos cos sin sin()sinB A AC A C A C B=+=+=1cos23A Aπ⇔=⇔=(2)2222222cos2a b c bc A a b a c Bπ=+-⇔==+⇒=在Rt ABD∆中,2AD===.4.在ABC∆中,内角,,A B C所对的边分别为a,b,c.已知2cosb c a B+=.(1)求证:2A B=;(2)若ABC△的面积24aS=,求出角A的大小.【答案】(1) 见解析(2)π2A=或π4A=【解析】(1)由正弦定理得sin+sin2sin cosB C A B=,故2sin cos sin sin()sin sin cos cos sinA B B A B B A B A B=++=++,于是()BAB-=sinsin,又A,()0,πB∈,故0πA B<-<,所以()BAB--=π或B A B=-,因此=πA (舍去)或2A B=,所以2.A B=2222cos4b ac acπ=+-224a c=+222a c ac+≥a c=4(2ac≥4ac≤+1sin24acπ(44≤+1ABC111(2)由42a S =,得21sin 24a ab C =.由正弦定理得1sin sin sin 2sin cos 2B C B B B ==, 因为sin 0B ≠,得sin cos C B =.又Β,()0,πC ∈,所以π2C B =±. 当π2B C +=时,由πA B C ++=,2A B =,得π2A =; 当π2C B -=时,由πA B C ++=,2A B =,得π4A =. 综上所述,π2A =或π4A =.。
解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案
解三角形【考纲说明】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识梳理】一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。
2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b cA B C R R R=== (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C++====++.3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABCabc S ah ab C ac B bc A R A B C R∆====== 4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一) 二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=2、余弦定理可以解决的问题:α北东h i l=θ(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).图1 图2 图3 图42、方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 3、方向角相对于某一正方向的水平角(如图3).4、坡角:坡面与水平面所成的锐二面角叫坡角(如图4). 坡度:坡面的铅直高度与水平宽度之比叫做坡度(或坡比)【经典例题】1、(2012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .2425【答案】A 【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B BC B B ≠∴===-=. 2、(2009广东文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==75A ∠=,则b =α 北东南西 B目标lh( )A .2B .4+ C .4— D【答案】 A【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+=由a c ==可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A3、(2011浙江)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .-12 B .12C . -1D . 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==6、(2012重庆理)设ABC ∆的内角,,A B C 的对边分别为,,abc ,且35cos ,cos ,3,513A B b ===则c =______ 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==, 由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===, 由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=. (I )求B ; (Ⅱ)若075,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=由余弦定理得2222cos b a c ac B =+-.故cos 2B =,因此45B = (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+4=故sin 1sin A a b B =⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=8、(2012江西文)△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC 的面积为求b,c.【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.9、(2011安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.【解析】:∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin 2sin 602sin 3b A B a ===,又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC·sinC 2752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()2+==10、(2012辽宁理)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(I )求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值. 【解析】(I )由已知12,,,cos 32B AC A B C B B ππ=+++=∴==(Ⅱ)解法一:2b ac =,由正弦定理得23sin sin sin 4A CB ==, 解法二:2222221,cos 222a c b a c ac b ac B ac ac+-+-====,由此得22a b ac ac +-=,得a c =所以3,sin sin 34A B C A C π====【课堂练习】1、(2012广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )A .B .CD 2、(2011四川)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ3、(2012陕西理)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12 D .12- 4、(2012陕西)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( ) A .23B .22 C .21D .21-5、(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===则sin C 的值为( )A .3 B .6 C .3 D .66、(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD 7、(2012湖北文)设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶48、(2011上海)在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A C 两点之间的距离是 千米。
