高中 高考物理 气体和热力学定律

合集下载

高考物理二轮复习 第十三章 热学 教材回顾(二)气体和热力学定律课件 选修3-3.pptx

高考物理二轮复习 第十三章 热学 教材回顾(二)气体和热力学定律课件 选修3-3.pptx
3
(3)压强(p) ①定义:作用在器壁单位面积上的压力叫做气体压强。 ②产生原因:由于大量气体分子无规则的运动而频繁碰撞 器壁,形成对器壁各处均匀、持续的压力。 ③决定气体压强大小的因素 宏观:决定于气体的 温度 和体积 。 微观:决定于分子的平均动能 和分子的 密集程度 (单位 体积内的分子数)。
条件
对于常温)的情况遵守三个实验定律
4.理想气体的状态方程 (1)理想气体 ①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律
的气体。实际气体在压强 不太大、温度不太低 的条件下,可视为理
想气体。
9
②微观上讲,理想气体的分子间除 碰撞 外无其他作用力, 分子本身没有 体积 ,即它所占据的空间认为都是可以被压缩 的空间。
12
二、热力学定律与能量守恒定律 1.热力学第一定律 (1)内容:一个热力学系统的内能增量等于外界向 它 传递的热量 与外界对它 所做的功 的和。 (2)表达式:ΔU= Q+W 。 (3)第一类永动机违背了能量守恒定律。
13
[深化理解]
1.热力学第一定律不仅反映了做功和热传递这两种方式改
变内能的过程是等效的,而且给出了内能的变化量与做功、热
表达 p1V1=p2V2 ,或 pV Tp11=Tp22或Tp=C(常量)

=C(常量)
推论:ΔΔTp=Tp11
VT11=VT22 或VT= C(常量)
推论:ΔΔVT=VT11
7
续表
玻意耳定律
查理定律
盖—吕萨克定律
温度保持不变时分 体积保持不变时分 温度升高时分子的
微 子的 平均动能 一 子的 密集程度 保持 平均动能 增大 。只
观 定。在这种情况下,不 变 。 在 这 种 情 况 有 气 体 的 体 积 同 时

高考物理(命题热点提分)专题14 分子动理论 气体及热力学定律(2021年最新整理)

高考物理(命题热点提分)专题14 分子动理论 气体及热力学定律(2021年最新整理)

2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律的全部内容。

专题14 分子动理论气体及热力学定律1。

关于分子动理论和热力学定律,下列说法中正确的是()A.空气相对湿度越大时,水蒸发越快B。

物体的温度越高,分子平均动能越大C.第二类永动机不可能制成是因为它违反了热力学第一定律D。

两个分子间的距离由大于10-9m处逐渐减小到很难再靠近的过程中,分子间作用力先增大后减小到零,再增大E。

若一定量气体膨胀对外做功50J,内能增加80J,则气体一定从外界吸收130J的热量答案BDE2。

下列说法中正确的是( )A。

气体压强的大小和单位体积内的分子数及气体分子的平均动能都有关B。

布朗运动是液体分子的运动,说明液体分子永不停息地做无规则热运动C.热力学第二定律的开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响D。

水黾可以停在水面上是因为液体具有表面张力E。

温度升高,物体所有分子的动能都增大答案ACD解析气体压强的大小与单位体积内的分子数及气体分子的平均动能都有关。

故A正确;布朗运动指悬浮在液体中的固体颗粒所做的无规则运动,布朗运动反映的是液体分子的无规则运动,故B错误;热力学第二定律的开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响,C正确;因为液体表面张力的存在,水黾才能停在水面上,故D正确;温度是分子的平均动能的标志,温度升高,并不是物体所有分子的动能都增大,故E错误。

高中物理分子动理论-气体和热力学定律专题讲练

高中物理分子动理论-气体和热力学定律专题讲练

【分子动理论 气体与热力学定律】专题讲练一、考纲要求六.分子动理论、热和功、气体热学局部在高考理综中仅仅以一道选择题的形式出现,分值:6分。

知识要点是分子动理论、内能、热力学三定律及能量守恒定律和气体的性质。

二、典例分类评析1、分子的两种模型及宏观量、微观量的计算〔1〕分子的两种模型①球体模型:常用于固体、液体分子。

V=1/6πd 3②立方体模型:常用于气体分子。

V=d3 〔2〕宏观量、微观量的计算在此所指的微观量为:分子体积0V ,分子的直径d ,分子的质量0m .宏观物理量为:物质的体积V 、摩尔体积mol V 、物质的质量m 、摩尔质量M 、物质的密度ρ。

