勾股定理典型练习题

合集下载

勾股定理十道典型题

勾股定理十道典型题

勾股定理十道典型题
1、已知正三角形腰长分别为3、4、5,求其面积。

2、已知直角三角形的斜边长为5,两条直角边长为3和4,求其周长。

3、已知直角三角形的斜边长为6,两条直角边长为4和8,求其面积。

4、已知正三角形的腰长分别为2、3、4,求其周长。

5、已知直角三角形的斜边长为12,两条直角边长为5和13,求其面积。

6、已知正方形的边长为4,求其周长。

7、已知正方形的边长为8,求其面积。

8、已知直角三角形的斜边长为4,两条直角边长为3和5,求其周长。

9、已知正三角形的腰长分别为7、24、25,求其面积。

10、已知正方形的边长为9,求其面积。

勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。

在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。

如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。

图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。

根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。

2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。

若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。

3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。

则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。

同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。

因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。

4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。

5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。

勾股定理典型试题(自编)

勾股定理典型试题(自编)

勾股定理1、如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上, 以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(A )2.5 (B )22 (C )3 (D )52、如图2所示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5AB BD ==,则点D到BC 的距离是:(A)3 (B)4 (C)5 (D)6练习:在ABC △中,AB=AC=5,BC=6。

若点P 在边AC 上移动,求BP 的最小值。

3、如图,已知正方形ABCD 的边长为3,E 为CD 边上一点, 1DE =.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABE ',连接EE ',则EE '的长等于 .4、 (勾股定理、垂直平分线——中等)如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连结CE ,则CE 的长为_____________。

练习1:如图,在矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好在边BC 上的点F 处,若AE=5,BF=3,则CD 边长是_____________。

练习2:如图.矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE,且EF=3.则AB 的长为( )练习3: 如图所示,将一个长方形纸片ABCD 沿对角线AC 折叠.点B 落在E 点,AE 交DC 于F 点,已知AB=8cm,BC=4cm.则折叠后重合部分的面积为( )练习4:为了丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图阅览室,本社区的两所学校分别位于如图的点C 和点D 的位置上,已知CA ⊥AB 于点A ,DC ⊥AB 于点B,AB=25km,CA=15km,DB=10km ,试问阅览室E 应建在距点A 多少km 处,才能使它到C 、D 两学校的距离相等?练习5:如图,矩形ABCD 中,点P 、Q 分别是边AD 和BC 的中点,沿过C 点的直线折叠矩形ABCD 使点B 落在线段PQ 上的点F 处,折痕交AB 边于点E,交线段PQ 于点G,若BC 长为3,则线段FG 的的长为( )5、 满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶5练习:下列几组数:①9,12,15;②,,;③,,;④3a,4a,5a(a 为大于1的自然数);⑤m 2-n 2,2mn,m 2+n 2 其中m 、第3题E第2题第4题 第4题练习4E 第4题练习1 第4题练习2 第4题练习5 第4题练习3n为任意正整数(m>n).其中是勾股数的有( )6、(勾股定理——中等)某市道路交通管理条例规定:小汽车在市区路上行驶速度不得超过70km/h。

勾股定理常见练习试题

勾股定理常见练习试题

(一)情境引入如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下, 树顶落在离树根24m 处. 大树在折断之前高多少?(二)合作探究(1)观察下面两幅图并填表:A 的面积 (单位面积)B 的面积 (单位面积)C 的面积 (单位面积)左图 右图(2)问:①、图形A 、B 、C 的面积有何关系?②、图形A 、B 、C 的面积与三角形的边长有何关系? ③、由①、②可得出直角三角形三边长有什么结论?1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:AB CC BAcba HG FEDCBA方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5..勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数) 题型一:已知两边求第三边【例1】直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_____15____2cm .【例2】已知直角三角形的两边长为5、12,则另一条边长是____13或____________. 【例3】作出长度为10的线段。

勾股定理典型题

勾股定理典型题

《勾股定理典型题》专题班级 姓名如果敌人让你生气,那说明你还没有胜他的把握。

【知识回顾】1.勾股定理的具体内容是:在直角三角形中,(直角边)2 + (另一直角边)2= 斜边2如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么_______2.如图1,直角ABC ∆的主要性质是:90C ∠= ,(用几何语言表示) ⑴两锐角之间的关系: ;⑵若30A ∠= ,则A ∠的对边和斜边: ;⑶三边之间的关系: .3.填空题 如图1在Rt ABC ∆,90C ∠= ,⑴如果7a =,25c =,则b = .⑵如果30A ∠= ,4a =,则b = .⑶如果45A ∠= ,3a =,则c = .4.下列各组数据中,不能作为直角三角形的三边长的是A .5 ,4 ,3 B.5 ,12 ,13 C. 6 ,8 ,10 D.6 ,4 ,7 勾股定理的应用① 已知直角三角形的任意两边长,求第三边② 知道直角三角形一边,可得另外两边之间的数量关系③ 可运用勾股定理解决一些实际问题【类型一】分类讨论1、课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm ,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm .”你认为第三边应该是 _________ cm .2、在Rt △ABC 中,∠C=90°,有两边长为6,8,则第三边长为 _________ .3、如果一个直角三角形的两边分别是5和12,则这个直角三角形的第三边是 _________ .4、在Rt △ABC 中,a =4,b =3,则c= _________ .5、两边长分别为3和5的直角三角形的第三边长为 _________ .6、若一个直角三角形两边长为12和5,第三边为x ,则x 2= _________ .7、在△ABC 中,AB=13cm ,AC=15cm ,高AD=12cm ,则BC= _________ .【类型二】勾股定理与面积1、图中字母A 所在的正方形的面积是 _________ .2、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,正方形A 、B 、C 、D 的面积的和是64cm 2,则最大的正方形的边长为 _________ cm .3、如图,分别以直角三角形三边向外作三个半圆,若S 1=30,S 2=40,则S 3= _________ .4、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则x 的长 为 厘米。

勾股定理典型分类练习题

勾股定理典型分类练习题

勾股定理典型分类练习题题型一:直接考查勾股定理例1.在ABCC∠=︒.∆中,90⑴已知6BC=.求AB的长AC=,8⑵已知17AC=,求BC的长AB=,15变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。

变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗?题型二:利用勾股定理测量长度例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.题型三:勾股定理和逆定理并用例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41那么 △DEF 是直角三角形吗?为什么题型四:旋转中的勾股定理的运用:例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。