解三角形(总结+题+解析)
解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。
高中文科数学解三角形部分讲练整理
高中文科数学解三角形部分整理一 正弦定理(一)知识与工具:正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===。
变形:::sin :sin :sin a b c A BC =.在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。
注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180° 两边之和大于第三边,两边之差小于第三边 (2)三角函数的恒等变形sin(A+B)=sinC ,cos(A+B)=-cosC ,sin 2B A +=cos 2C ,cos 2BA +=sin 2C (3)面积公式:S=21absinC=Rabc4=2R 2sinAsinBsinC(二)题型 使用正弦定理解三角形共有三种题型 题型1 利用正弦定理公式原型解三角形例一、在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 【解析】C.00tan 30,tan 3023,244,23bb ac b c b a=====-=题型2 利用正弦定理公式变形边角互化解三角形:关于边或角的齐次式可以直接边角互化。
例二、在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或 【解析】D. 012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或0150题型3 三角形解的个数的讨论方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。
例三、等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为(D ) A .2 B .23C .3D .32二 余弦定理(一)知识与工具:a 2=b 2+c 2﹣2bccosAcosA=bca 2cb 222-+b 2=a 2+c 2﹣2accosBcosB=acb c a 2222-+c 2=a 2+b 2﹣2abcosCcosC=abc b a 2222-+注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
高考文科解三角形大题(40道)
高考文科解三角形大题(40道)1. 在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知bac B C A -=-2cos cos 2cos .(1)求ACsin sin 的值; (2)若2,41cos ==b B ,求ABC ∆的面积S .2.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知2sin 1cos sin C C C -=+. (1)求C sin 的值;(2)若8)(422-+=+b a b a ,求边c 的值.3.在ABC ∆中,角C B A ,,的对边分别是c b a ,,. (1)若A A cos 2)6sin(=+π,求A 的值;(2)若c b A 3,31cos ==,求C sin 的值.4.ABC ∆中,D 为边BC 上的一点,53cos ,135sin ,33=∠==ADC B BD ,求AD .5.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知41cos ,2,1===C b a . (1)求ABC ∆的周长; (2)求)cos(C A -的值.6.在ABC ∆中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且241b ac =. (1)当1,45==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围.7.在ABC ∆中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2+++=. (1)求A 的值;(2)求C B sin sin +的最大值.8.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知412cos -=C . (1)求C sin 的值;(2)当C A a sin sin 2,2==时,求c b ,的长.ABC ∆b c C a =+21cos 9.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足3,5522cos =⋅=A . (1)求ABC ∆的面积;(2)若6=+c b ,求a 的值.10.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,22)4cos()4cos(=-++ππC C . (1)求角C 的大小;(2)若32=c ,B A sin 2sin =,求b a ,.11.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且. (1)求角A 的大小;(2)若1=a ,求ABC ∆的周长l 的取值范围.12.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足0cos cos )2(=--C a A c b . (1)求角A 的大小;(2)若3=a ,433=∆ABC S ,试判断的形状,并说明理由.13.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且.3)(2222ab c b a =-+(1)求2sin2BA +; (2)若2=c ,求ABC ∆面积的最大值.14.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足2222cos 2cos 4c b a B ac B a -+=-. (1)求角B 的大小;(2)设)1,3(),2cos ,2(sin -=-=n C A m ,求n m ⋅的取值范围.15.已知)0)(cos ,(cos ),cos ,(sin >==ωωωωωx x n x x m ,若函数21)(-⋅=x f 的最小正周期为π4.(1)求函数)(x f y =取最值时x 的取值集合;(2)在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足C b B c a cos cos )2(=-,求)(A f 的取值范围.16.如图,ABC ∆中,2,332sin ==∠AB ABC ,点D 在线段AC 上,且334,2==BD DC AD . (1)求BC 的长; (2)求DBC ∆的面积.ABDC17.已知向量552sin ,(cos ),sin ,(cos ===ββαα. (1)求)cos(βα-的值; (2)若02,20<<-<<βππα,135sin -=β,求αsin .18.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知12cos sin 2sin 2sin 2=+⋅+C C C C ,且5=+b a ,7=c .(1)求角C 的大小; (2)求ABC ∆的面积.19.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足21)cos sin 3(cos =-⋅A A A . (1)求角A 的大小;(2)若32,22==∆ABC S a ,求c b ,的长.20.已知函数)(,cos 21sin 23)(R x x x x f ∈+=ππ,当]1,1[-∈x 时,其图象与x 轴交于N M ,两点,最高点为P .(1)求PN PM ,夹角的余弦值;(2)将函数)(x f 的图象向右平移1个单位,再将所得图像上每点的横坐标扩大为原来的2倍,而得到函数)(x g y =的图象,试画出函数)(x g y =在]38,32[上的图象.3,53sin ,3===b A B π21.已知函数a x x x a x f -+=cos sin 2sin 2)(2(a 为常数)在83π=x 处取得最大值. (1)求a 的值;(2)求)(x f 在],0[π上的增区间.22.