【2019年中考真题模拟】青海省西宁市2019年中考数学真题试题(含答案)

合集下载

2019年青海省西宁市城区中考数学试卷(含答案解析)

2019年青海省西宁市城区中考数学试卷(含答案解析)

2019年青海省西宁市城区中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分)1. 若等式−2□(−2)=4成立,则“□”内的运算符号是( )A. +B. −C. ×D. ÷2. 下列图书馆标志的图形中不是轴对称图形的是( )A.B.C.D.3. 下列各数是无理数的是( )A. √93B. 3.141 141 114C. 227D. 3.1⋅4⋅4. 下列计算正确的是( )A. (ab)2=ab 2B. (a 3)2=a 6C. a 6÷a 2=a 3D. a 4⋅a 3=a 125. 下列说法正确的是( )A. 过一点有且只有一条直线与已知直线垂直B. 相等的圆心角所对的弧相等C. 若a 2=b 2,则a =bD. 一组数据3,2,5,3的中位数、众数都是36. 背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y =2x −4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是( )A. 14B. 34C. 12D. 17. 如图,Rt △ABC 中,∠ACB =90°,CD 是AB 边上的中线,BC =6,CD =5,则∠ACD 的正切值是( )A. 43B. 35C. 53D. 348. 边长为2的正三角形的外接圆的半径是( )A. 2√3B. 2C. 2√33D. √329. 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠使点A 落在点G 处,延长BG 交CD 于点F ,连接EF ,若CF =1,DF =2,则BC 的长是( )A. 3√3B. √26C. 5D. 2√610.如图1,甲、乙两人沿湟水河滨水绿道同向而行,甲步行的速度为100米/分,乙骑公共自行车的速度为v米/分,起初甲在乙前a米处,两人同时出发,当乙追上甲时,两人停止前行.设x分钟后甲、乙两人相距y米,y与x的函数关系如图2所示有以下结论:①图1中a表示为1000;②图1中EF表示为1000−200x;③乙的速度为200米/分;④若两人在相距a米处同时相向而行,10分钟后相遇.其中正确的结论是()3A. ①②B. ③④C. ①②③D. ①③④二、填空题(本大题共10小题,共20.0分)11.−2的相反数是______.12.党的十八大以来,习近平总书记把脱贫攻坚摆在治国理政的突出位置,截至2018年底,我省共计减少贫困人口1083000人,将1083000用科学记数法表示为______.13.分解因式:2a2−4a+2=______.14.已知扇形的圆心角为120°,半径为4cm,则扇形的面积是______cm2.15.平行四边形的两条邻边的长分别是方程x2−7x+1=0的两根,则该平行四边形的周长是______.16.如图,△ABC中,点D,E分别是AB,AC的中点,连接DE并延长交△ABC的外角∠ACM的角平分线于点F,若BC=6,AC=10,则线段DF的长为______.17.如图,PA,PB是⊙O的切线,A,B为切点,若∠AOB=120°,OA=2,则△PAB的周长是______.18.如图,Rt△ABC中,∠B=90°,∠C=45°,∠ADB=60°,CD=2,则AB=______.19.平面直角坐标系中,将点A(3,4)绕点B(1,0)旋转90°,得到点A的对应点A′的坐标为______.20.平面直角坐标系中,将抛物线y=−x2平移得到抛物线C,如图所示,且抛物线C经过点A(−1,0)和B(0,3),点P是抛物线C上第一象限内一动点,过点P作x轴的垂线,垂足为Q,则OQ+PQ的最大值为______.三、解答题(本大题共8小题,共70.0分)21.计算:2−2−|√5−4|+√(−4)2.22.若m是不等式组{m<35m>m+4的整数解,解关于x的分式方程mx2−4+1=xx−2.23.如图,点A,B,C,D在同一条直线上,AB=BC,△AEC≌△BFD,连接BE,CF,EF.(1)求证:BE=CF;(2)当∠A=∠D时,求证四边形BCFE是矩形.24.如图,一次函数y=kx+b的图象与反比例函数y=6x 的图象交于A,B两点,与x轴交于点P,过点A作AE⊥x 轴于点E,AE=3.(1)求点A的坐标;(2)若PA:PB=3:1,求一次函数的解析式.25.西宁市教育局准备组织全市初中生去我市五个四星级公园开展“绿水青山,幸福西宁”社会实践活动.为了解学生的兴趣需求,对全市初中生进行一次抽样调查.针对给出的五个公园(每人限选一个):A高原明珠景区、B体育公园、C人民公园、D 南山公园、E湟水森林公园进行调查.根据调查结果绘制了如下不完整的统计图,请你根据统计图提供的信息解答下列问题:(1)在此调查中,下列抽样调查方式最合理的是______;(只需填上正确答案的序号)①对城北区所有初中学校的男同学进行调查;②对市中心某初中学校九年级的同学进行调查;③在全市每一所初中学校随机抽取100名同学进行调查.(2)将上面的条形统计图补充完整;(3)已知全市初中学生约有35000人,请根据调查结果估计全市初中学生最喜欢去体育公园的学生人数;(4)若甲、乙两名学生在上述选择率较高的三个公园中各选一个开展社会实践活动,请用画树状图或列表的方法求出甲、乙两名学生选择同一个公园的概率,并列出所有等可能的结果.26.如图,AB,CD是⊙O的直径,AB过弦CE的中点F,过点D作⊙O的切线交CE的延长线于点P,连接BD交CE于点G.(1)求证:PD=PG;(2)若OC=4,PG=6,求CE的长.27.某校为落实西宁市教育局“教育信息化2.0行动计划”,搭建数字化校园平台,需要购买一批电子白板和平板电脑,若购买2台电子白板和6台平板电脑共需9万元;购买3台电子白板和4台平板电脑共需11万元.(1)求电子白板和平板电脑的单价各是多少万元?(2)结合学校实际,该校准备购买电子白板和平板电脑共100台,其中电子白板至少购买6台且不超过24台,某商家给出了两种优惠方案,方案一:电子白板和平板电脑均打九折;方案二:买1台电子白板,送1台平板电脑.若购买电子白板a(台)所需的费用为W(万元),请根据两种优惠方案分别写出W关于a的函数关系式,并分析该校应选用哪种优惠方案购买更省钱.28.如图①,直线y=−√3x+2√3与x轴,y轴分别交于A,B两点,以A为顶点的抛物线经过点B,点P是抛物线上一点,连接OP,AP.(1)求抛物线的解析式;(2)若△AOP的面积是3√3,求P点坐标;(3)如图②,动点M,N同时从点O出发,点M以1个单位长度/秒的速度沿x轴正半轴方向匀速运动,点N以√3个单位长度/秒的速度沿y轴正半轴方向匀速运动,当其中一个动点停止运动时,另一个动点也随之停止运动,过点N作NE//x轴交直线AB于点E.若设运动时间为t秒,是否存在某一时刻,使四边形AMNE是菱形?若存在,求出t的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:−2×(−2)=4.故选:C.分析:只需运用有理数的运算法则就可解决问题.本题考查的是有理数的混合运算,应熟练掌握有理数的运算法则.2.【答案】B【解析】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、轴对称图形,故本选项错误;D、轴对称图形,故本选项错误;故选:B.根据轴对称的定义,结合选项图形进行判断即可.本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】A3是无理数,【解析】解:√9故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.此题主要考查了无理数的定义,解题的关键是明确初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【答案】B【解析】解:A、(ab)2=a2b2,故此选项错误;B、(a3)2=a6,正确;C、a6÷a2=a4,故此选项错误;D、a4⋅a3=a7,故此选项错误;故选:B.直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案.此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【答案】D【解析】解:在平面内,过一点有且只有一条直线与已知直线垂直,故选项A错误;在同圆或等圆中,相等的圆心角所对的弧相等,故选项B错误;若a2=b2,则a=±b,故选项C错误;一组数据3,2,5,3按照从小到排列是2,3,3,5,故这组数的中位数、众数都是3,故选项D正确;故选:D.根据各个选项中的说法可以判断是否正确,从而可以解答本题.本题考查垂线、众数、中位数、与圆有关的知识,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.6.【答案】B【解析】解:函数y=2x−4中k=2>0,y随着x的增大而增大,∵b=−4,∴函数的图象经过一、三、四象限;令x=0,y=−4,∴与y轴交与(0,−4);当x=0时,y=−4,当x=2时,y=0,∴当0<x<2时,−4<y<0,∵3张卡片中正确的有3张,∴随机抽取一张,抽到卡片上的结论正确的概率是34,故选:B.利用二次函数确定正确的结论,然后利用概率公式求解即可.考查了概率公式及一次函数的性质,解题的关键是根据一次函数的性质进行正确的判断,难度不大.7.【答案】D【解析】解:∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,CD=5,∴AB=10,∴AC=8,∴tan∠A=BCAC =68=34,∴tan∠ACD的值34.故选:D.根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.8.【答案】C【解析】解:如图,等边△ABC中,三边的垂直平分线交一点O,则O是△ABC外接圆的圆心,∴∠OBC=∠OCB=30°,BF=CF=12BC=1,∴OF=√33BF,∴OB=2OF=2√33.故选:C.等边三角形的边长是其外接圆半径的√3倍,据此直接算出答案.本题主要考查等边三角形及其外接圆的性质,知道等边三角形边长与其外接圆半径的倍数关系是解答关键.9.【答案】D【解析】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM//CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=12CF=12,∴NG=12,∵BG=AB=CD=CF+DF=3,∴BN=BG−NG=3−12=52,∴BF=2BN=5,∴BC=√BF2−CF2=√52−12=2√6,故选:D.首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF 的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=3,继而求得BF的值,又由勾股定理,即可求得BC的长.此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.10.【答案】A【解析】解:由图可知,a=1000,故①正确;乙的速度为:(1000−400)+100×33=300米/分钟,故③错误;图1中,EF表示为1000+100x−300x=1000−200x,故②正确;令100x+1000=300x,得x=5,即两人在相距a米处同时相向而行,5分钟后相遇,故④错误;故选:A.根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】2【解析】解:−2的相反数是:−(−2)=2,故答案为:2.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.12.【答案】1.083×106【解析】解:将1083000用科学记数法表示为1.083×106.故答案为:1.083×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】2(a−1)2【解析】解:原式=2(a2−2a+1)=2(a−1)2.故答案为:2(a−1)2.原式提取2,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【答案】163π【解析】解:由题意得,n=120°,R=4cm,故可得扇形的面积S=nπR2360=120⋅π×42360=163π.