变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.题型五:翻折问题例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 好落在BC 边上的点F ,求CE 的长.PAPCBCA BD E 1015题型6:勾股定理在实际中的应用:例6、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到 公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响, 已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?变式:如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处, 它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不 引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行 突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路 程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是( ) A.5,12,13 B.4,5,7 C.2,3,5 D.1,2,32.在Rt △ABC 中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )A.5、4、3B.13、12、5C.10、8、6D.26、24、103.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( ) A 、5组; B 、4组; C 、3组; D 、2组 4.下列结论错误的是( )A 、三个角度之比为1∶2∶3的三角形是直角三角形;B 、三条边长之比为3∶4∶5的三角形是直角三角形;C 、三条边长之比为8∶16∶17的三角形是直角三角形;D 、三个角度之比为1∶1∶2的三角形是直角三角形。

《勾股定理》专题复习(含答案)

《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。

(新)初中数学勾股定理典型练习题汇总(附答案)

(新)初中数学勾股定理典型练习题汇总(附答案)

初中数学勾股定理练习题(附答案)【例1】若△ABC三边长满足下列条件,判断△ABC是不是直角三角形?若是,请说明哪个教角是直角.(1)BC=,AB=,AC=1;(2)△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,a=n2﹣1,b=2n,c=n2+1(n>1)【例2】如果△ABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。

【例3】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点。

⑴求证:△ACE≌△BCD;⑵若AD=5,BD=12,求DE的长。

【例4】观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412…按照这样的规律,第七个等式是:_________________________________。

【例5】如图,已知在正方形ABCD中,F为DC的中点,E为CB的四等分点且CB=4CE.求证:AF⊥FE.【例6】如图,已知△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.课堂同步练习一、选择题:1、若线段a,b,c组成Rt△,则它们的比可能为( )A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:72、△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形3、△ABC的三边为a、b、c,且(a+b)(a﹣b)=c2,则( )A.△ABC是锐角三角形B.c边的对角是直角C.△ABC是钝角三角形D.a边的对角是直角4、下列命题中,其中正确的命题的个数为( )①Rt△ABC中,已知两边长分别为3和4,则第三边长为5;②有一个内角与其他两个内角的和相等的三角形是直角三角形;③三角形的三边分别为a,b,c,若a2+c2=b2,则∠C=90°;④在△ABC 中,∠A:∠B:∠C=1:5:6,则△ABC是直角三角形.A.1个B.2个C.3个D.4个5、如图,在由单位正方形组成的网格图中标有AB、CD、EF、GH 四条线段,其中能构成一个直角三角形的线段是( )A. CD、EF、GHB. AB、CD、GHC.AB、EF、GH D.AB、CD、EF6、如图,四边形ABCD中,∠B=∠D=90°,∠A=45°,AB=3,CD=1,则BC的长为( )A.3 B.2 C.D.7、如图,有一块地ABCD,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地面积为()A.60米2B.48米2C.30米2D.24米28、在△ABC中,∠C=90°,c2=2b2,则两直角边a,b的关系是( )A.a<b B.a>bC.A=b D.以上三种情况都有可能9、已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形10、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状( )。

(完整版)八年级勾股定理典型练习题含答案

(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。

3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。

5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。

E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。

7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。

八年级数学勾股定理典型题专项练习

八年级数学勾股定理典型题专项练习

八年级数学勾股定理典型题专项练习一、选择题1、下列各数组中,不能作为直角三角形三边长的是( )A. 9,12,15B.5,12,13C. 6,8,10D. 3,5,72、将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( )A.可能是锐角三角形B.不可能是直角三角形C.仍然是直角三角形D.可能是钝角三角形3、在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m)( )A.20mB.25mC.30mD.35m4、一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( )A. 12cmB.C.D.5、已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A.52B.3C.3+2D.332二、填空题6、如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_______ .7、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.8、已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距.9、一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为.10、以直角三角形的三边为边向形外作正方形P、Q、K,若S P=4,S Q=9,则S k=.11、直角三角形两条直角边的长分别为5、12,则斜边上的高为.12、在△ABC中,AB=8cm,BC=15cm,要使∠B=90°,则AC的长必为______cm.三、解答题13、P为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE为边长的正方形的面积.14、已知:如图13,△ABC中,AB=10,BC=9,AC=17.求BC边上的高.15、从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?16、如下图,一个牧童在小河的南4km的A处牧马,而他的小屋位于他的南7km东8km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?17、如图,∠C=90°,AC=3,BC=4,AD=12,BD=13, 判断△ABD的形状,并说明理由。

勾股定理培优专项练习

勾股定理培优专项练习

勾股定理练习(根据对称求最小值)基本模型:已知点A 、B 为直线 m 同侧的两个点,请在直线m 上找一点M ,使得AM+BM 有最小值。

1、已知边长为4的正三角形ABC 上一点E ,AE=1,AD ⊥BC 于D,请在AD 上找一点N ,使得EN+BN有最小值,并求出最小值。

2、.已知边长为4的正方形ABCD 上一点E ,AE=1,请在对角线AC 上找一点N ,使得EN+BN 有最小值,并求出最小值。

3、如图,已知直线 a ∥b ,且a 与b 之间的距离为4,点A 到直线 a 的距离为2,点B 到直线b 的距离为3,AB=2.试在直线a 上找一点M ,在直线b 上找一点N ,满足30MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6B .8C .10D .124、已知AB=20,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=10,CB=5.(1)在AB 上找一点E ,使EC=ED ,并求出EA 的长;(2)在AB 上找一点F ,使FC+FD 最小,并求出这个最小值25、如图,在梯形ABCD 中,∠C=45°,∠BAD=∠B=90°,AD=3 ,CD=2 ,M为BC上一动点,则△AMD 周长的最小值为.6、如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB.边上一点,则EM+BM的最小值为7、如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()66A.2 B.2C.3D.9、在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,cm连接PB、PQ,则△PBQ周长的最小值为____________10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.几何体展开求最短路径1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B 点的最短路程是多少dm?2、如图:一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.3、如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?5、如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离。