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且bc a c b =-+222. (1)求角A 的大小;(2)若函数2cos 2cos 2sin )(2x x x x f +=,当212)(+=B f 时,若3=a ,求b 的值.23.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知. (1)求C sin 的值; (2)求ABC ∆的面积.24.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且B c a C b cos )3(cos -=. (1)求B sin 的值;(2)若2=b ,且c a =,求ABC ∆的面积.25.已知函数212cos 2cos 2sin3)(2++=x x x x f .(1)求)(x f 的单调区间;(2)在锐角三角形ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足A c C a b cos cos )2(⋅=-,求)(A f 的取值范围.26.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,a A b B A a 2cos sin sin 2=+.(1)求ab ; (2)若2223a b c +=,求角B .27.港口A 北偏东︒30方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站为31海里,该轮船从B 处沿正西方向航行20海里后到达D 处观测站,已知观测站与检查站距离为21海里,问此时轮船离港口A 还有多远?28.某巡逻艇在A 处发现在北偏东︒45距A 处8海里的B 处有一走私船,正沿东偏南︒15的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以312海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇航行方向.29.在海岛A 上有一座海拔1km 的山峰,山顶设有一个观察站P.有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东︒15、俯角为︒30的B 处,到11:10时,又测得该船在岛北偏西︒45、俯角为︒60的C 处.(1)求船航行速度;(2)求船从B 到C 行驶过程中与观察站P 的最短距离.30.如图所示,甲船由A 岛出发向北偏东︒45的方向做匀速直线航行,速度为215海里/小时,在甲船从A 到出发的同时,乙船从A 岛正南40海里处的B 岛出发,朝北偏东θ(21tan =θ)的方向做匀速直线航行,速度为m 海里/小时.(1)求4小时后甲船到B 岛的距离为多少海里; (2)若两船能相遇,求m.。
文科数学解三角形专题(高考题)练习【附答案】之欧阳育创编
解三角形专题练习1、在b 、c ,向量(2sin ,m B =,2cos 2,2cos12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。
(I )求锐角B 的大小;(II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。
2、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -=(I )求cos B 的值; (II )若2=⋅BC BA ,且22=b ,求c a 和b的值.3、在ABC ∆中,cos 5A =,cos 10B =. (Ⅰ)求角C ; (Ⅱ)设AB =,求ABC ∆的面积.4、在△ABC中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足(I )求A 的大小;(II )求)sin(6π+B 的值.5、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。
6、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l.求:(I )角C 的大小; (II )△ABC 最短边的长.7、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且c o s c o s B C ba c=-+2. (I )求角B 的大小;(II )若b a c =+=134,,求△ABC 的面积. 8、(2009全国卷Ⅱ文)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,23cos )cos(=+-B C A ,ac b =2,求B.9、(2009天津卷文)在ABC ∆中,A C AC BC sin 2sin ,3,5===(Ⅰ)求AB 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考文科数学《解三角形》题型归纳与训练
【题型归纳】
题型一 利用正、余弦定理解三角形
例1 在ABC ∆中,cos 2=C 1=BC ,5=AC ,则=AB
A .
B
C
D .【答案】A
【解析】因为213cos 2cos 121255
=-=⨯-=-C C ,所以由余弦定理, 得22232cos 251251()325
=+-⋅=+-⨯⨯⨯-=AB AC BC AC BC C ,
所以=AB A .
例2 ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若54cos =
A ,135cos =C ,1=a ,则=b . 【答案】13
21 【解析】∵4cos 5A =,5cos 13C =,所以3sin 5A =,12sin 13
C =, 所以()63sin sin sin cos cos sin 65B A C A C A C =+=+=
, 由正弦定理得:sin sin b a B A =解得2113
b =. 例3 ABC ∆的内角A ,B ,C 的对边分别为a ,b ,
c ,已知()sin sin sin cos 0B A C C +-=,2a =,
c =C =( ).
A .π12
B .π6
C .π4
D .π3
【答案】B
【解析】由题意sin()sin (sin cos )0A C A C C ++-=得
sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,
即sin (sin cos )sin 04C A A C A π⎛⎫+=+= ⎪⎝⎭,所以34A π=.
由正弦定理sin sin a c A C =
,得23sin 4
=π,即1sin 2C =,得6C π=.故选B . 【易错点】两角和的正弦公式中间的符号易错
【思维点拨】已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.
用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 题型二 角的正弦值和边的互化
例1 ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,2sin cos cos a A B b A
+=,则=a b A
. B
. C
D
【答案】B
【解析】
由正弦定理,得22sin sin sin cos A B B A A +=
,
即22sin (sin cos )B A A A ⋅+=
,sin B A =
,∴
sin sin b B a A ==. 例2 设的内角所对边的长分别为.若,则
则角_____.
【答案】 【解析】,,所以. 例3 在中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6
b A a B π=-.
(1)求角B 的大小;
(2)设2a =,3c =,求b 和sin(2)A B -的值. 【答案】(1)3B π
= (2
)b =
sin(2)A B -= 【解析】(1)在ABC △中,由正弦定理sin sin a b A B
=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6
a B a B =-, 即πsin cos()6B B =-
,可得tan B =. ABC ∆,,A B C ,,a b c 2b c a +=3sin 5sin ,A B =C =π3
23sin 5sin A B =π32212cos 2,53222=⇒-=-+=⇒=+=⇒C ab c b a C a c b b a π3
2ABC ∆。