故答案为163π.直接根据扇形的面积公式计算即可.此题考查了扇形的面积计算,属于基础题,解答本题的关键是掌握扇形的面积公式,难度一般.15.【答案】14【解析】解:∵平行四边形的两条邻边的长分别是方程x2−7x+1=0的两根,∴平行四边形的两条邻边的长的和是7,故该平行四边形的周长是7×2=14.故答案为:14.根据根与系数的关系求得平行四边形的两条邻边的长的和,再乘2即可求解.考查了平行四边形的性质,根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba ,x1⋅x2=ca.16.【答案】8【解析】解:∵点D,E分别是AB,AC的中点,∴DE=12BC=3,EC=12AC=5,DE//BC,∴∠F=∠FCM,∵CF是∠ACM的角平分线,∴∠FCE=∠FCM,∴∠F=∠FCE,∴EF=EC=5,∴DF=DE+EF=8,故答案为:8.根据三角形中位线定理求出DE、EC,根据平行线的性质、角平分线的定义得到EF= EC=5,结合图形计算,得到答案.本题考查的是三角形中位线定理、平行线的性质、线段中点的定义,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】6√3【解析】解:∵PA、PB是⊙O的切线,A、B是切点,∴∠PAO=∠PBO=90°,PA=PB,∠OPA=∠OPB,∵∠AOB=120°,∴∠APB=360°−90°−90°−120°=60°,∴△PAB是等边三角形,∠OPA=∠OPB=30°,∴PA=PB=AB,∵∠PAO=90°,∠OPA=30°,∴AB=PB=PA=√3OA=2√3,∴△PAB的周长=PA+PB+AB=6√3;故答案为:6√3.由切线的性质得出∠PAO=∠PBO=90°,PA=PB,∠OPA=∠OPB,证△PAB是等边三角形,∠OPA=∠OPB=30°,得出PA=PB=AB,AB=PB=PA=√3OA=2√3,即可得出答案.本题考查了切线的性质、等边三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握切线的性质,证明△PAB为等边三角形是解题的关键.18.【答案】3+√3【解析】解:∵∠B=90°,∠C=45°,∴△ABC是等腰直角三角形,∴AB=CB,∵∠ADB=60°,∴∠BAD =30°, ∴AB =√3BD ,∵CD =BC −BD =AB −BD =2,∴√3BD −BD =2,解得:BD =√3+1,∴AB =CB =CD +BD =2+√3+1=3+√3;故答案为:3+√3.证出△ABC 是等腰直角三角形,得出AB =CB ,证出AB =√3BD ,由题意得出√3BD −BD =2,解得BD =√3+1,即可得出答案.本题考查了等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握等腰直角三角形和含30°角的直角三角形的性质是解题的关键. 19.【答案】(−3,2)或(5,−2)【解析】解:如图,点A(3,4)绕点B(1,0)顺时针或逆时针旋转90°,得到点A 的对应点A′的坐标为(5,−2),A″(−3,2).故答案为:(−3,2)或(5,−2). 根据旋转的性质分两种情况:点A 绕点B 顺时针和逆时针旋转画图求解即可. 本题考查了坐标与图形变化−旋转,解决本题的关键是掌握旋转的性质. 20.【答案】214【解析】解:设平移后的解析式为y =−x 2+bx +c ,∵抛物线C 经过点A(−1,0)和B(0,3),∴{−1−b +c =0c =3,解得{b =2c =3, ∴抛物线C 的解析式为y =−x 2+2x +3,设Q(x,0),则P(x,−x 2+2x +3),∵点P 是抛物线C 上第一象限内一动点,∴OQ +PQ =x +(−x 2+2x +3)=−x 2+3x +3=−(x −32)2+214,∴OQ +PQ 的最大值为214,故答案为214.求得抛物线C 的解析式,设Q(x,0),则P(x,−x 2+2x +3),即可得出OQ +PQ =x +(−x 2+2x +3)=−(x −32)2+214,根据二次函数的性质即可求得.本题考查了二次函数的性质,二次函数图象与几何变换,根据题意得出OQ +PQ =−x 2+3x +3是解题的关键.21.【答案】解:原式=14−(4−√5)+4=14−4+√5+4 =14+√5.【解析】原式利用负整数指数幂法则,绝对值的代数意义,以及二次根式性质计算即可求出值.此题考查了实数的运算,负整数指数幂,绝对值的代数意义,以及二次根式性质,熟练掌握运算法则是解本题的关键.22.【答案】解:不等式组整理得:{m <3m >1, 解得:1<m <3,整数m =2,代入分式方程得:2x 2−4+1=x x−2,去分母得:2+x 2−4=x 2+2x ,解得:x =−1,经检验x =−1是分式方程的解.【解析】求出不等式组的解集,确定出m 的值,代入分式方程计算即可.此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握各自的解法是解本题的关键.23.【答案】(1)证明:∵△AEC≌△BFD ,∴AE =BF ,∠EAB =∠FBC ,∵AB =BC ,∴△ABE≌△BCF(SAS),∴BE =CF ;(2)解:∵△ABE≌△BCF ,∴BE =CF ,∵△AEC≌△BFD ,∴AC =BD ,∠ACE =∠D ,∵AB =BC ,∴AB =BC =CD ,∵∠A =∠D ,∴∠A =∠ACE =∠DBF =∠D ,∴AE =CE ,BF =DF ,∴BE ⊥AD ,CF ⊥AD ,∴BE//CF ,∴四边形BCFE 是矩形.【解析】(1)根据全等三角形的判定和性质到了即可得到结论;(2)根据全等三角形的判定和性质定理以及矩形的判定定理即可得到结论.本题考查了矩形的判定,全等三角形的判定和性质,等腰三角形的判定和性质,正确的识别图形是解题的关键.24.【答案】解:(1)当y =3时,3=6x ,解得x =2,∴点A 的坐标为(2,3);(2)作BF ⊥x 轴于F ,如图,∵AE//BF ,∴PA PB =AE BF =3,∴BF =1,当y =−1时,−1=6x ,解得x =−6,∴B(−1,−6),把A(2,3),B(−6,−1)代入y =kx +b {2k +b =3−6k +b =−1,解得{k =12b =2, ∴一次函数解析式为y =12x +2.【解析】(1)由于A 点的纵坐标为3,则利用反比例函数的解析式可求出点A 的坐标;(2)作BF ⊥x 轴于F ,如图,利用平行线分线段成比例可求出BF =1,则利用反比例函数解析式可确定B(−1,−6),然后利用待定系数法求一次函数解析式.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.25.【答案】③【解析】解:(1)①②缺乏代表性和广泛性,得到的数据也不准确,则③最合理 故答案为:③;(2)区B 公园的人数是:800÷40%−300−800−400−100=400(人),补图如下:(3)根据题意得:35000×400800÷40%=7000(人),答:估计全市初中学生最喜欢去体育公园的学生人数是7000人;(4)三个公园分别用A 、B 、C 表示,画图如下:共有9种等情况数,分别是AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC ,其中甲、乙两名学生选择同一个公园的有2种, 则甲、乙两名学生选择同一个公园的概率是29. (1)为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性; (2)根据人民公园的人数和所占的百分比求出总人数,再用总人数减去其它公园的人数,即可求出体育公园的人数,从而补全统计图;(3)用总人数乘以最喜欢去体育公园的学生所占的百分比即可;(4)根据题意画出树状图得出所有等情况数,再找出甲、乙两名学生选择同一个公园的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比;此题也考查了统计图.26.【答案】(1)证明:∵AB 为⊙O 的直径,AB 过弦CE 的中点F ,∴AB ⊥CE ,∴∠BGF +∠B =90°,∵PD 为⊙O 的切线,∴∠PDG +∠ODB =90°,∵OB =OD ,∴∠ODB =∠B ,∴∠BGF =∠PDG ,∵∠PGD =∠BGF ,∴∠PDG =∠PGD ,∴PD =PG ;(2)解:连接DE ,由(1)得:PD =PG =6,∵CD 是⊙O 的直径,∴CD =2OC =8,∠DEC =90°,∴DE ⊥CP ,∵PD 为⊙O 的切线,∴PD ⊥CD ,∴PC =√CD 2+PD 2=√82+62=10,∵△CDP 的面积=12PC ×DE =12CD ×PD ,∴DE =CD×PDPC =8×610=245,∴CE =√CD 2−DE 2=√82−(245)2=325.【解析】(1)由垂径定理得出∠ADB =90°,AB ⊥CE ,证∠PDG =∠PGD ,即可得出PD =PG ;(2)连接DE ,由(1)得PD =PG =6,由勾股定理得出PC =10,由三角形面积得出DE =245,再由勾股定理即可得出答案.本题考查了切线的性质、圆周角定理、垂径定理、等腰三角形的性质、勾股定理等知识;熟练掌握切线的性质和垂径定理是解题的关键.27.【答案】解:(1)设购买电子白板的单价为x 万元,平板电脑的单价是y 万元, {2x +6y =93x +4y =11, 解得,{x =3y =0.5, 答:电子白板的单价是3万元,平板电脑的单价是0.5万元;(2)由题意可得,方案一:W =[3a +0.5(100−a)]×0.9=2.25a +45,方案二:W =3a +0.5(100−a −a)=2a +50,当2.25a +45<2a +50时,得a <20,即当6≤a <20时,选择方案一;当2.25a +45=2a +50时,得a =20,即当a =20时,方案一和方案二花费一样多;当2.25a +45>2a +50,得a >20,即当20<x ≤24时,选择方案二;答:方案一:W 关于a 的函数关系式是W =2.25a +45,方案二:W 关于a 的函数关系式是W =2a +50,当6≤a <20时,方案一更省钱,当a =20时,两种方案花费一样,当20<x ≤24时,方案二更省钱.【解析】(1)根据题意,可以列出相应的二元一次方程组,从而可以求得电子白板和平板电脑的单价各是多少万元;(2)根据题意,可以分别写出两种方案下,W 关于a 的函数关系式,再利用分类讨论的方法可以得到该校应选用哪种优惠方案购买更省钱.本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.28.【答案】解:(1)y =−√3x +2√3,令x =0,则y =2√3,令y =0,则x =2, 故点A 、B 的坐标分别为:(2,0)、(0,2√3),∵抛物线的顶点为点A(2,0),∴设抛物线的表达式为:y =a(x −2)2,将点B 的坐标代入上式得:2√3=a(0−2)2,解得:a =√32, 故抛物线的表达式为:y =√32(x −2)2=√32x 2−2√3x +2√3;(2)∵点A(2,0),则OA =2,∴△AOP 的面积=12×OA ×y P =12×2×y P =3√3,解得:y P =3√3,则y P =3√3=√32(x −2)2,解得:x =2±√6, 故点P 的坐标为:(2+√6,3√3)或(2−√6,3√3);(3)存在,理由:由题意得:t 秒时,点M 、N 的坐标分别为:(t,0)、(0,√3t),当y=√3t时,y=√3t=−√3x+2√3,解得:x=2−t,故点E(2−t,√3t),而点N(0,√3t),故NE=2−t,当四边形AMNE是菱形时,NE=MN,即t2+(√3t)2=(2−t)2,解得:t=23或−2(舍去−2),故t=23.【解析】(1)求出点A、B的坐标;因为抛物线的顶点为点A,所以设抛物线的表达式为:y=a(x−2)2,将点B的坐标代入上式,即可求解;(2)△AOP的面积=12×OA×y P=12×2×y P=3√3,解得:y P=3√3,即可求解;(3)t秒时,点M、N的坐标分别为:(t,0)、(0,√3t),则点E(2−t,√3t),而点N(0,√3t),故NE=2−t,当四边形AMNE是菱形时,NE=MN,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、三角形面积的计算等,有一定的综合性,难度适中.。