(完整版)勾股定理经典题目及答案

(完整版)勾股定理经典题目及答案

勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。

②如果k 是大于1的奇数,那么k, ,是一组勾股数。

212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。

122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。

典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。

勾股定理典型例题【含答案】免费

勾股定理典型例题【含答案】免费

勾股定理复习一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

勾股定理在西方叫毕达哥拉斯定理,也叫百牛定理。

它是直角三角形的一条重要性质,揭示的是三边之间的数量关系。

它的主要作用是已知直角三角形的两边求第三边。

勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

4、最短距离问题:主要运用的依据是两点之间线段最短。

二、知识结构:三、考点剖析考点一:利用勾股定理求面积求:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.考点二:在直角三角形中,已知两边求第三边例如图2,已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对【强化训练】:1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12,求斜边上的高.(结论:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch)考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:应用勾股定理解决楼梯上铺地毯问题例、某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。

勾股定理典型例题

勾股定理典型例题

勾股定理典型例题11.以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,40 2.下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A )1、2、3 (B )2223,4,5 (C )1,2,3 (D )3,4,53.在△ABC 中,,,A B C ∠∠∠的对边分别为,,a b c ,且2()()a b a b c +-=,则( )(A )A ∠为直角 (B )C ∠为直角 (C )B ∠为直角 (D )不是直角三角形4.如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。

他们仅仅少走了__________步路(假设2步为1m ),却踩伤了花草。

5.已知直角三角形的两边长分别为3、4,则第三边长为 .6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( ) A .30厘米 B .40厘米 C .50厘米 D .以上都不对7.图中字母A 所在的正方形的面积是 .8.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,正方形A 、B 、C 、D 的面积的和是64cm 2,则最大的正方形的边长为 cm .9.如图,一棵大树在一次强台风中于离地面3m 处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为 ( )m .第8题图第9题图10.如图,分别以直角三角形三边向外作三个半圆,若S1=30,S2=40,则S3=.11,如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm12.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.13.如图,已知:在中,,,. 求:BC的长.14.已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

勾股定理题型很全面

勾股定理题型很全面

典型例题:一、利用勾股定理解决实际问题例题:水中芦苇梯子滑动1、有一个传感器控制的灯,安装在门上方,离地高米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高米的学生,要走到离门多远的地方灯刚好打开2、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少3、如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我反走私A艇发现正东方向有一走私艇C以每小时海里的速度偷偷向我领海开来,便立即通知正在MN在线巡逻的我国反走私艇B密切注意,反走私A艇通知反走私艇B时,A和C两艇的距离是20海里,A、B两艇的距离是12海里,反走私艇B测得距离C是16海里,若走私艇C的速度不变,最早会在什么时间进入我国领海二、与勾股定理有关的图形问题1.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.2.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形如图,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______ ___.4.如图,△ABC中,∠C=90°,1以直角三角形的三边为边向形外作等边三角形如图①,探究S1+S2与S3的关系;2以直角三角形的三边为斜边向形外作等腰直角三角形如图②,探究S1+S2与S3的关系;3以直角三角形的三边为直径向形外作半圆如图③,探究S1+S2与S3的关系.图①图②图③5.如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an,根据上述规律,则第n个正方形的边长an=___ _____记正方形AB-CD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,……,S n n为正整数,那么S n=____ ____.6、如图,Rt△ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为.三、关于翻折问题1、如图,折叠矩形纸片ABCD,先折出折痕对角线BD,再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD沿对角线AC折叠,点B落在点E处,EC与AD相交于点F.1求证:△FAC是等腰三角形;2若AB=4,BC=6,求△FAC的周长和面积.3、如图,将矩形ABCD沿直线AE折叠,顶点D恰好点处,已知cmCE6=,cmAB16=,求BF的长.4、如图,一张矩形纸片ABCD的长AD=9㎝,宽AB=3㎝;;求折叠后BE的长和折痕EF的长;5、矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点着色如图,求着色部分的面积;6、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,CD边上的点G处,求BE的长.7如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD翻折,点’的长.五、四、关于最短性问题1:如图1,长方体的长为12cm,宽为6cm,高为5cm,一只蚂蚁沿侧面从A点向B点爬行,问:爬到B点时,蚂蚁爬过的最短路程是多少2、如图壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.请问壁虎至少要爬行多少路程才能捕到害虫3:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环,你一定会发现其中的奥妙6、有一圆柱形食品盒,它的高等于16cm,底面直径为20cm, 蚂蚁爬行的速度为2cm/s. ⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间 盒的厚度和蚂蚁的大小忽略不计,结果可含πA 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间 盒的,结果可含π 的半圆,一只蚂蚁沿圆锥侧面从A 点向B 点爬行,问:12当爬行路程最短时,求爬行过程中离圆锥顶点C 的最近距离.2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为五、关于勾股定理判定三角形形状1、已知,△ABC 中,AB=17cm,BC=16cm,BC 边上的中线AD=15cm,试说明△ABC 是等腰三角形; 2:已知△ABC 的三边a 、b 、c,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形你能说明理由吗 3、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D,设AC=b,BC=a,AB=c,CD=h . 试说明:1;2a+b <c+h ;3判断以a+b 、h 、c+h 为边的三角形的形状,并说明理由.4、在等腰直角三角形ABC 的斜边AB 上取两点M,N,使∠MCN=45°,记AM=m,MN=x,BN=n;试判断以x,m,n 为边长的三角形的形状;六、关于旋转中的勾股定理的运用: 1、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△AC P ′重合,若AP=3,求PP ′的长;变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=求△ABC 的边长. 分析: 利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形. 七、关于勾股定理的相关证明1、如图,在△ABC 中,AB=AC,P 为BC 上任意一点,求证:22AB AP PB PC -=⋅ 分析:考虑构造直角三角形,能利用勾股定理.2,如图,在△ABC 中,∠BAC=90°,AB=AC,D 是BC 上的点.求证: BD 2+CD 2= 2AD 2..八、综合题1、已知Rt △ABC 中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA 的扇形CEF 绕点C旋转,且直线CE,CF 分别与直线AB 交于点M,N .Ⅰ当扇形CEF 绕点C 在∠ACB 的内部旋转时,如图1,求证:MN2=AM2+BN2; 思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.Ⅱ当扇形CEF 绕点C 旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立若成立,请证明;若不成立,请说明理由.2、如图,已知反比例函数的图象与一次函数y=k2x+b 的图象交于A,B 两点,A1,n, B-,-2. 1求反比例函数和一次函数的解析式; 2在x 轴上是否存在点P,使△AOP 为等腰三角形若存在,请你直接写出P 点的坐标;若不存在,请说明理由.。