阿伏加德罗常数是联系微观物理量和宏观物理量的桥梁。

由宏观量去计算微观量,或由微观量去计算宏观量,都要通过阿伏加德罗常数建立联系.所以说阿伏加德罗常数是联系宏观量与微观量的桥梁.①计算分子的质量:0mol A AV M m N N ρ== ②计算分子的体积:0mol A A V M V N N ρ==,进而还可以估算分子的直径(线度) d ,把分子看成小球,由30432d V π⎛⎫= ⎪⎝⎭,得d =〔注意:此式子对固体、液体成立〕 ③计算物质所含的分子数:A A A mol m V V n N N N M V Mρ===. 例1、以下可算出阿伏加德罗常数的一组数据是 〔 〕A .水的密度和水的摩尔质量B .水的摩尔质量和水分子的体积C .水分子的体积和水分子的质量D .水分子的质量和水的摩尔质量例2、只要知道以下哪一组物理量,就可以估算出气体中分子间的平均距离 〔 〕A.阿伏加德罗常数,气体摩尔质量和质量B .阿伏加德罗常数,气体摩尔质量和密度C .阿伏加德罗常数,气体质量和体积D .该气体的密度、体积和摩尔质量例3、某固体物质的摩尔质量为M ,密度为ρ,阿伏加德罗常数为A N ,那么每个分子的质量和单位体积内所含的分子数分别是 〔 〕A .A N M 、A N M ρB .A M N 、A MN ρC .A N M 、 A M N ρD .A M N 、 A N Mρ 例4、假设以 μ表示水的,υ表示在标准状态下水蒸气的摩尔体积, ρ为表示在标准状态下水蒸气的密度,N A 为阿伏加德罗常数,m 、Δ分别表示每个水分子的质量和体积,下面是四个关系式中正确的选项是 〔 〕A . N A = ─── υρ mB .ρ = ─── μA N ΔC . m = ─── μA ND .Δ= ─── υAN 例5、地球半径约为6.4×106 m ,空气的摩尔质量约为29×10-3 kg/mol,一个标准大气压约为1.0×105 Pa.利用以上数据可估算出地球外表大气在标准状况下的体积为 〔 〕A.4×1016 m 3B.4×1018 m 3C. 4×1030 m 3D. 4×1022 m 32、分子热运动和布朗运动(1)布朗运动①布朗运动是指悬浮小颗粒的运动,布朗运动不是一个单一的分子的运动——单个分子是看不见的,悬浮小颗粒是千万个分子组成的粒子,形成布朗运动的原因是悬浮小颗粒受到周围液体、气体分子紊乱的碰撞和来自各个方向碰撞效果的不平衡,因此,布朗运动不是分子运动,但它间接证明了周围液体、气体分子在永不停息地做无规那么运动,②布朗运动与扩散现象是不同的现象.布朗运动是悬浮在液体中的微粒所做的无规那么运动.其运动的剧烈程度与微粒的大小和液体的温度有关.扩散现象是两种不同物质在接触时,没有受到外力影响。

高中 高考物理 气体和热力学定律

高中 高考物理  气体和热力学定律

续表 玻意耳定律 查理定律 盖—吕萨克定律
适用 实际气体在压强不太大(相对于 1 标准气压)、 温度不太低(相 条件 对于常温)的情况遵守三个实验定律
4.理想气体的状态方程 (1)理想气体 ①宏观上讲, 理想气体是指在任何条件下始终遵守气体实验定律 的气体。实际气体在压强 不太大、温度 不太低 的条件下,可视为理 想气体。
(3)压强(p) ①定义:作用在器壁单位面积上的压力叫做气体压强。 ②产生原因: 由于大量气体分子无规则的运动而频繁碰撞 器壁,形成对器壁各处均匀、持续的压力。 ③决定气体压强大小的因素 宏观:决定于气体的 温度 和 体积 。 微观:决定于分子的 平均动能 和分子的 密集程度 (单位 体积内的分子数)。
解析:开始时由于活塞处于静止,由平衡条件可得 mg p0S+mg=p1S,则 p1=p0+ S 当气缸刚提离地面时气缸处于静止,气缸与地面间无 作用力,因此由平衡条件可得 p2S+Mg=p0S Mg 则 p2=p0- S 。 mg 答案:p0+ S Mg p0- S
2.[考查液柱封闭的气体压强]若已知大气压强 为 p0,在图中各装置均处于静止状态,图中液体密 度均为 ρ,求被封闭气体的压强。
解析:在图甲中,以高为 h 的液柱 为研究对象,由二力平衡知 p 气 S=-ρghS+p0S 所以 p 气=p0-ρgh
在图乙中,以 B 液面为研究对象,由平衡方程 F 上=F 下 有:p 气 S+ρghS=p0S p 气=p0-ρgh 在图丙中,以 B 液面为研究对象,有 3 p 气+ρghsin 60° =pB=p0,所以 p 气=p0- ρgh 2 在图丁中,以液面 A 为研究对象,由二力平衡得 p 气 S=(p0+ρgh1)S,所以 p 气=p0+ρgh1。 答案:甲:p0-ρgh 乙:p0-ρgh 3 丙:p0- ρgh 2 丁:p0+ρgh1

高考物理热学计算方法

高考物理热学计算方法

高考物理热学计算方法高考物理的热血部分内容常常让学生们觉得头疼,因为这是最复杂的题目之一,该怎么应对呢?小编整理了物理学习相关内容,希望能帮助到您。

高中常用物理公式之热学常考的6个热学知识点一、分子运动论1.物质是由大量分子组成的2.分子永不停息地做无规则热运动(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。

(4)布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

(5)影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

(6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在10-6m,这种微粒肉眼是看不到的,必须借助于显微镜。

3.分子间存在着相互作用力(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。

分子间的引力和斥力只与分子间距离(相对位置)有关,与分子的运动状态无关。

(2)分子间的引力和斥力都随分子间的距离r的增大而减小,随分子间的距离r的减小而增大,但斥力的变化比引力的变化快。

(3)分子力F和距离r的关系如下图4.物体的内能(1)做热运动的分子具有的动能叫分子动能。

温度是物体分子热运动的平均动能的标志。

(2)由分子间相对位置决定的势能叫分子势能。

分子力做正功时分子势能减小;分子力作负功时分子势能增大。

当r=r0即分子处于平衡位置时分子势能最小。

高考物理:热力学三大定律总结!

高考物理:热力学三大定律总结!