【中考真题】2019年青海省中考数学真题试卷(附答案)

【中考真题】2019年青海省中考数学真题试卷(附答案)
三、解答题
21.计算:
22.先化简,再求值( +m﹣2)÷ ;其中m= +1.
23.在 中, , 是 的中点, 是 的中点,过点 作 交 的延长线于点 ,连接 .
(1)求证: .
(2)求证:四边形 是菱形.
24.某市为了提升菜篮子工程质量,计划用大、中型车辆共 辆调拨不超过 吨蔬菜和 吨肉制品补充当地市场.已知一辆大型车可运蔬菜 吨和肉制品 吨;一辆中型车可运蔬菜 吨和肉制品 吨.
【详解】
解:设平均每次降价的百分比是 ,根据题意得:

解得: (不合题意,舍去),
答:平均每次降价的百分比是 ;
故答案为: .
【点睛】
本题考查一元二次方程的应用,若设变化前的量为 ,变化后的量为 ,平均变化率为 ,则经过两次变化后的数量关系为 .
13. .
【解析】
【分析】
根据反比例函数系数 的几何意义可知, 的面积 ,再根据图象所在象限求出 的值即可.
参Hale Waihona Puke 答案1.C【解析】
【分析】
【详解】
解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.
2.A
【解析】
试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.
27.我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设 为三角形三边, 为面积,则 ,这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设 (周长的一半),则