勾股定理典型应用例题

勾股定理典型应用例题

1.基础应用题目:在一个直角三角形中,已知直角边a为3,直角边b为4,求斜边c的长度。

答案:根据勾股定理,c² = a² + b²,所以c² = 3² + 4² = 9 + 16 = 25,从而c = 5。

2.逆应用题目:已知直角三角形的斜边c为5,一条直角边a为3,求另一条直角边b的长度。

答案:根据勾股定理,b² = c² - a²,所以b² = 5² - 3² = 25 - 9 = 16,从而b = 4。

3.实际应用题目:一个直角三角形的两条直角边分别是6米和8米,一个正方形的一边与这个直角三角形的斜边重合,求这个正方形的面积。

答案:首先,根据勾股定理求出斜边长度c,c² = 6² + 8² = 36 + 64 = 100,所以c = 10。

正方形的面积为边长的平方,即10² = 100平方米。

4.比较大小题目:比较两个数的大小:√17和4。

答案:考虑直角边为1和4的直角三角形,斜边c满足c² = 1² + 4² = 17,所以c = √17。

显然,斜边c(即√17)大于直角边4。

5.多解问题题目:一个直角三角形的周长为12,其中一条直角边长为3,求另外两边的长。

答案:设另一条直角边为a,斜边为b。

根据勾股定理,a² + 3² = b²。

同时,根据周长信息,a + 3 + b = 12,即a + b = 9。

解这两个方程,得到两组解:a = 4, b = 5 和a = 5, b = 4。

6.非整数边长问题题目:在直角三角形中,已知直角边a为√3,直角边b为√4,求斜边c的长度。

答案:根据勾股定理,c² = a² + b²,所以c² = (√3)² + (√4)² = 3 + 4 = 7,从而c = √7。

(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(有答案解析)

(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(有答案解析)