高考物理:热力学三大定律总结!热力学第一定律是能量守恒定律。

热力学第二定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。

以及熵增表述:孤立系统的熵永不减小。

热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0)不可达到。

第一定律热力学第一定律也就是能量守恒定律。

自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。

内容一个热力学系统的内能U增量等于外界向它传递的热量Q与外界对它做功A的和。

(如果一个系统与环境孤立,那么它的内能将不会发生变化。

)符号规律热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△E=-W+Q时,通常有如下规定:①外界对系统做功,A>0,即W为正值。

②系统对外界做功,A<0,即W为负值。

③系统从外界吸收热量,Q>0,即Q为正值④系统从外界放出热量,Q<0,即Q为负值⑤系统内能增加,△U>0,即△U为正值⑥系统内能减少,△U<0,即△U为负值理解从三方面理解1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时系统内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=A2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时系统内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q3.在做功和热传递同时存在的过程中,系统内能的变化,则要由做功和所传递的热量共同决定。

在这种情况下,系统内能的增量△U就等于从外界吸收的热量Q和外界对系统做功A之和。

高中物理公式及知识点汇总-热学

高中物理公式及知识点汇总-热学

高中物理公式及知识点汇总-热学高中物理中,热学是一个重要的领域,涉及到热传导、热膨胀、热力学等内容。

下面我将为大家整理出一些常见的物理公式和知识点。

热力学1. 热力学第一定律(能量守恒定律):ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做功。

2. 内能的计算公式:ΔU = nCΔT其中,ΔU表示内能的变化,n表示物质的摩尔数,C表示摩尔定容热容,ΔT表示温度的变化。

3. 理想气体状态方程:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的温度。

4. 热力学第二定律(克劳修斯表述):热量不会自发地从低温物体传递到高温物体。

5. 熵的变化与热量传递的关系:ΔS = Qrev/T其中,ΔS表示熵的变化,Qrev表示可逆过程中的吸收的热量,T表示温度。

热传导1. 热传导的热流量公式:Q/t = kAΔT/L其中,Q/t表示单位时间内传导的热量,k表示热传导系数,A 表示传热面积,ΔT表示温度差,L表示传热长度。

2. 热传导的热阻公式:R = L/ (kA)其中,R表示热阻,L表示传热长度,k表示热传导系数,A 表示传热面积。

3. 热传导的导热方程:∂Q/∂t = -k∇²T其中,∂Q/∂t表示单位时间内通过单位面积的热流量,k为热传导系数,∇²T表示温度在空间中的二阶偏导数。

热膨胀1. 线膨胀的计算公式:ΔL = αL₀ΔT其中,ΔL表示长度的变化,α表示线膨胀系数,L₀表示初始长度,ΔT表示温度的变化。

2. 面膨胀的计算公式:ΔA = 2αA₀ΔT其中,ΔA表示面积的变化,α表示面膨胀系数,A₀表示初始面积,ΔT表示温度的变化。

3. 体膨胀的计算公式:ΔV = βV₀ΔT其中,ΔV表示体积的变化,β表示体膨胀系数,V₀表示初始体积,ΔT表示温度的变化。

热辐射1. 斯特藩—玻尔兹曼定律:P = εσA(T² - T₀²)其中,P表示单位时间内通过单位面积的辐射功率,ε表示发射率,σ为斯特藩—玻尔兹曼常数,A表示面积,T为温度,T₀为参考温度。

高考物理气体

高考物理气体
A ① B A ② B
6. 如果将自行车内胎充气过足,又放在阳光下受暴晒, 车胎极易爆裂.关于这一现象的描述,下列说法正确 的是(暴晒过程中内胎容积几乎不变) ( B D ) A.车胎爆裂,是车胎内气体温度升高,气体分子间 斥力急剧增大的结果.
B.在爆裂前的过程中,气体温度升高,分子无规则 热运动加剧,气体压强增大.
A. 气体的密度增大
B. 气体的压强增大 C. 气体分子的平均动能减小 D. 每秒撞击单位面积器壁的分子数增多
7.下列说法正确的是 (A D ) A.气体的温度升高时,并非所有分子的速率都 增大 B.盛有气体的容器作减速运动时,容器中气体 的内能随之减小 C.理想气体在等容变化过程中,气体对外不做 功,气体的内能不变 D.一定质量的理想气体经等温压缩后,其压强 一定增大
19.对一定质量的气体,下列说法中正确的是 ( BD )
A.温度升高,压强一定增大
B.温度升高,分子热运动的平均动能一定增大
C.压强增大,体积一定减小
D.吸收热量,可能使分子热运动加剧、气体体积增大
14. 下列说法中正确的是
) A A. 一定质量的气体被压缩时,气体压强不一定增大 B. 一定质量的气体温度不变压强增大时,其体积也增大
例1、 分子流以平均速率v和面积为S的器壁碰 撞,分子流单位体积内的分子数是n0,每个分 子的质量是m0,如果 运动方向与器壁垂直, 且碰撞后以原速率反向弹回,求分子流对器壁 的作用力和压强。
解:画出示意图,t 秒内通过截面S的分子总质量m m=n0Vm0 = n0 vtSm0
由动量定理
Ft= - mv – mv = - 2mv v s
(
C. 气体压强是由气体分子间的斥力产生的
D. 在失重的情况下,密闭容器内的气体对器壁没有压强