2019年青海省西宁市中考数学一模试卷 解析版

2019年青海省西宁市中考数学一模试卷  解析版

2019年青海省西宁市中考数学一模试卷一.选择题(共10小题)1.下列算式正确的是()A.﹣1﹣1=0 B.﹣(﹣3)=3 C.2﹣3=1 D.﹣|﹣3|=3 2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.(2a3﹣a2)÷a2=2a﹣14.下列各组图形中,两个图形不一定是相似形的是()A.两个等边三角形B.有一个角是100°的两个等腰三角形C.两个矩形D.两个正方形5.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm6.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()年龄13 14 15 16 17人数 1 2 2 3 1A.16,15 B.16,14 C.15,15 D.14,157.设,则代数式a2+2a﹣12的值为()A.﹣6 B.24 C.D.8.二次函数y=x2﹣(m﹣1)x+4的图象与x轴有且只有一个交点,则m的值为()A.1或﹣3 B.5或﹣3 C.﹣5或3 D.以上都不对9.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成10.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动,动点Q以2厘米/秒的速度自B点出发沿BC方向运动至C点停止,同时P点也停止运动若点P,Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二.填空题(共10小题)11.因式分解:(a﹣b)2﹣(b﹣a)=.12.比较大小:4.13.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是.14.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D的坐标为.15.若a+b=6,ab=4,则a2+b2=.16.如图,一次函数y=﹣x﹣2与y=kx+b的图象交于点P(n,﹣4),则关于x的不等式kx+b<﹣x﹣2的解集为.17.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为3m.已知,冬至时北京的正午日光入射角∠ABC约为30°,则立柱根部与圭表的冬至线的距离(即BC的长)为m.18.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:顶点与x轴的交点围成的三角形面积等于9,请你写出满足上述全部条件的一条抛物线的解析式:.19.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为cm.20.如图,点A在双曲线y=(k>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O 和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为.三.解答题(共8小题)21.计算:22.已知实数a满足a2+a=0,求的值.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.24.如图,在平面直角坐标系中,一次函数y=k1x+8与x轴和y轴分别交于点A,点B,与反比例函数在第一象限的图象交于点C,点D,且点C的坐标为(1,6).(1)求一次函数和反比例函数解析式;(2)若△OCD的面积是8,求D点坐标.25.随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与,B.一定参与,C.可以参与,D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18 aB20 40%C m16%D 4 b合计n100%请你根据以上信息,解答下列问题:(1)a=,m=,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.26.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC 的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.27.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其大致图象如图所示.栽花所需费用y2(元)与x(m2)的函数关系式为.(1)求出k1,k2的值;(2)若种花面积不小于400(m2)时的绿化总费用为w(元),写出w与x的函数关系式,并求出绿化总费用w的最大值.28.如图,抛物线与x轴交于点A,B,与y轴交于点C.(1)求点A,B,C的坐标;(2)将△ABC绕AB的中点M旋转180°,得到△BAD.①求点D的坐标;②判断△ADB的形状,并说明理由.(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请写出所有满足条件的P点的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列算式正确的是()A.﹣1﹣1=0 B.﹣(﹣3)=3 C.2﹣3=1 D.﹣|﹣3|=3 【分析】分别根据有理数的减法法则、相反数的定义以及绝对值的定义即可得出正确选项.【解答】解:A.﹣1﹣1=﹣2,故本选项不符合题意;B.﹣(﹣3)=3,正确;C.2﹣3=﹣1,故本选项不符合题意;D.﹣|﹣3|=﹣3,故本选项不符合题意.故选:B.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.3.下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.(2a3﹣a2)÷a2=2a﹣1【分析】A.根据合并同类项法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据多项式除以单项式判断.【解答】解:A.a2与a3不能合并,故本项错误;B.(﹣2a2)3=﹣8a6,故本项错误;C.(2a+1)(2a﹣1)=4a2﹣1,故本项错误;D.(2a3﹣a2)÷a2=2a﹣1,本项正确,故选:D.4.下列各组图形中,两个图形不一定是相似形的是()A.两个等边三角形B.有一个角是100°的两个等腰三角形C.两个矩形D.两个正方形【分析】直接利用相似多边形的判定方法得出答案.【解答】解:A、两个等边三角形,一定相似,不合题意;B、有一个角是100°的两个等腰三角形,一定相似,不合题意;C、两个矩形,对应边不一定成比例,不一定相似,符合题意;D、两个正方形,一定相似,不合题意;故选:C.5.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD是等边三角形,则⊙O的半径长为BC=4cm;然后由圆的周长公式进行计算.【解答】解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.6.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()年龄13 14 15 16 17人数 1 2 2 3 1A.16,15 B.16,14 C.15,15 D.14,15【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.7.设,则代数式a2+2a﹣12的值为()A.﹣6 B.24 C.D.【分析】此题可先把代数式a2+2a﹣12变形为(a+1)2﹣13,再把代入变形得式子计算即可.【解答】解:∵a2+2a﹣12=(a+1)2﹣13,∴当时,原式=(﹣1+1)2﹣13=7﹣13,=﹣6.故选:A.8.二次函数y=x2﹣(m﹣1)x+4的图象与x轴有且只有一个交点,则m的值为()A.1或﹣3 B.5或﹣3 C.﹣5或3 D.以上都不对【分析】由二次函数y=x2﹣(m﹣1)x+4的图象与x轴有且只有一个交点,可得△=b2﹣4ac=[﹣(m﹣1)]2﹣4×1×4=0,继而求得答案.【解答】解:∵二次函数y=x2﹣(m﹣1)x+4的图象与x轴有且只有一个交点,∴△=b2﹣4ac=[﹣(m﹣1)]2﹣4×1×4=0,∴(m﹣1)2=16,解得:m﹣1=±4,∴m1=5,m2=﹣3.∴m的值为5或﹣3.故选:B.9.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成【分析】工作时间=工作总量÷工作效率.那么3000÷x表示实际的工作时间,那么3000÷(x﹣10)就表示原计划的工作时间,15就代表现在比原计划少的时间.【解答】解:设实际每天铺设管道x米,原计划每天铺设管道(x﹣10)米,方程,则表示实际用的时间﹣原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选:C.10.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动,动点Q以2厘米/秒的速度自B点出发沿BC方向运动至C点停止,同时P点也停止运动若点P,Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】由题意可得,AP=t,BP=4﹣t,BQ=2t,0≤t≤2,在△BPQ中,∠B=60°,BQ边上的高=BP×sin60°=(4﹣t),所以S=×2t×(4﹣t)=(﹣t2+4t).【解答】解:由题意可得,AP=t,BP=4﹣t,BQ=2t,∵BC=4,∴0≤t≤2,在△BPQ中,∠B=60°,∴BQ边上的高=BP×sin60°=(4﹣t),∴S=×2t×(4﹣t)=(﹣t2+4t),故选:D.二.填空题(共10小题)11.因式分解:(a﹣b)2﹣(b﹣a)=(a﹣b)(a﹣b+1).【分析】原式变形后,提取公因式即可得到结果.【解答】解:原式=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1),故答案为:(a﹣b)(a﹣b+1)12.比较大小:>4.【分析】应用放缩法,判断出与4的大小关系即可.【解答】解:∵>3+1=4,∴>4.故答案为:>.13.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是.【分析】先求出女生的人数,再用女生人数除以总人数即可得出答案.