一、选择题1.用梯子登上20m 高的建筑物,为了安全要使梯子的底面距离建筑物15m ,至少需要( )m 长的梯子.A .20B .25C .15D .5 2.下列各组数据,不能作为直角三角形的三边长的是( ) A .5、6、7 B .6、8、10 C .1.5、2、2.5 D .3、2、7 3.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点A ,B ,C 均在网格的格点上,则△ABC 的三条边中边长是无理数的有( )A .0条B .1条C .2条D .3条 4.在周长为24的直角三角形中,斜边长为11,则该三角形的面积为( )A .6B .12C .24D .48 5.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =( )A .125B .95C .235D .1656.《九章算术》奠定了中国传统数学的基本框架,是中国古代最重要的数学著作之一.其中第九卷《勾股》章节中记载了一道有趣的“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”.意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子底部3尺远,问原处还有多高的竹子?(备注:1丈10=尺)这个问题的答案是( )A .4尺B .4.5尺C .4.55尺D .5尺7.如图,用64个边长为1cm 的小正方形拼成的网格中,点A ,B ,C ,D ,E ,都在格点(小正方形顶点)上,对于线段AB ,AC ,AD ,AE ,长度为无理数的有( ).A .4条B .3条C .2条D .1条8.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1549.下列各组数中是勾股数的是( )A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .1,3,2 10.如图,原来从A 村到B 村,需要沿路A →C →B (90C ∠=︒)绕过两地间的一片湖,在A ,B 间建好桥后,就可直接从A 村到B 村.已知5km AC =, 12km BC =,那么,建好桥后从A 村到B 村比原来减少的路程为( )A .2kmB .4kmC .10 kmD .14 km11.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .102cmD .52cm 12.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .6二、填空题13.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是_____寸.14.如图,在ABC ∆中,90,4,3C AC BC ∠=︒==,点Р在射线CA 上,且12BPC BAC ∠=∠,则2BP =_______.15.如图,在Rt ABC △中,90ACB ︒∠=,10AB =,8AC =,D 是AB 的中点,M 是边AC 上一点,连接DM ,以DM 为直角边作等腰直角三角形DME ,斜边DE 交线段CM 于点F ,若2MDF MEF S S =,则CF 的长为________.16.如图,l 1∥l 2∥l 3,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3.若点A ,B ,C 分别在直线l 1,l 2,l 3上,且AC ⊥BC ,AC =BC ,则AB 的长是_____.17.如图,在四边形ABCD 中,B D 90∠∠==︒,AD=CD ,AB+BC=8,则四边形ABCD 的面积是_________.18.如图是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的斜面是半径为4m 的半圆,其边缘AB=CD=20m ,点E 在CD 上,CE=4m ,一滑行爱好者从A 点滑行到E 点,则他滑行的最短距离为____________m (π的值为3)19.如图,为修通铁路凿通隧道AC ,量出40A ∠=︒,50B ∠=︒,5AB =公里,4BC =公里,若每天凿通隧道0.3公里,问_________天才能把隧道AC 凿通.20.如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是_____.三、解答题21.已知ABC ∆中,ACB ∠=90°,如图,作三个等腰直角三角形ACD ∆,EAB ∆,FCB ∆,AB ,AC ,BC 为斜边,阴影部分的面积分别为1S ,2S ,3S ,4S . (1)当AC =6,BC =8时,①求1S 的值;②求4S -2S -3S 的值;(2)请写出1S ,2S ,3S ,4S 之间的数量关系,并说明理由.22.如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)10PQ ,其中P 、Q 都在格点上;(2)面积为13的正方形ABCD ,其中A 、B 、C 、D 都在格点上.23.△ABC 三边长分别为,AB =25,BC =10,AC =34.(1)请在方格内画出△ABC ,使它的顶点都在格点上;(2)求△ABC 的面积;(3)求最短边上的高.24.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求作图:(1)在图1中画一个边长为5的菱形;(2)在图2中画一个面积为5的直角三角形.25.定义:如果一个三角形中有两个内角α,β满足290αβ+=︒,那我们称这个三角形为“近直角三角形”.(1)若ABC 是“近直角三角形”,90B ∠>︒,50C ∠=︒,则A ∠=_____度;(2)如图,在Rt ABC △中,90BAC ∠=︒,3AB =,4AC =.若CD 是ACB ∠的平分线,①求证:BDC 是“近直角三角形”;②求BD的长.(3)在(2)的基础上,边AC上是否存在点E,使得BCE也是“近直角三角形”?若存CE的长;若不存在,请说明理由.在,直接写出....26.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中夹,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长是10尺的正方形,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】可依据题意作出简单的图形,结合图形利用勾股定理进行求解,即可.【详解】解:如图所示:∵AC=20m,BC=15m,∴在Rt△ABC中,22+m,152025故选:B.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.2.A解析:A【分析】利用勾股定理的逆定理计算判断即可.【详解】∵2256253661+=+=≠2749=,∴5、6、7不能作为直角三角形的三边长,∴选项A 错误;∵22866436100+=+==210100=,∴6、8、10能作为直角三角形的三边长,∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=,∴1.5、2、2.5能作为直角三角形的三边长,∴选项C 正确; ∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确;故选A .【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键. 3.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】解:由勾股定理得:5AC ==,是有理数,不是无理数;BC ==AB ==即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 4.B解析:B【分析】画出直角三角形,由11,24,c a b c =++=可得:222169,a ab b ++=再由勾股定理可得:222121,a b c +==从而求解24,ab =再利用三角形的面积公式可得答案.【详解】解:如图,由题意知:11,24,c a b c =++=13,a b ∴+=222169,a ab b ∴++=222121,a b c +==121+2169,ab ∴=248,ab =24,ab ∴=112.2S ab ∴== 故选:.B【点睛】本题考查的是勾股定理的应用,完全平方公式的应用,掌握以上知识是解题的关键. 5.D解析:D【分析】勾股定理求出AB =5,设BD=x ,AD=5-x ,根据勾股定理列方程即可.【详解】解:∵90ACB ∠=︒,3AC =,4BC =, ∴2222AB AC BC 345=++=,设BD=x ,AD=5-x ,∵CD AB ⊥∴∠CDA=∠CDB=90°,2222AC AD BC BD -=-,22223(5)4x x --=-,解得,x=165, 故选:D .【点睛】本题考查了勾股定理求线段长,解题关键是设未知数,根据勾股定理列方程.6.C解析:C【分析】竹子折断后刚好构成一直角三角形,设原处还有x尺的竹子,则斜边为(10−x)尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x尺,则斜边为(10−x)尺,根据勾股定理得:x2+32=(10−x)2,解得:x=4.55故选C.