人教版高中物理选修3第三章《气体状态方程 热力学定律》讲义及练习

人教版高中物理选修3第三章《气体状态方程 热力学定律》讲义及练习

气体状态方程 热力学定律理想气体的状态方程:(1)理想气体:能够严格遵守气体实验定律的气体,称为理想气体。

理想气体是一种理想化模型。

实际中的气体在压强不太大,温度不太低的情况下,均可视为理想气体。

(2)理想气体的状态方程:C TPVT V P T V P ==或222111 一定质量的理想气体的状态发生变化时,它的压强和体积的乘积与热力学温度的比值保持不变。

即此值为—恒量。

热力学第一定律:(1)表达式为:ΔE=W+Q1.改变内能的两种方式:做功和热传递都可以改变物体的内能。

2.做功和热传递的本质区别:做功和热传递在改变物体内能上是等效的。

但二者本质上有差别。

做功是把其他形式的能转化为内能。

而热传递是把内能从一个物体转移到另一个物体上。

3.功、热量、内能改变量的关系——热力学第一定律。

①内容:在系统状态变化过程中,它的内能的改变量等于这个过程中所做功和所传递热量的总和。

②实质:是能量转化和守恒定律在热学中的体现。

③表达式:∆E W Q=+ ④为了区别不同情况,对∆E 、W 、Q 做如下符号规定: ∆E > 0 表示内能增加∆E < 0 表示内能减少Q > 0 表示系统吸热 Q < 0 表示系统放热 W > 0 表示外界对系统做功W < 0 表示系统对外界做功能的转化和守恒定律:1.物质有许多不同的运动形式,每一种运动形式都有一种对应的能。

2.各种形式的能都可以互相转化,转化过程中遵守能的转化和守恒定律。

3.能的转化和守恒定律:能量既不能凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体。

应注意的问题:1.温度与热量:①温度:温度是表示物体冷热程度的物理量。

从分子动理论观点看,温度是物体分子平均动能的标志。

温度是大量分子热运动的集体表现,含有统计意义,对个别分子来说,温度是没有意义的。

温度高低标志着物体内部的分子热运动的剧烈程度。

高考物理二轮复习 专题十四 分子动理论 气体及热力学定律课件 新人教版

高考物理二轮复习 专题十四 分子动理论 气体及热力学定律课件 新人教版
专题十四 分子动理论 气体及热力学定律
循专题线索·查思维断点
知专题重点·明备考方向 1.必须掌握的概念、公式、定律 (1)分子力、温度、物体的内能、理想气体等概念. (2)ΔU=W+Q、pTV=C等公式. (3)热力学定律、气体实验定律等.
2.必须理解的三个关键点 (1)球模型与立方体模型在微观量的估算中的应用. (2)气体实验定律的应用. (3)热力学第一定律的应用. 3.必须明确的四个易错易混点 (1)气体分子大小和分子所占据的空间不同. (2)物体的内能与理想气体内能的决定因素. (3)热力学第一定律ΔU=W+Q中各量的符号规定. (4)气体实验定律的适用条件及其状态的确定.
③通过做功或热传递可以改变物体的内能. ④温度是分子平均动能的标志,相同温度的任何物 体,分子的平均动能相同.
1.(2014·北京卷)下列说法中正确的是( ) A.物体温度降低,其分子热运动的平均动能增大 B.物体温度升高,其分子热运动的平均动能增大 C.物体温度降低,其内能一定增大 D.物体温度不变,其内能一定不变
考点 1 分子动理论 内能
一、基础知识梳理 1.油膜法测分子直径的原理 用 V 表示一滴油酸酒精溶液中纯油酸的体积,用 S 表 示单分子油膜的面积,用 d 表示分子的直径,则:d=VS.
2.估算微观量的两种模型 (1)球体模型:一般适用于固体、液体,认为分子为一 个个球体,体积V0=16πd3,d为分子直径. (2)立方体模型:一般适用于气体,认为一个分子占据 的空间为一个立方体,体积V0=d3,d为平均分子间距.
②分子势能变化曲线如图所示,r=r0时分子势能具有 最小值.
二、方法技巧总结 1.固体、液体分子微观量的计算(估算)
1.固体、液体分子微观量的计算(估算)

高三物理气体的性质知识点归纳

高三物理气体的性质知识点归纳

高三物理气体的性质知识点归纳
高三是人生中一个重要的转折点,在这一年里我们会把学过的知识重新翻一遍,接下来就由店铺带来高三物理气体的`性质热门知识点归纳,希望对你有所帮助!
1、气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志。

热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013105Pa=76cmHg (1Pa=1N/m2)
2、气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3、理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

【关于高三物理气体的性质热门知识点归纳】。

高考物理二轮复习:分子动理论、气体及热力学定律(含答案解析)

高考物理二轮复习:分子动理论、气体及热力学定律(含答案解析)