【解答】解:∵共有45位学生,其中男生有25人,∴女生有20人,∴选中女生的概率是=;故答案为:.14.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D的坐标为(5,3).【分析】直接利用平行四边形的性质得出D点坐标.【解答】解:连接AB、BC、CD、AD,如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴四边形ABCD是平行四边形,∴D点坐标为:(5,3).故答案为:(5,3).15.若a+b=6,ab=4,则a2+b2=28 .【分析】首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab 的值整体代入求值.【解答】解:∵a+b=6,ab=4,∴a2+b2=(a+b)2﹣2ab=62﹣2×4=36﹣8=28.故答案为:28.16.如图,一次函数y=﹣x﹣2与y=kx+b的图象交于点P(n,﹣4),则关于x的不等式kx+b<﹣x﹣2的解集为x<2 .【分析】先利用解析式y=﹣x﹣2确定P点坐标,然后结合函数图象写出一次函数y=﹣x﹣2的图象在一次函数y=kx+b的图象上方所对应的自变量的范围即可.【解答】解:把P(n,﹣4)代入y=﹣x﹣2得﹣n﹣2=﹣4,解得n=2,则P(2,﹣4),因为当x<2时,kx+b<﹣x﹣2,所以关于x的不等式kx+b<﹣x﹣2的解集为x<2.故答案为x<2.17.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为3m.已知,冬至时北京的正午日光入射角∠ABC约为30°,则立柱根部与圭表的冬至线的距离(即BC的长)为m.【分析】根据tan∠ABC=求解即可.【解答】解:由题意:tan∠ABC=,∴=,∴BC=3(cm),故答案为3.18.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:顶点与x轴的交点围成的三角形面积等于9,请你写出满足上述全部条件的一条抛物线的解析式:y=﹣(x﹣2)2+3或y=(x﹣2)2﹣3 .【分析】因为对称轴是直线x=2,与x轴的两个交点距离为6,所以与x轴的两个交点的坐标为(﹣1,0),(5,0);因为顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为±3,得顶点坐标为(2,3)或(2,﹣3);所以利用顶点式求得抛物线的解析式即可.【解答】解:根据题意得:抛物线与x轴的两个交点的坐标为(﹣1,0),(5,0),顶点坐标为(2,3)或(2,﹣3),设函数解析式为y=a(x﹣2)2+3或y=a(x﹣2)2﹣3;把点(5,0)代入y=a(x﹣2)2+3得a=﹣;把点(5,0)代入y=a(x﹣2)2﹣3得a=;∴满足上述全部条件的一条抛物线的解析式为y=﹣(x﹣2)2+3或y=(x﹣2)2﹣3.19.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为cm.【分析】连接OC,利用垂径定理解答即可.【解答】解:连接OC,∵直尺一边与量角器相切于点C,∴OC⊥AD,∵AD=10,∠DOB=60°,∴∠DAO=30°,∴OE=,OA=,∴CE=OC﹣OE=OA﹣OE=,故答案为:20.如图,点A在双曲线y=(k>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O 和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题.【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,在Rt△OFC中,CK=,∴OA=,由△FOC∽△OBA,可得,∴,∴OB=,AB=,∴A,∴k=.故答案为:三.解答题(共8小题)21.计算:【分析】根据零指数幂、二次根式的除法法则和负整数指数幂的意义计算.【解答】解:原式=1﹣+(﹣1)=1﹣2﹣1=﹣2.22.已知实数a满足a2+a=0,求的值.【分析】先化简分式,再解一元二次方程,把根代入化简后的分式求值即可.【解答】解:原式====.解方程a2+a=0,得a1=0,a2=﹣1;∵a+1≠0,即a≠﹣1.∴当a=0时,原式=2.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.【分析】(1)先由AF∥BC,利用平行线的性质可证∠AFE=∠DCE,而E是AD中点,那么AE=DE,∠AEF=∠DEC,利用AAS可证△AEF≌△DEC,那么有AF=DC,又AF=BD,从而有BD=CD;(2)四边形AFBD是矩形.由于AF平行等于BD,易得四边形AFBD是平行四边形,又AB =AC,BD=CD,利用等腰三角形三线合一定理,可知AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.24.如图,在平面直角坐标系中,一次函数y=k1x+8与x轴和y轴分别交于点A,点B,与反比例函数在第一象限的图象交于点C,点D,且点C的坐标为(1,6).(1)求一次函数和反比例函数解析式;(2)若△OCD的面积是8,求D点坐标.【分析】(1)把C点坐标代入代入y=k1x+8和中求出k1和k2得到一次函数和反比例函数解析式;(2)先利用一次函数解析式确定A点坐标,再计算S△OAC=12,则S△OAD=S△OAC﹣S△OCD=4,设D(t,﹣2t+8),根据三角形面积公式得到×4×(﹣2t+8)=4,然后求出t即可得到D点坐标.【解答】解:(1)把点C(1,6)代入y=k1x+8得k1=﹣2,∴一次函数解析式为y=﹣2x+8;把点C(1,6)代入得k2=6,∴反比例函数解析式为;(2)当y=0时,﹣2x+8=0,解得x=4,则A(4,0),∴S△OAC=×4×6=12,∴S△OAD=S△OAC﹣S△OCD=12﹣8=4,设D(t,﹣2t+8),∴×4×(﹣2t+8)=4,解得t=3,∴D(3,2).25.随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与,B.一定参与,C.可以参与,D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18 aB20 40%C m16%D 4 b合计n100%请你根据以上信息,解答下列问题:(1)a=36% ,m=8 ,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.【分析】(1)“一定参与”的有20人,占调查人数的40%,可求出调查人数,进而求出“A积极参与”所占的百分比,求出“C组可以参与”的人数;(2)求出“朗读”的人数,即可做出判断;(3)用列表法表示所有可能出现的情况,进而求出两个人都是女生的概率.【解答】解:(1)20÷40%=50人,a=18÷50=36%,m=50×16%=8,故答案为:36%,8,补全条形统计图如图所示;(2)b=4÷50=8%,1500×8%=120(人)∵120<150,∴这次活动能顺利开展.(3)用列表法表示所有可能出现的情况如下:共有12种等可能的结果,其中所选两人都是女生的结果数有2种∴P(两人都是女生)=26.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC 的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.【分析】(1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【解答】(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.27.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其大致图象如图所示.栽花所需费用y2(元)与x(m2)的函数关系式为.(1)求出k1,k2的值;(2)若种花面积不小于400(m2)时的绿化总费用为w(元),写出w与x的函数关系式,并求出绿化总费用w的最大值.【分析】(1)将x=600、y=18000代入y1=k1x可得k1;将x=600、y=18000和x=1000、y=26000代入y1=k2x+b可得k2、b.(2)根据种草部分的面积不少于600m2,栽花部分的面积不少于400m2求得x的范围,依据二次函数的性质可得.【解答】解:(1)由图象可知,点(600,18000)在y1=k1x上,代入得:18000=600k1,解得k1=30,由图象可知,点(600,18000)在y2=k2x+6000上,解得k2=20;(2)∵种花面积不小于400(m2),∴种草面积小于等于600(m2),由题意可得:w=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000=﹣0.01(x﹣500)2+32500,∴当x=500时,w有最大值为32500元,答:绿化总费用w的最大值为32500元.28.如图,抛物线与x轴交于点A,B,与y轴交于点C.(1)求点A,B,C的坐标;(2)将△ABC绕AB的中点M旋转180°,得到△BAD.①求点D的坐标;②判断△ADB的形状,并说明理由.(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请写出所有满足条件的P点的坐标;若不存在,请说明理由.【分析】(1)直接利用y=0,x=0分别得出A,B,C的坐标;(2)①利用旋转的性质结合三角形各边长得出D点坐标;②利用勾股定理的逆定理得出△ABD的形状;(3)直接利用相似三角形的判定与性质结合三角形各边长进而得出答案.【解答】解:(1)令y=0,则解得:x1=4,x2=﹣1∴A(﹣1,0),B(4,0)令x=0,则y=2,∴C(0,2);(2)①过D作DE⊥x轴于点E,∵△ABC绕点M旋转180°得到△BAD,∴AC=BD,∠CAO=∠DBE.在△AOC和△BED中,.∴△AOC≌△BED(AAS)∴OC=DE,OA=EB.∵A(﹣1,0),B(4,0),C(0,2)∴OC=DE=2,OA=BE=1,AB=5,OB=4.∴OE=4﹣1=3,∵点D在第四象限.∴D(3,﹣2);②△ABD是直角三角形;在Rt△AED中,AD2=AE2+DE2=(1+3)2+22=20.在Rt△BDE中,BD2=BE2+DE2=12+22=5,AB2=52.∴AD2+BD2=AB2.∴△ABD是直角三角形;(3)存在∵AD2=20,∴.∵BD2=5,∴.作出抛物线的对称轴.∵点P在对称轴上,∴设.当△BMP∽△ADB时,,∴,,∴∴,当△PMB∽△ADB时,,∴,|t|=5,∴t=±5,∴,∴,,,.。