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.7.C解析:C【分析】先根据勾股定理求出AB,AC,AD,AE这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:=,5==,10长度为无理数的有2条,故选:C.【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8.C解析:C【分析】利用勾股定理求BC的长度,连接AE,然后设BE=AE=x,结合勾股定理列方程求解.【详解】解:如图,∵Rt△ABC中,∠ACB=90°,∴6BC===,∵DE是AB的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键. 9.C解析:C【分析】根据勾股数的定义判断即可.【详解】解:A 、42+52≠62,不是勾股数,故此选项不合题意;B 、1.5, 2.5不是正整数,不是勾股数,故此选项不合题意;C 、112+602=612,三个数都是正整数,是勾股数,故此选项符合题意;D 3不是正整数,不是勾股数,故此选项不合题意;故选:C .【点睛】此题主要考查了勾股数,关键是掌握满足a 2+b 2=c 2的三个正整数,称为勾股数. 10.B解析:B【分析】直接利用勾股定理得出AB 的长,进而得出答案.【详解】解:由题意可得:222251213AB AC BC km则打通隧道后从A 村到B 村比原来减少的路程为:512134(km ).故选:B.【点睛】此题主要考查了勾股定理的应用,正确得出AB的长是解题关键.11.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC=A'C,且点C为BB'的中点,∵AB=5cm,BC=1×10=5cm,2∴装饰带的长度=2AC=2222+=+=cm,2255102AB BC故选:C.【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.12.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S1,S2,S3,大小正方形重叠部分的面积为S,则由勾股定理可得:S1+S2=S3,在图②中,S1+S2+3-S=S3,∴S=3,故选:B.【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.二、填空题13.101【分析】取AB 的中点O 过D 作DE ⊥AB 于E 根据勾股定理解答即可得到结论【详解】解:取AB 的中点O 过D 作DE ⊥AB 于E 如图2所示:由题意得:OA =OB =AD =BC 设OA =OB =AD =BC =r 寸则解析:101【分析】取AB 的中点O ,过D 作DE ⊥AB 于E ,根据勾股定理解答即可得到结论.【详解】解:取AB 的中点O ,过D 作DE ⊥AB 于E ,如图2所示:由题意得:OA =OB =AD =BC ,设OA =OB =AD =BC =r 寸,则AB =2r (寸),DE =10寸,OE =12CD =1寸, ∴AE =(r ﹣1)寸,在Rt △ADE 中,AE 2+DE 2=AD 2,即(r ﹣1)2+102=r 2,解得:r =50.5,∴2r =101(寸),∴AB =101寸,故答案为:101【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.14.90【分析】设则根据题意可得求得根据勾股定理计算即可;【详解】∵设则又∵∴∴∴∵∴∴∴∴;故答案是90【点睛】本题主要考查了勾股定理的应用准确计算是解题的关键解析:90【分析】设BPC x ∠=,则2BAC x ∠=,根据题意可得ABP x ∠=,求得AB AP =,根据勾股定理计算即可;【详解】∵12BPC BAC ∠=∠,设BPC x ∠=,则2BAC x ∠=,又∵BAC BPC ABP ∠=∠+∠,2x x ABP =+∠, ∴ABP x ∠=,∴ABP BPC ∠=∠,∴AB AP =,∵90C ∠=︒, ∴2222AB AC BC 345=++=,∴5AP =,∴9CD =,3BC =,∴281990BP =+=;故答案是90.【点睛】本题主要考查了勾股定理的应用,准确计算是解题的关键.15.3【分析】作DG ⊥AC 于GEH ⊥AC 于H 则∠DGM =∠MHE =90°DG ∥BC 由勾股定理得出BC =6证出DG 是△ABC 的中位线得出DG =BC =3AG =CG =AC =4证明△MDG ≌△EMH (ASA )得解析:3【分析】作DG ⊥AC 于G ,EH ⊥AC 于H ,则∠DGM =∠MHE =90°,DG ∥BC ,由勾股定理得出BC =6,证出DG 是△ABC 的中位线,得出DG =12BC =3,AG =CG =12AC =4,证明△MDG ≌△EMH (ASA ),得出MG =EH ,由三角形面积关系得出DG =2EH =3,得出MG=EH =32,再证明∆DGF~∆EHF ,从而求出GF ,进而即可得出答案. 【详解】作DG ⊥AC 于G ,EH ⊥AC 于H ,如图所示:则∠DGM =∠MHE =90°,DG ∥BC ,∵∠ACB =90°,AB =10,AC =8, ∴BC 221086-=,∵DG ∥BC ,D 是AB 的中点,∴DG 是△ABC 的中位线,∴DG =12BC =3,AG =CG =12AC =4, ∵△DME 是等腰直角三角形,∴∠DME =90°,DM =ME ,∵∠DMG +∠GDM =∠DMG +∠EMH =90°,∴∠GDM =∠EMH ,在△MDG 和△EMH 中,DGM MHE DM MEGDM EMH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDG ≌△EMH (ASA ),∴MG =EH ,∵S △MDF =2S △MEF ,∴DG =2EH =3,∴MG =EH =32, ∵DG ∥EH ,∴∆DGF~∆EHF ,∴21DG GF EH HF ==, ∵GH=MH-MG=DG-MG=3-32=32, ∴GF=32×221+=1, ∴CF=AC-AG-GF=8-4-1=3,故答案是:3..【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.16.【分析】过点A 作AD ⊥l3于D 过点B 作BE ⊥l3于E 易证明∠BCE =∠CAD 再由题意可证明△ACD ≌△CBE (AAS )得出结论BE =CD 由l1l2之间的距离为2l2l3之间的距离为3即得出CD 和AD 解析:17 【分析】 过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,易证明∠BCE =∠CAD ,再由题意可证明△ACD ≌△CBE (AAS ),得出结论BE =CD ,由l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,即得出CD 和AD 的长,利用勾股定理即可求出AC 的长,从而得到AB 的长.【详解】如图,过点A 作AD ⊥l 3于D ,过点B 作BE ⊥l 3于E ,则∠CAD+∠ACD =90°,∵AC ⊥BC ,∴∠BCE+∠ACD =180°﹣90°=90°,∴∠BCE =∠CAD ,∵在△ACD 和△CBE 中,BCE CAD ADC CEB 90AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴BE =CD ,∵l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,∴CD =3,AD =2+3=5,在Rt △ACD 中,AC 2222AD CD 5334=+=+=,∵AC ⊥BC ,AC =BC ,∴△ABC 是等腰直角三角形,∴AB 2=AC 234=⨯=217.故答案为:17【点睛】本题考查三角形全等的判定和性质、平行线的性质、直角三角形的性质以及勾股定理.作出辅助线并证明BE =CD 是解答本题的关键.17.16【分析】求不规则四边形的面积可以转化为两个三角形的面积由题意可知:求出与的面积即为四边形ABCD 的面积【详解】连接AC ∵∴∴∵AB+BC=8∴∴∴故答案为:16【点睛】本题主要考查的是四边形面积解析:16【分析】求不规则四边形的面积,可以转化为两个三角形的面积,由题意B D 90∠∠==︒,可知:求出Rt ABC 与Rt ADC 的面积,即为四边形ABCD 的面积.【详解】连接AC ,∵B D 90∠∠==︒,∴222AB BC AC +=,222AD DC AC +=, ∴11=22ABC ADC ABCD S S S BC AB CD AD +=⋅+⋅四边形21122BC AB AD =⋅+ ()2221111=2224BC AB CD AB BC AB BC ⋅+=⋅++, ∵AB+BC=8,∴222=64AB BC BC AB ++⨯,∴4464ABC ADCS S +=, ∴=16ABC ADC ABCD S SS +=四边形故答案为:16.