分子动理论 气体及热力学定律热点视角备考对策本讲考查的重点和热点:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题;④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小.命题形式基本上都是小题的拼盘. 由于本讲内容琐碎,考查点多,因此在复习中应注意抓好四大块知识:一是分子动理论;二是从微观角度分析固体、液体、气体的性质;三是气体实验三定律;四是热力学定律.以四块知识为主干,梳理出知识点,进行理解性记忆.`一、分子动理论 1.分子的大小(1)阿伏加德罗常数N A =×1023 mol -1.(2)分子体积:V 0=V molN A (占有空间的体积).(3)分子质量:m 0=M molN A.(4)油膜法估测分子的直径:d =VS . (5)估算微观量的两种分子模型 【①球体模型:直径为d =36V 0π.②立方体模型:边长为d =3V 0. 2.分子热运动的实验基础(1)扩散现象特点:温度越高,扩散越快.(2)布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈.3.分子间的相互作用力和分子势能(1)分子力:分子间引力与斥力的合力.分子间距离增大,引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快.(2)分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增加;当分子间距为r 0时,分子势能最小. —二、固体、液体和气体1.晶体、非晶体分子结构不同,表现出的物理性质不同.其中单晶体表现出各向异性,多晶体和非晶体表现出各向同性.2.液晶是一种特殊的物质,既可以流动,又可以表现出单晶体的分子排列特点,在光学、电学物理性质上表现出各向异性.3.液体的表面张力使液体表面有收缩到最小的趋势,表面张力的方向跟液面相切. 4.气体实验定律:气体的状态由热力学温度、体积和压强三个物理量决定. (1)等温变化:pV =C 或p 1V 1=p 2V 2.(2)等容变化:p T =C 或p 1T 1=p 2T 2.(3)等压变化:V T =C 或V 1T 1=V 2T 2.*(4)理想气体状态方程:pV T =C 或p 1V 1T 1=p 2V 2T 2.三、热力学定律 1.物体的内能 (1)内能变化温度变化引起分子平均动能的变化;体积变化,分子间的分子力做功,引起分子势能的变化. (2)物体内能的决定因素2.热力学第一定律 #(1)公式:ΔU =W +Q .(2)符号规定:外界对系统做功,W >0,系统对外界做功,W <0;系统从外界吸收热量,Q >0,系统向外界放出热量,Q <0.系统内能增加,ΔU >0,系统内能减少,ΔU <0. 3.热力学第二定律(1)表述一:热量不能自发地从低温物体传到高温物体.(2)表述二:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.(3)揭示了自然界中进行的涉及热现象的宏观过程都具有方向性,说明了第二类永动机不能制造成功.热点一 微观量的估算?命题规律:微观量的估算问题在近几年高考中出现的较少,但在2015年高考中出现的概率较大,主要以选择题的形式考查下列两个方面: (1)宏观量与微观量的关系;(2)估算固、液体分子大小,气体分子所占空间大小和分子数目的多少.1.若以μ表示水的摩尔质量,V 表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下水蒸气的密度,N A 为阿伏加德罗常数,m 、Δ分别表示每个水分子的质量和体积,下面五个关系式中正确的是( )A .N A =VρmB .ρ=μN A ΔC .m =μN AD .Δ=V N AE .ρ=μV^[解析] 由N A =μm =ρVm ,故A 、C 对;因水蒸气为气体,水分子间的空隙体积远大于分子本身体积,即V ≫N A ·Δ,D 不对,而ρ=μV ≪μN A·Δ,B 不对,E 对.[答案] ACE2.某同学在进行“用油膜法估测分子的大小”的实验前,查阅数据手册得知:油酸的摩尔质量M =0.283 kg·mol -1,密度ρ=×103 kg·m -3.若100滴油酸的体积为1 mL ,则1滴油酸所能形成的单分子油膜的面积约是多少(取N A =×1023 mol -1,球的体积V 与直径D 的关系为V =16πD 3,结果保留一位有效数字)[解析] 一个油酸分子的体积V =MρN A分子直径D =36M πρN A最大面积S =V 油D代入数据得:S =1×101 m 2. [答案] 1×101 m 2 $3.(2014·潍坊二模)空调在制冷过程中,室内空气中的水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥,若有一空调工作一段时间后,排出液化水的体积V =×103 cm 3.已知水的密度ρ=×103 kg/m 3、摩尔质量M =×10-2 kg/mol ,阿伏加德罗常数N A =×1023 mol -1.试求:(结果均保留一位有效数字) (1)该液化水中含有水分子的总数N ; (2)一个水分子的直径d .[解析] 水是液体,故水分子可以视为球体,一个水分子的体积公式为V ′0=16πd 3.(1)水的摩尔体积为V 0=Mρ①该液化水中含有水分子的物质的量n =VV 0②水分子总数N =nN A ③由①②③得N =ρVN AM `=错误!≈3×1025(个).(2)建立水分子的球模型有:V 0N A=16πd 3得水分子直径d =36V 0πN A= 36××10-5××1023m≈4×10-10m. [答案] (1)3×1025个 (2)4×10-10 m[方法技巧] 解决估算类问题的三点注意1固体、液体分子可认为紧靠在一起,可看成球体或立方体;气体分子只能按立方体模型计算所占的空间.2状态变化时分子数不变. ^3阿伏加德罗常数是宏观与微观的联系桥梁,计算时要注意抓住与其有关的三个量:摩尔质量、摩尔体积和物质的量.)热点二 分子动理论和内能命题规律:分子动理论和内能是近几年高考的热点,题型为选择题.分析近几年高考命题,主要考查以下几点:(1)布朗运动、分子热运动与温度的关系.(2)分子力、分子势能与分子间距离的关系及分子势能与分子力做功的关系. :1.(2014·唐山一模)如图为两分子系统的势能E p 与两分子间距离r 的关系曲线.下列说法正确的是( )A .当r 大于r 1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r1时,分子间势能E p最小D.当r由r1变到r2的过程中,分子间的作用力做正功E.当r等于r2时,分子间势能E p最小[解析]由图象知:r=r2时分子势能最小,E对,C错;平衡距离为r2,r<r2时分子力表现为斥力,A错,B对;r由r1变到r2的过程中,分子势能逐渐减小,分子力做正功,D对.[答案]BDE,2.(2014·长沙二模)下列叙述中正确的是()A.布朗运动是固体小颗粒的运动,是液体分子的热运动的反映B.分子间距离越大,分子势能越大;分子间距离越小,分子势能也越小C.两个铅块压紧后能粘在一起,说明分子间有引力D.用打气筒向篮球充气时需用力,说明气体分子间有斥力E.温度升高,物体的内能却不一定增大[解析]布朗运动不是液体分子的运动,而是悬浮在液体中的小颗粒的运动,它反映了液体分子的运动,A正确;若取两分子相距无穷远时的分子势能为零,则当两分子间距离大于r0时,分子力表现为引力,分子势能随间距的减小而减小(此时分子力做正功),当分子间距离小于r0时,分子力表现为斥力,分子势能随间距的减小而增大(此时分子力做负功),故B错误;将两个铅块用刀刮平压紧后便能粘在一起,说明分子间存在引力,C正确;用打气筒向篮球充气时需用力,是由于篮球内压强在增大,不能说明分子间有斥力,D错误;物体的内能取决于温度、体积及物体的质量,温度升高,内能不一定增大,E正确.[答案]ACE¥3.对一定量的气体,下列说法正确的是()A.气体的体积是所有气体分子的体积之和B.气体的体积大于所有气体分子的体积之和C.气体分子的热运动越剧烈,气体温度就越高D.气体对器壁的压强是由大量气体分子对器壁不断碰撞产生的E.当气体膨胀时,气体分子之间的势能减小,因而气体的内能减小[解析]气体分子间的距离远大于分子直径,所以气体的体积远大于所有气体分子体积之和,A项错,B项对;温度是物体分子平均动能大小的标志,是表示分子热运动剧烈程度的物理量,C项对;气体压强是由大量气体分子频繁撞击器壁产生的,D项对;气体膨胀,说明气体对外做功,但不能确定吸、放热情况,故不能确定内能变化情况,E项错误.[答案]BCD;[方法技巧]1分子力做正功,分子势能减小,分子力做负功,分子势能增大,两分子为平衡距离时,分子势能最小.2注意区分分子力曲线和分子势能曲线.)热点三热力学定律的综合应用命题规律:热力学定律的综合应用是近几年高考的热点,分析近三年高考,命题规律有以下几点:(1)结合热学图象考查内能变化与做功、热传递的关系,题型为选择题或填空题.(2)以计算题形式与气体性质结合进行考查.(3)对固体、液体的考查比较简单,备考中熟记基础知识即可.】1.(2014·南昌一模)下列叙述和热力学定律相关,其中正确的是()A.第一类永动机不可能制成,是因为违背了能量守恒定律B.能量耗散过程中能量不守恒C.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性E .物体从单一热源吸收的热量可全部用于做功[解析] 由热力学第一定律知A 正确;能量耗散是指能量品质降低,反映能量转化的方向性仍遵守能量守恒定律,B 错误,D 正确;电冰箱的热量传递不是自发,不违背热力学第二定律,C 错误;在有外界影响的情况下,从单一热源吸收的热量可以全部用于做功,E 正确. 。