2019西宁市中考数学模拟试卷(1)及答案解析

2019西宁市中考数学模拟试卷(1)及答案解析

2019中考数学模拟试卷一、选择题1. 下列说法中,正确的是( )A. 0是正整数B. 1是素数C. √22是分数 D. 227是有理数2. 关于x 的方程x 2−mx −2=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定3. 将直线y =2x 向下平移2个单位,平移后的新直线一定不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列说法正确的是( )A. 一组数据的中位数一定等于该组数据中的某个数据B. 一组数据的平均数和中位数一定不相等C. 一组数据的众数可以有几个D. 一组数据的方差一定大于这组数据的标准差5. 对角线互相平分且相等的四边形一定是( )A. 等腰梯形B. 矩形C. 菱形D. 正方形6. 已知圆O 1的半径长为6cm ,圆O 2的半径长为4cm ,圆心距O 1O 2=3cm ,那么圆O 1与圆O 2的位置关系是( )A. 外离B. 外切C. 相交D. 内切二、填空题 7. √4=______.8. 一种细菌的半径是0.00000419米,用科学记数法把它表示为______米. 9. 因式分解:x 2−4x =______. 10. 不等式组{3x +6>0x−1≤0的解集为______.11. 在一个不透明的布袋中装有2个白球、8个红球和5个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是______. 12. 方程√x +3=2的解是x =______.13. 近视眼镜的度数y(度)与镜片焦距x(米)呈反比例,其函数关系式为y =120x.如果近似眼镜镜片的焦距x =0.3米,那么近视眼镜的度数y 为______.14. 数据1、2、3、3、6的方差是______.15. 在△ABC 中,点D 是边BC 的中点,AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC⃗⃗⃗⃗⃗ =b ⃗ ,那么AD ⃗⃗⃗⃗⃗⃗ =______(用a ⃗ 、b ⃗ 表示).16. 如图,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,DF :DE =2:√5,EF ⊥BD ,那么tan∠ADB =______.17. 如图,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为______度.18. 如图,在△ABC 中,AB =AC =5,BC =6,点D 在边AB 上,且∠BDC =90∘.如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D 1,那么线段DD 1的长为______.三、解答题19. 先化简,再求值:2xx 2−4+x+1x+2−32−x ,其中x =2+√3.20. 解方程组:{4x 2−4xy +y 2=1x+2y=321.如图,在梯形ABCD中,AD//BC,∠BAD=90∘,AC=AD.(1)如果∠BAC−∠BCA=10∘,求∠D的度数;(2)若AC=10,cot∠D=1,求梯形ABCD的面积.322.有一座抛物线拱型桥,在正常水位时,水面BC的宽为10米,拱桥的最高点D到水面BC的距离DO为4米,点O是BC的中点,如图,以点O为原点,直线BC 为x,建立直角坐标xOy.(1)求该抛物线的表达式;(2)如果水面BC上升3米(即OA=3)至水面EF,点E在点F的左侧,求水面宽度EF的长.23.如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90∘,联结MN、AC,N与边AD交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC⋅AE.24.已知平面直角坐标系xOy(如图),直线y=x+m的经过点A(−4,0)和点B(n,3).(1)求m、n的值;(2)如果抛物线y=x2+bx+c经过点A、B,该抛物线的顶点为点P,求sin∠ABP的值;(3)设点Q在直线y=x+m上,且在第一象限内,直线y=x+m与y轴的交点为点D,如果∠AQO=∠DOB,求点Q的坐标.25.在圆O中,AO、BO是圆O的半径,点C在劣弧AB⌢上,OA=10,AC=12,AC//OB,联结AB.(1)如图1,求证:AB平分∠OAC;(2)点M在弦AC的延长线上,联结BM,如果△AMB是直角三角形,请你在如图2中画出点M的位置并求CM的长;(3)如图3,点D在弦AC上,与点A不重合,联结OD与弦AB交于点E,设点D与点C的距离为x,△OEB的面积为y,求y与x的函数关系式,并写出自变量x 的取值范围.答案和解析【答案】 1. D 2. A 3. B 4. C 5. B 6. C7. 28. 4.19×10−6 9. x(x −4) 10. −2<x ≤1 11. 13 12. 1 13. 400 14. 2.815. 12(a⃗ +b ⃗ ) 16. 2 17. 120 18. 422519. 解:原式=2x(x+2)(x−2)+(x+1)(x−2)(x+2)(x−2)+3(x+2)(x+2)(x−2)=2x +x 2−x −2+3x +6(x +2)(x −2) =x 2+4x +4(x +2)(x −2) =(x +2)2(x +2)(x −2)=x+2x−2,当x =2+√3时, 原式=√3+22+√3−2=4+√3√3=4√3+33. 20. 解:{4x 2−4xy +y 2=1 ②x+2y=3 ①由②得(2x −y)2=1,所以2x −y =1③,2x −y =−1④ 由①③、①④联立,得方程组: {2x −y =1x+2y=3,{2x −y =−1x+2y=3解方程组{2x −y =1x+2y=3得,{y =1x=1解方程组{2x −y =−1x+2y=3得,{x =15y =75.所以原方程组的解为:{y 1=1x 1=1,{x 2=15y 2=7521. 解:(1)在△ABC 中,∠B =90∘,则∠BAC +∠BCA =90∘, 又∠BAC −∠BCA =10∘, ∴∠BCA =40∘, ∵AD//BC ,∴∠CAD =∠BCA =40∘, 又∵AC =AD ,∴∠D =∠ACD =12×(180∘−40∘)=70∘;(2)作CH ⊥AD ,垂足为H ,在Rt △CDH 中,cot∠D =13,令DH =x ,CH =3x , 则在Rt △ACH 中,AC 2=AH 2+CH 2, 即102=(10−x)2+(3x)2, 解得:x =2则CH =3x =6,BC =AH =10−x =8,∴梯形ABCD 的面积=12(BC +AD)×CH =12×(10+8)×6=54,22. 解:(1)设抛物线解析式为:y =ax 2+c ,由题意可得图象经过(5,0),(0,4), 则{25a +4=0c=4, 解得:a =−425,故抛物线解析为:y =−425x 2+4;(2)由题意可得:y =3时,3=−425x 2+4 解得:x =±52, 故EF =5,答:水面宽度EF 的长为5m .23. 证明:(1)∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =90∘,又∠MAN =90∘, ∴∠BAM =∠DAN , 在△BAM 和△DAN 中, {∠B =∠ADN =90∘AB =AD ∠BAM =∠DAN , ∴△BAM≌△DAN ,∴AM =AN ;(2)四边形ABCD 是正方形, ∴∠CAD =45∘,∵∠CAD =2∠NAD ,∠BAM =∠DAN , ∴∠MAC =45∘,∴∠MAC =∠EAN ,又∠ACM =∠ANE =45∘, ∴△AMC∽△AEN , ∴AM AE=AC AN,∴AN ⋅AM =AC ⋅AE ,∴AM 2=AC ⋅AE .24. 解:(1)把A(−4,0)代入直线y =x +m 中得:−4+m =0, m =4,∴y =x +4,把B(n,3)代入y =x +4中得:n +4=3,n =−1,(2)把A(−4,0)和点B(−1,3)代入y =x 2+bx +c 中得:{1−b +c =316−4b+c=0,解得:{c =8b=6, ∴y =x 2+6x +8=(x +3)2−1, ∴P(−3,−1),易得直线PB 的解析式为:y =2x +5, 当y =0时,x =−52, ∴G(−52,0),过B 作BM ⊥x 轴于M ,过G 作GH ⊥AB 于H , 由勾股定理得:BG =√BQ 2+GQ 2=√32+(52−1)2=3√52, S △ABG =12AG ⋅BM =12AB ⋅GH ,12×(4−52)×3=12×3√2GH ,∴GH =3√24, Rt △GHB 中,sin∠ABP =GH BG=3√243√52=√1010; (3)设Q(x,x +4),∵∠BOD =∠AQO ,∠OBD =∠QBO , ∴△BDO∽△BOQ , ∴BDBO =BOBQ , ∴BO 2=BD ⋅BQ ,∴12+32=√12+12⋅√(x +1)2+(x +4−3)2, 10=√2⋅√2(x +1),x=4,∴Q(4,8).25. 解:(1)∵OA、OB是⊙O的半径,∴AO=BO,∴∠OAB=∠B,∵OB//AC,∴∠B=∠CAB,∴∠OAB=∠CAB,∴AB平分∠OAC;(2)由题意知,∠BAM不是直角,所以△AMB是直角三角形只有以下两种情况:∠AMB=90∘和∠ABM=90∘,①当∠AMB=90∘,点M的位置如图1,过点O作OH⊥AC,垂足为点H,∵OH经过圆心,AC=12,∴AH=HC=1AC=6,2在Rt△AHO中,∵OA=10,∴OH=√OA2−AH2=8,∵AC//OB,∠AMB=90∘,∴∠OBM=180∘−∠AMB=90∘,∴∠OHC=∠AMB=∠OBM=90∘,∴四边形OBMH是矩形,∴BM=OH=8、OB=HM=10,∴CM=HM−HC=4;②当∠ABM=90∘,点M的位置如图2,由①可知,AB=√AM2+BM2=8√5、cos∠CAB=AMAB =168√5=2√55,在Rt△ABM中,cos∠CAB=ABAM =2√55,∴AM=20,则CM=AM−AC=8,综上所述,CM的长为4或8;(3)如图3,过点O作OG⊥AB于点G,由(1)知sin∠OAG=sin∠CAB,由(2)可得sin∠CAB=√55,∵OA=10,∴OG=2√5,∵AC//OB,∴BEAE =OBAD,又AE=8√5−BE、AD=12−x、OB=10,∴BE8√5−BE =1012−x,∴BE=80√522−x,∴y=12×BE×OG=12×80√522−x×2√5=40022−x(0≤x<12).