【点睛】本题主要考查的是四边形面积的求解,三角形面积以及勾股定理,熟练运用三角形面积公式以及勾股定理是解答本题的关键.18.20【分析】要使滑行的距离最短则沿着AE 的线段滑行先将半圆展开为矩形展开后ADE 三点构成直角三角形AE 为斜边AD 和DE 为直角边求出AD 和DE 的长再根据勾股定理求出AE 的长度即可【详解】将半圆面展开可解析:20【分析】要使滑行的距离最短,则沿着AE 的线段滑行,先将半圆展开为矩形,展开后,A 、D 、E 三点构成直角三角形,AE为斜边,AD和DE为直角边,求出AD和DE的长,再根据勾股定理求出AE的长度即可.【详解】将半圆面展开可得,如图所示:∵滑行部分的斜面是半径为4m的半圆∴AD=4π米,∵AB=CD=20m,CE=4m,∴DE=DC-CE=AB-CE=16米,在Rt△ADE中,2222(4)1620AD DEπ+=+≈m.故答案为:20.【点睛】考查了勾股定理的应用和两点之间线段最短,解题关键是把U型池的侧面展开成矩形,“化曲面为平面”,再勾股定理求解.19.10【分析】根据勾股定理可求出BC的长度然后除以每天凿隧道的长度可求出需要的天数【详解】解:∵∠A=40°∠B=50°∴∠C=90°即△ABC为直角三角形∵AB=5kmAC=4km∴故:所需天数==解析:10【分析】根据勾股定理可求出BC的长度,然后除以每天凿隧道的长度,可求出需要的天数.【详解】解:∵∠A=40°,∠B=50°,∴∠C=90°,即△ABC为直角三角形∵AB=5km,AC=4km∴2222543BC AB AC km=--=,故:所需天数=30.3=10天.故答案为:10.【点睛】本题主要是运用勾股定理求出所需凿隧道的长度.20.25π【分析】沿过A点和过B点的母线剪开展成平面连接AB则AB的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程求出AC 和BC 的长根据勾股定理求出斜边AB 即可【详解】解:如图所示:沿过A 点和过B 点的母线剪 解析:25π【分析】沿过A 点和过B 点的母线剪开,展成平面,连接AB ,则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程,求出AC 和BC 的长,根据勾股定理求出斜边AB 即可.【详解】解:如图所示:沿过A 点和过B 点的母线剪开,展成平面,连接AB ,则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程,AC =12×2π×24=24π,∠C =90°,BC =7π, 由勾股定理得:AB =()()2222274AC BC ππ+=+=25π.故答案为:25π.【点睛】考核知识点:勾股定理.把问题转化为求线段长度是关键.三、解答题21.(1)① 9;② 9;(2)4123S S S S =++,见解析【分析】(1)①在等腰直角三角形ACD ∆中,根据勾股定理AD =CD =32 ②设5BEG S S ∆=,则()45235423++BEA BFC S S S S S S S S S S ∆∆-=+-=--,利用勾股定理得出52AE BE ==42CF BF ==即可求解;(2)设5BEG S S ∆=,假设一个等腰直角三角形的斜边为a ,则面积为214a ,利用勾股定理得出222AC BC AB +=,则222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△,依此即可求解. 【详解】解:(1)①ACD ∆是等腰直角三角形,AC =6,∴AD =CD =3211323292S ∴=⨯=; ②ACB ∠=90°,AC =6,BC =8,∴AB =10,EAB ∆和FCB ∆是等腰直角三角形, ∴52AE BE ==,42CF BF ==,设5BEG S S ∆=()4523542311++52524242922BEA BFC S S S S S S S S S S ∆∆-=+-=--=⨯⨯-⨯⨯=;(2)设5BEG S S ∆=,如图,等腰直角三角形的面积公式12ABC S AB CD =⋅=214a ,∵等腰直角三角形ACD ∆,EAB ∆,FCB ∆, ∴222111,,444ADC BFC ABE S AC S BC S AB ===△△△, ∵222AC BC AB +=,∴222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△, ∴451253S S S S S S +=+++,∴4123S S S S =++.【点睛】本题考查勾股定理,等腰直角三角形的性质,三角形的面积,有一定难度,解题关键是将勾股定理和直角三角形的面积公式进行灵活的结合和应用.22.(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和310,由此可得线段PQ ;(2)由勾股定理可知当直角边为2和313可得到面积为13的正方形ABCD .【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.23.(1)见解析;(2)7;(3)7105. 【分析】 (1)根据AB =22252024==+, BC =221031=+,,AC =223435=+,利用勾股定理不难在网格上画出△ABC ;(2)如图,根据S △ABC =ADB BEC AFC ADEF S S S S ---⊿⊿⊿矩形不难得到答案; (3)对各边作出比较,可以找出最短边,然后根据三角形面积公式可求得最短边上的高.【详解】解:(1)如图所示:△ABC 即为所求;(2)如图,S △ABC =5×4﹣122⨯×4﹣12⨯1×3﹣12⨯3×5=7,∴△ABC 的面积是7;(3)∵10<534∴BC 是最短边,作AH ⊥BC ,交CB 延长线于点H ,∵S △ABC =12BC •AH , ∴AH =2ABC S BC =10=105. 710.【点睛】本题考查三角形面积的综合问题,熟练掌握三角形面积的各种求解方法是解题关键. 24.(1)见解析;(2)见解析【分析】(1)根据22521=+,可以得到作图方法;(2)根据22221212452⨯+⨯+=可以得到一种作图方法. 【详解】(1)如图1;(2)如图2.【点睛】本题考查给定边长或面积的作图问题,解题关键是熟练掌握面积的计算公式以及勾股定理的应用.25.(1)20︒,(2)①见解析;②53BD =;(3)52CE =或74=CE . 【分析】(1)先判断出B 不可能是α或β,再根据条件计算即可;(2)①根据DC 平分ACB ∠,得到2ACB BCD ∠=∠,再根据90BAC ∠=︒,即可得到结果;②作DH BC ⊥交于点H ,根据勾股定理得到5AC =,证明ADC HDC △≌△,再根据勾股定理计算即可;(3)根据点E 存在的两种情况分类讨论即可;【详解】(1)B 不可能是α或β,当A α∠=时,50C β∠==︒,290αβ+=︒,不成立;故A β∠=,C α∠=,290αβ+=︒,则20β=︒,(2)①∵DC 平分ACB ∠,∴2ACB BCD ∠=∠,∵90BAC ∠=︒,∴90B ACB ∠+∠=︒,即290B BCD ∠+∠=︒.∴BCD △是“近直角三角形”.②作DH BC ⊥交于点H ,∵3AB =,4AC =,∴5AC =(勾股定理).在ADC 和HDC △中,DAC DHC ∠=∠,ACD HCD ∠=∠,DC DC =,∴ADC HDC △≌△,∴DH DA =,4AC HC ==,∴1BH =.设BD x =,则3DH x =-,在Rt BDH △中,()22231x x =-+, 得53x =,即53BD =. (3)52CE =或74=CE .如图所示,点E 在ABC ∠的角平分线上,作EF BC ⊥,设EC x =,则4AE x =-,则4EF x =-, 根据已知条件可得:3AB BF ==, ∴532FC =-=,在Rt △EFC 中, ()22242x x -+=,52x =;在AC 上面找一点E ,连接BE ,使得ABE C ∠=∠,延长EA 至G ,使得AE=AG , 根据条件可得:△△ABG ABE ≅,∴GBA EBA C ∠=∠=∠,∵90GBA G ∠+∠=︒,∴90C G ∠+∠=︒,∴90CBG ∠=︒,设EC x =,则4AE AG x ==-, ∴()()222224385BG x x =-+=--,74x =; ∴97444CE AC AE =-=-=; ∴边AC 上存在点E ,使得BCE 也是“近直角三角形”,此时52CE =或74=CE . 【点睛】 本题主要考查了勾股定理和全等三角形的判定与性质,准确计算是解题的关键. 26.水深12尺,芦苇长13尺【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案.【详解】解:依题意画出图形,如下图,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt△ACB'中,52+(x-1)2=x2,解得:x=13,即水深12尺,芦苇长13尺.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.。