2024年新高考二轮物理复习专题——热力学定律、气体实验定律

2024年新高考二轮物理复习专题——热力学定律、气体实验定律

考情透析命题点考频分析命题特点核心素养热力学定律的理解及应用2023年:新课标T8湖南T13全国甲T13T14全国乙T13T14海南T16湖北T13辽宁T5广东T132022年:山东T5T15辽宁T6全国甲T13T14全国乙T13T14北京T3湖北T3江苏T7广东T16海南T17河北15湖南T11T17本专题主要讲解热力学定律、气体实验定律和气体的状态变化图像等问题。

热力学定律和气体实验定律都属于高频考点,试题难度中等,命题形式以选择题和计算题为主,常考查学生灵活应用气体实验定律、热力学定律解释生活中的一些现象,解决某些实际问题。

物理观念:能用气体实验定律、热力学定律解释生产生活中的一些现象和实际问题。

科学思维:认识建构理想气体模型的必要性。

通过建构“气缸类类”和“液柱类”的气体模型分析问题。

气体实验定律与理想气体状态方程气体的状态变化图像问题热点突破1热力学定律的理解及应用▼考题示例1(2022·山东省·历年真题)如图所示,内壁光滑的绝热气缸内用绝热活塞封闭一定质量的理想气体,初始时气缸开口向上放置,活塞处于静止状态,将气缸缓慢转动90°过程中,缸内气体()A.内能增加,外界对气体做正功B.内能减小,所有分子热运动速率都减小C.温度降低,速率大的分子数占总分子数比例减少D.温度升高,速率大的分子数占总分子数比例增加答案:C解析:设大气压强为p0,活塞的质量为m。

初始时缸内气体的压强为p1。

对活塞受力分析,活塞处于平衡状态,则有(p1-p0)s=mg,气缸在缓慢转动的过程中,气缸内外气体对活塞的压力差大于重力沿气缸壁的分力,故气缸内气体缓慢的将活塞往外推,最后气缸水平,缸内气压等于大气压。

AB.气缸、活塞都是绝热的,故气体与外界没有发生热传递,即Q=0。

由于在缓慢转动过程中,气缸内外气体对活塞的压力差大于重力沿气缸壁的分力,所以活塞向外运动,气体体积增大,气体对外做功,即W<0,根据热力学第一定律ΔU=Q+W可知:气体内能减小,故缸内理想气体的温度降低,分子热运动的平均速率减小,但并不是所有分子热运动的速率都减小,AB错误;CD.因为气体的内能减小,所以缸内气体的温度降低,分子热运动的平均速率减小,即速率大的分子数占总分子数的比例减小,C正确,D错误。