【解析】1. 解:A.0不是正整数,故本选项错误;B.1是正整数,故本选项错误;C.√22是无理数,故本选项错误;D.227是有理数,正确;故选:D.根据实数的分类,即可解答.本题考查了实数,解决本题的关键是掌握实数的分类.2. 解:△=(−m)2−4×1×(−2)=m2+8,∵m2≥0,∴m2+8>0,即△>0,∴方程有两个不相等的实数根.故选:A.先计算△=(−m)2−4×1×(−2)=m2+8,由于m2为非负数,则m2+8>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义即可判断方程根的情况.此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.3. 解:k>0,b=0函数图象过第一,三象限,将直线y=2x向下平移2个单位,所得直线的k=2>0,b<0,函数图象过第一,三、四象限;故选:B.上下平移时只需让b的值加减即可.本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后k不变这一性质.b值的变化为上加下减.4. 解:A、一组数据的中位数不一定等于该组数据中的某个数据,故本选项错误;B、一组数据的平均数和众数不一定相等,故本选项错误;C、一组数据的众数可以有几个,这种说法是正确的,故本选项正确.D、一组数据的方差不一定大于这组数据的标准差,故本选项错误;故选:C.根据中位数、众数、平均数和方差的概念对各选项进行判断,选出正确答案即可.本题考查了中位数、众数、平均数和方差等知识点,属于基础题,解答本题的关键是熟练掌握各知识点的概念.5. 解:对角线互相平分切相等的四边形一定是矩形,故选:B.根据矩形的判定解答即可.此题考查矩形的判定,关键是根据对角线互相平分切相等的四边形一定是矩形解答.6. 解:因为6−4=2,6+4=10,圆心距为3cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.求出两圆半径的和与差,再与圆心距比较大小,确定两圆位置关系.根据两圆的位置关系得到其数量关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R−r<d<R+r;内切,则d=R−r;内含,则d<R−r.考查了圆与圆的位置关系,本题利用了两圆相交,圆心距的长度在两圆的半径的差与和之间求解.7. 解:∵22=4,∴√4=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.8. 解:0.00000419=4.19×10−6,故答案为:4.19×10−6.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9. 解:x2−4x=x(x−4).故答案为:x(x−4).直接提取公因式x,进而分解因式得出即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10. 解:解不等式x−1≤0,得:x≤1,解不等式3x+6>0,得:x>−2,∴不等式组的解集为:−2<x≤1,故答案为:−2<x≤1.分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11. 解:∵布袋中共有15个球,其中黄球有5个,∴从中随机摸出一个球,摸到黄球的概率是515=13,故答案为:13.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12. 解:两边平方得,x+3=4,移项得:x=1.当x=1时,x+3>0.故本题答案为:x=1.把方程两边平方去根号后求解.在解无理方程是最常用的方法是两边平方法及换元法,本题用了平方法.13. 解:把x=0.3代入120x,y=400,故答案为:400.把x=0.3代入y=120x,即可算出y的值.此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.14. 解:这组数据的平均数是:(1+2+3+3+6)÷5=3,则方差S2=15[(1−3)2+(2−3)2+(3−3)2+(3−3)2+(6−3)2]=2.8;故答案为:2.8.根据平均数的计算公式先求出这组数据的平均数,再根据方差公式进行计算即可.本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15. 解:延长AD 到E ,使得DE =AD ,连接BE .∵AD =DE ,∠ADC =∠BDE ,CD =DB ,∴△ADC≌△EDB ,∴AC =BE ,∠C =∠EBD ,∴BE//AC ,∴BE⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ =b ⃗ , ∴AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ ,∴AD ⃗⃗⃗⃗⃗⃗ =12(a ⃗ +b ⃗ ), 故答案为AD ⃗⃗⃗⃗⃗⃗ =12(a ⃗ +b ⃗ ). 延长AD 到E ,使得DE =AD ,连接BE.首先证明AC =BE ,AC//BE ,利用三角形法则求出AE⃗⃗⃗⃗⃗ 即可解决问题; 本题考查平面向量、全等三角形的判定和性质、平行线的判定、三角形法则等知识,解题的关键是学会倍长中线,构造全等三角形解决问题,属于中考常考题型. 16. 解:∵EF ⊥BD ,∴∠DFE =90∘,设DF =2x ,DE =√5x ,由勾股定理得:EF =x ,∵四边形ABCD 是矩形,∴∠ADC =90∘,∴∠ADB +∠CDB =90∘,∠CDB +∠DEF =90∘,∴∠ADB =∠DEF ,∴tan∠ADB =tan∠DEF =DF EF =2xx =2,故答案为:2.根据矩形的性质求出∠ADC =90∘,根据垂直得出∠DFE =90∘,设DF =2x ,DE =√5x ,由勾股定理得出EF =x ,求出∠ADB =∠DEF ,解直角三角形求出即可.本题考查了解直角三角形、矩形的性质和勾股定理,能求出∠ADB =∠DEF 是解此题的关键.17. 解:∵弦AC 与半径OB 互相平分,∴OA =AB ,∵OA =OC ,∴△OAB 是等边三角形,∴∠AOB =60∘,∴∠AOC =120∘,故答案为120.首先根据垂径定理得到OA =AB ,结合等边三角形的性质即可求出∠AOC 的度数. 本题主要考查了垂径定理的知识,解题的关键是证明△OAB 是等边三角形,此题难度不大.18. 解:如图,作AE ⊥BC 于E .∵AB =AC =5,BC =6,∴BE=EC=12BC=3,∴AE=√AB2−BE2=4.∵S△ABC=12AB⋅CD=12BC⋅AE,∴CD=BC⋅AEAB =6×45=245,∴AD=√AC2−CD2=75.∵△ACD绕点A顺时针旋转,使点C与点B重合,点D旋转至点D1,∴AD=AD1,∠CAD=∠BAD1,∵AB=AC,∴△ABC∽△ADD1,∴BCDD1=ABAD,∴6DD1=575,∴DD1=4225.故答案为4225.作AE⊥BC于E.根据等腰三角形三线合一的性质得出BE=EC=12BC=3,利用勾股定理求出AE=4.根据三角形的面积得出CD=BC⋅AEAB =245,那么AD=√AC2−CD2=75.再根据旋转的性质可知AD=AD1,∠CAD=∠BAD1,那么△ABC∽△ADD1,利用相似三角形的性质可求出DD1.本题考查了旋转的性质、等腰三角形的性质、相似三角形的判定和性质,解题的关键是证明△ABC∽△ADD1.19. 先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20. 把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.21. (1)在△ABC中,∠B=90∘,∠BAC−∠BCA=10∘,可求∠BCA,由AD//BC得∠CAD=∠BCA,由AC=AD可求∠D;(2)作CH⊥AD,垂足为H,在Rt△CDH中,cot∠D=13,令DH=x,CH=3x,AC=10,AH=10−x,利用勾股定理求x,可得CH=3x=6,BC=AH=10−x=8,用梯形面积公式计算.本题考查了梯形中角的计算、面积的计算问题,体现了梯形问题转化为三角形问题解决的思想.22. (1)直接假设出二次函数解析式进而得出答案;(2)根据题意得出y=3进而求出x的值,即可得出答案.此题主要考查了二次函数的应用,正确得出函数解析式是解题关键.23. (1)根据正方形的性质、全等三角形的判定定理证明△BAM≌△DAN,根据全等三角形的性质证明;(2)证明△AMC∽△AEN,根据相似三角形的性质证明.本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.24. (1)分别将A、B两点的坐标代入直线y=x+m中可得:m、n的值;(2)先利用待定系数法求二次函数的解析式,并配方成顶点式,求点P的坐标,作辅助线构建直角△GHB,根据三角函数的定义可得结论;(3)设Q(x,x+4),证明△BDO∽△BOQ,列比例式BDBO =BOBQ,可得方程,解方程可得结论.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,勾股定理的应用,三角函数的应用,三角形相似的判定和性质,数形结合思想和方程思想的运用是解题的关键.25. (1)由AO=BO知∠OAB=∠B,根据OB//AC知∠B=∠CAB,据此可得∠OAB=∠CAB,即可得证;(2)①∠AMB=90∘时,作OH⊥AC可得AH=HC=12AC=6,由勾股定理求得OH= BM=8,根据矩形OBMH知HM=OB=10,由CM=HM−HC可得答案;②∠ABM=90∘时,由①可知AB=8√5、cos∠CAB=AMAB =2√55,在Rt△ABM中根据cos∠CAB=ABAM=2√55可得AM=20,继而得出答案;(3)作OG⊥AB,由(1)知sin∠OAG=sin∠CAB,从而sin∠CAB=√55,结合OA=10求得OG=2√5,根据AC//OB知BEAE =OBAD,即8√5−BE=1012−x,据此求得BE=80√522−x,利用y=12×BE×OG可得答案.本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、平行线的性质、矩形的判定与性质及解直角三角形的能力.。