勾股定理(专题训练)

勾股定理(专题训练)

5、勾股定理专题训练【知识点精讲】1 勾股定理:__________________________________________2勾股定理的逆定理:________________________________________________ 3勾股数:______、______、______、______、______、______、4两种特殊的直角三角形:①30°的直角三角形______________________________②45°的直角三角形________________________5两点之间______最短,但蚂蚁在圆柱体表面爬行时,所走的路线必定是______线。

6立体图形转化为______图形,再转化为______问题7勾股定理是求______的长度的主要方法,若缺少直角条件则可以通过作垂线段的方法构造RT △,为勾股定理的应用创造必要的条件。

8勾股定理和勾股定理逆定理的综合运用,还经常利用方程求线段的和差等关系。

【典型例题与思维拓展】板块一、利用勾股定理求线段长例1已知如图,在R t △ABC 中,∠ACB=90°,AC=7,BC=24,CD 是斜边AB 上的高,求CD 的长.BDA拓展与变式练习11. 已知如图,在R t △ABC 中,∠ACB=90°,BC=40,AB=41,CD 是斜边上的高,求CD 的长。

BDA2. 如图将R t △ABC 沿AD 对折,使点C 落在AB 上的E 处,若AC=6,AB=10,求DB 的长。

DCB板块二、翻折类型例2如图,折叠长方形的一边AD,使点D 落在BC 边的点F 处,若AB=3,BC=4,求EC 的长。

拓展变式练习21.如图折叠长方形ABCD,先折出对角线BD,再折叠AD 边与BD 重合,得到折痕DG.若AB=12,AD=9,求AG 的长.GCBAD2.如图将长方形ABCD 沿对角线BD 折叠,使C 点落在F 处,BF 交AD 于点E,AD=10,AB=6,求△BDE 的面积是多少?DCBA板块三、构造RT Δ例3如图,在△ABC 中,∠BAC=90°,AB=AC,D,E 在BC 上,∠DAE=45°. 求证:CD 2+BE 2=DE2.BEC拓展变式练习3CEFBDDBAEBC1. 已知如图,在△ABC 中,∠A=90°,DE 为BC 的垂直平分线,求证:BE 2=AC 2+AE 22. 如图在R t △ABC 中,∠C=90°,DA=DB,E 、F 分别在AC 和BC 上,且ED ⊥DF, 求证:EF 2=AE 2+BF 2BA板块四、勾股定理逆定理 例4、如图在四边形ABCD 中,已知∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD 的面积.拓展变式练习41. 如图,在四边形ABCD 中,已知AB,BC,DA 的长分别为2、2、2,且CD 2=12,AB ⊥BC,求∠DAB 的度数.DC2. 如图在△ABC 中,BC=6,AC=8,在△ABE 中,DE 是AB 边上的高,DE=7, △ABE 的面积为35, 求∠C的度数.例5、若△ABC的三边长a、b、c满足条件:a2+b2+c2=10a+24b+26c-338,试判断△ABC的形状.板块五、最短路径问题例6:有一个长宽高分别为2cm,1cm,3cm的长方体,有一只小蚂蚁想从点A爬到点C1处,则它爬行的最短路程为________cm.拓展与变式练习51、△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,△ABC是____三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短。

二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 14、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。

5、在直线l 上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。

考点二:在直角三角形中,已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.S 3S 2S 14、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A. 2倍B. 4倍C. 6倍D. 8倍5、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。

6、如果直角三角形的两直角边长分别为1n2-,2n(n>1),那么它的斜边长是()A、2nB、n+1C、n2-1D、1n2+7、在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A. 222+= C. 222+= D.以上都有可能c b aa b c+= B. 222a c b8、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A、242c mc m D、602c m C、482c m B、36 29、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题1、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,172、若线段a,b,c组成直角三角形,则它们的比为()A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶73、下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有().A.1个 B.2个 C.3个 D.4个4、若三角形的三边之比为2:122,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.不等边三角形5、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A.钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形7、若△ABC的三边长a,b,c满足222a b c20012a16b20c+++=++,试判断△ABC的形状。

8、△ABC的两边分别为5,12,另一边为奇数,且a+b+c是3的倍数,则c应为,此三角形为。

例3:求(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是度。

(2)已知三角形三边的比为13:2,则其最小角为。

考点五:应用勾股定理解决楼梯上铺地毯问题某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.考点六、利用列方程求线段的长(方程思想)1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?2、一架长m的梯子,斜立在一竖起的墙上,梯子底端距离墙底m(如图),如果梯子的顶端沿墙下滑m,那么梯子底端将向左滑动米3、如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 1米,(填“大于”,“等于”,或“小于”)86BC4、在一棵树10 m 高的B 处,有两只猴子,一只爬下树走到离树20m 处的池塘A 处;•另外一只爬到树顶D 处后直接跃到A 外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.7、如图18-15所示,某人到一个荒岛上去探宝,在A 处登陆后,往东走8km ,又往北走2km ,遇到障碍后又往西走3km ,再折向北方走到5km 处往东一拐,仅1km •就找到了宝藏,问:登陆点(A 处)到宝藏埋藏点(B 处)的直线距离是多少?60 120140B60AC8米 2米8米第6题图图18-1515328B A CAD B考点七:折叠问题1、如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于()A.425B.322C.47D.352、如图所示,已知△ABC中,∠C=90°,AB的垂直平分线交BC•于M,交AB于N,若AC=4,MB=2MC,求AB的长.3、折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求CF和EC。

4、如图,在长方形ABCD中,DC=5,在DC边上存在一点E,沿直线AE把△ABC折叠,使点D恰好在BC边上,设此点为F,若△ABF的面积为30,求折叠的△AED的面积DCBAFEA BCEDB CED5、如图,矩形纸片ABCD的长AD=9㎝,宽AB=3㎝,将其折叠,使点D与点B重合,那么折叠后DE的长是多少?6、如图,在长方形ABCD中,将∆ABC沿AC对折至∆AEC位置,CE与AD交于点F。

(1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长7、如图2所示,将长方形ABCD沿直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_______.8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=•3,BC=7,重合部分△EBD的面积为________.9、如图5,将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G 。

如果M 为CD 边的中点,求证:DE :DM :EM=3:4:5。

10、如图2-5,长方形ABCD 中,AB=3,BC=4,若将该矩形折叠,使C 点与A 点重合,•则折叠后痕迹EF 的长为( )A .B .C .D .2-511、如图1-3-11,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B ,另一直角边PF 与DC 的延长线交于点Q ,与BC 交于点E ,能否使CE=2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.12、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC 边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

13、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。

假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?考点八:应用勾股定理解决勾股树问题1、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中2、最大的正方形的边长为5,则正方形A,B,C,D的面积的和为2、已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.考点九、图形问题1、如图1,求该四边形的面积2、如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .3、某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=m,BC=2m,现有一辆装满货物的卡车,高为m,宽为m,问这辆卡车能否通过公司的大门?并说明你的理由 .4、将一根长24㎝的筷子置于地面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h ㎝,则h 的取值范围 。

相关文档
最新文档