专题16 气体模型-高考物理模型系列之对象模型(解析版)

专题16 气体模型-高考物理模型系列之对象模型(解析版)

模型界定本模型主要是理想气体模型,涉及气体分子动理论、气体定律以及热力学定律与气体状态方程相结合的问题。

模型破解1.气体分子动理论:人们从分子运动的微观模型出发,给出某些简化的假定,结合概率和统计力学的知识,提出了气体分子动理论,其主要如下:(i)气体是由分子组成的,分子是很小的粒子,彼此间的距离比分子的直径(10-10m)大许多,分子体积与气体体积相比可以略而不计。

(ii)气体分子以不同的速度在各个方向上处于永恒的无规则运动之中。

(iii)气体分子运动的速度按一定的规律分布,速度太大或速度太小的分子数目都很少.(iv)温度升高,分子运动的平均速率增大,且速率大的分子数增多,速率小的分子数减小,仍是“中间多,两头少”的分布规律.(v)除了在相互碰撞时,气体分子间相互作用是很微弱的,甚至是可以忽略的。

(vi)气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。

(vii)分子的平均动能与热力学温度成正比。

(viii)分子间同时存在着相互作用力。

分子间同时存在着引力和斥力,引力和斥力都随分子间距离的增大而减小(分子间距越大,引力和斥力都越小;分子间距越小,引力和斥力都越大)。

但斥力的变化比引力快,实际表现出来的是引力和斥力的合力。

合力在0~r0时表现为斥力,在大于r0时表现为引力(r0为引力等于斥力的临界点)例1 1859年麦克斯韦从理论上推导出了气体分子速率的分布规律,后来有许多实验验证了这一规律。

fυ表示各速率区间的分子数占总分子数的百分比。

下面国幅图中能若以横坐标υ表示分子速率,纵坐标()正确表示某一温度下气体分子速率分布规律的是。

(填选项前的字母)【答案】D【解析】: 分子数的百分比不能小于零,AB错误.速率分布规律是"中间多两边少",由此特点可知答案为D。

模型演练1.下列叙述正确的是()A.只要知道气体的摩尔体积和阿伏伽德罗常数,就可以算出气体分子的体积B.物体的内能越大,分子热运动就越剧烈,分子平均动能也就越大C.由于气体分子做无规则运动,所以气体分子速率分布没有规律D.分子间的距离r存在某一值r0,当r<r0时,斥力大于引力;当r>r0时,斥力小于引力【答案】D2.气体的三个状态参量(i)热力学参量——温度:表示物体的冷热程度,是分子平均动能的标志(ii)几何参量——体积:气体所充满的容器的容积.①气体的体积V是指大量气体分子所能达到的整个空间的体积.封闭在容器内的气体,其体积等于容器的容积②在标准状态下,1 mol的任何气体的体积均为22.4 L③气体的体积不是气体分子自身体积的总和.(iii).力学参量——压强:气体作用在器壁单位面积上的压力,叫做气体的压强.①压强在数值上等于单位时间内器壁的单位面积上受到气体分子的总冲量.②产生原因:大量气体分子无规则运动碰撞器壁,形成对器壁各处均匀的持续的压力而产生.③决定因素:一定气体的压强大小,微观上取决于分子的运动速度和分子密度;宏观上取决于气体的温度T、体积V.在温度不变时,分子运动平均率不变,气体分子每次与器壁发生碰撞产生的平均冲击力不变,单位时间内与单位面积的器壁发生碰撞的分子次数越多,气体压强越大.在单位时间内与单位面积器壁发生碰撞的分子次数不变时,分子无规则运动越剧烈,每次与器壁碰撞时产生的平均冲击力越大,压强越大.④决定气体分子在单位时间内对单位面积的器壁碰撞次数的因素:单位体积内的分子数与分子无规则运动剧烈程度.例2.关于气体的压强,下列说法中正确的是A.气体的压强是由气体分子间的排斥作用产生的B.温度升高,气体分子的平均速率增大,气体的压强一定增大C.气体的压强等于器壁单位面积上、单位时间内所受气体分子冲量的大小D.当某一密闭容器自由下落时,容器中气体的压强将变为零【答案】C例3.如图所示,质量为M的绝热活塞把一定质量的理想气体(不考虑分子势能)密封在竖直放置的绝热气缸内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表达 式
p1V1=p2V2
p1 p2 p ,或 pV T1=T2或T=C(常量) Δp p1 推论: = ΔT T1
V1 V2 = T1 T2 或V= T
C(常量) ΔV V1 推论: = ΔT T1
=C(常量)
续表 玻意耳定律 查理定律 盖—吕萨克定律
温度保持不变时分 体 积 保 持 不 变 时 分 温 度 升 高 时 分 子 的 微 子的 平均动能 一 子的 密集程度 保持 平均动能 增大 。 只 观 定。在这种情况下,不 变 。 在 这 种 情 况 有 气 体 的 体 积 同 时 解 体积减小时, 分子的 下,温度升高时,分 增大, 使分子的密集 释 密集程度增大, 气体 子的平均动能增大, 程度减小, 才能保持 的压强就 增大 气体的压强就 增大 压强 不变
2.气体压强是由于气体受到重力产生的。( 3.大气压强是由于空气受重力而产生的。(
4.一定质量的某种气体在 V 一定时 p∝T;在 p 一定时 V ∝T。在 T 一定时 pV=定值。( )
5.一定质量的理想气体,p、V、T 三个参量不可能发生只 有一个参量变化的情况。( )
答案: 1.×
2.×
3.√
宏观:表示物体的冷热程度。 意义 微观:是物体分子热运动的平均动能的标志。
填充:冷热程度 平均动能
②两种温标(摄氏温标和热力学温标)的关系 a.两种温标温度的零点不同,同一温度用两种温标表 示的数值不同,但它们表示的温度间隔是相同的,即每一 度的大小相同,Δt=ΔT。 b.两种温标的数值关系: T=t+273 K 。 注意:绝对零度(0 K)是低温的极限,只能无限接近, 但不可能达到。 (2)体积(V) 指气体分子所能达到的空间,即气体所能充满容器的 容积。
(3)压强(p) ①定义:作用在器壁单位面积上的压力叫做气体压强。 ②产生原因: 由于大量气体分子无规则的运动而频繁碰撞 器壁,形成对器壁各处均匀、持续的压力。 ③决定气体压强大小的因素 宏观:决定于气体的 温度 和 体积 。 微观:决定于分子的 平均动能 和分子的 密集程度 (单位 体积内的分子数)。
④压强单位及换算关系 a.国际单位: 帕 ,符号:Pa,1 Pa=1 N/m2。 b.常用单位: 标准大气压 (atm);厘米汞 柱(cmHg)。 c . 换 算 关 系 : 1 atm = 76 1.013×105 Pa≈1.0×105 Pa。 cmHg =
3.气体的三个实验定律 玻意耳定律 查理定律 盖—吕萨克定律
教材回顾(二)
气体和热力学定律
一、气体 1.气体分子运动的特点 (1) 气 体 分 子 很 小 , 分 子 间 的 距 离 很 大 , 除 碰 撞 外 不受力 。 (2)气体分子的速率分布表现出“中间多,两头少 ”的统 计分布规律。 (3)气体分子向各个方向运动的机会 相等 。
(4)温度一定时,某种气体分子的速率分布是 确定 的,速率 的平均值也是确定的。 温度升高时, 气体分子的 平均速率 增大, 但不是每个分子的速率都增大。 2.气体的状态参量 (1)温度(T 或 t) ①物理
一定质量的某种气 一 定 质 量 的 某 种 气 一 定 质 量 的 某 种 内 容 体,在温度不变时,体,在体积保持不变 气体,在压强不变 压 时, 其体积 V 与热 反比 温度 T 成 正比 力学温度 T 成正比
续表 玻意耳定律 查理定律 盖—吕萨克定律
[深化理解] 理想气体的微观模型 1.气体分子的体积可忽略不计,即可看成质点。 2.气体分子除碰撞外不受其他力的作用。 3.气体分子除碰撞外做匀速直线运动。 4.气体的分子势能为零,其内能由分子数和分子的平均 动能决定(宏观上由物质的量及温度决定,与体积无关)。
[小题速验](判断正误) 1.温度升高,气体分子的平均速率增大,且气体中每个分 子的速率都增大。( ) ) )
外界对物体做功 物体吸收热量 内能增加 物体对外界做功 物体放出热量 内能减少
2.热力学第二定律 (1)两类表述 ①热量不能 自发地 从低温物体传到高温物体 (克劳 修斯表述)。 ②不可能从单一热库吸收热量,使之完全变成功,而 不产生 其他影响 (开尔文表述)。 (2)第二类永动机 ①不违背能量守恒定律。 ②违背热力学第二定律。
续表 玻意耳定律 查理定律 盖—吕萨克定律
适用 实际气体在压强不太大(相对于 1 标准气压)、 温度不太低(相 条件 对于常温)的情况遵守三个实验定律
4.理想气体的状态方程 (1)理想气体 ①宏观上讲, 理想气体是指在任何条件下始终遵守气体实验定律 的气体。实际气体在压强 不太大、温度 不太低 的条件下,可视为理 想气体。
②微观上讲, 理想气体的分子间除 碰撞 外无其他作用力, 分子本身没有 体积 ,即它所占据的空间认为都是可以被压缩 的空间。 (2)理想气体的状态方程 ①内容: 一定质量的某种理想气体从一个状态 1 变化到另 一个状态 2 时,尽管 p、V、T 都可能改变,但是压强跟体积 的 乘积 与 热力学温度 的比值保持不变。 p1V1 p2V2 pV = T1 T2 ②数学表达式: 或 T =C(恒量)。
[深化理解] 在热力学第二定律的表述中, “自发地 ”“不产生其 他影响”的涵义 1.“自发地”指明了热传递等热力学宏观现象的方向 性,不需要借助外界提供能量的帮助。 2.“不产生其他影响”是指发生的热力学宏观过程只 在本系统内完成,对周围环境不产生热力学方面的影响。 如吸热、放热、做功等。
4.×
5.√
二、热力学定律与能量守恒定律 1.热力学第一定律 (1)内容:一个热力学系统的内能增量等于外界向 它 传递的热量 与外界对它 所做的功 的和。 (2)表达式:ΔU= Q+W 。 (3)第一类永动机违背了能量守恒定律。
[深化理解] 1.热力学第一定律不仅反映了做功和热传递这两种方式改 变内能的过程是等效的,而且给出了内能的变化量与做功、热 传递之间的定量关系。应用时各个量的单位应统一为国际单位 制中的焦耳。 2.对公式 ΔU=Q+W 符号的规定 符号 + - W Q ΔU
相关文档
最新文档