青海省西宁市2019年中考数学试题

青海省西宁市2019年中考数学试题

青海省西宁市2019年中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)1.-2的相反数是【 】A .2B . 1 2C .- 1 2D .-2 2.,我国《高效节能房间空气调节器惠民工程推广实施细则》出台,根据奥维咨询(AVC )数据测算,节能补贴新政能直接带动空调终端销售1.030千亿元.那么1.030保留两个有效数字的近似数是【 】A .1B .10C .1.0D .1.033.函数y =x -2的自变量x 的取值范围在数轴上可表示为【 】4.下列分解因式正确的是【 】A .3x 2-6x =x(3x -6)B .-a 2+b 2=(b +a)(b -a)C .4x 2-y 2=(4x +y)(4x -y)D .4x 2-2xy +y 2=(2x -y)25.用长分别为5cm 、6cm 、7cm 的三条线段围成三角形的事件是【 】A .随机事件B .必然事件C .不可能事件D .以上都不是6.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是【 】A .两个外切的圆B .两个内切的圆C .两个相交的圆D .两个外离的圆7.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF .将△ABE 绕正方形的对角线的交点O 按顺时针方向旋转到△BCF ,则旋转角是【 】A .45ºB .120ºC .60ºD .90º8.折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴涵许多数学知识,我们还可以通过折纸验证数学猜想.把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论【 】A .角的平分线上的点到角的两边的距离相等B .在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半C .直角三角形斜边上的中线等于斜边的一半D .如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形9.如图,二次函数y =ax 2+bx +c 的图象过点(-1,1)、(2,-1).下列关于这个二次函数的叙述正确的是【 】A .当x =0时,y 的值大于1B .当x =3时,y 的值小于0C.当x=1时,y的值大于1 D.y的最大值小于010.如图,将矩形沿图中虚线(其中x>y)剪成四块图形,用这四块图形恰能拼一个正方形.若y=2,则x的值等于【】A.3 B.25-1 C.1+5 D.1+2二、填空题(本大题共10小题,每小题2分,满分20分)11.计算:a2b-2a2b=.12.分式方程 2x-3 =3x的解是.13.某饮料瓶上这样的字样:Eatable D ate 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为.14.请你写出一个图象过点(0,2),且y随x增大而减小的一次函数的解析式.15.一条弧所对的圆心角为135º,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 c m.16.如图,反比例函数y= kx的图象与经过原点的直线交于点A、B,已知点A的坐标为(-2,1),则点B的坐标是.17.如图是某风景区的一个圆拱形门,路面AB宽为2m,净高CD为5m,则圆拱形门所在圆的半径为 m.18.72人参加商店举办的单手抓糖活动的统计结果如下表所示,若抓到糖果数的中位数为a,众数为b,则a+b19.5张不透明的卡片,除正面有不同的图形外,其它均相同.把5张卡片洗匀后,正面向下放在桌上,从中随机抽取1张,与卡片上图形形状相对应的这种地板砖能进行平面镶嵌的概率是.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标.三、解答题(本大题共8小题,满分70分)21.(7分)计算:01)3(2127-+⎪⎭⎫ ⎝⎛--π.22.(7分)先化简 x -1 x ÷⎝ ⎛⎭⎪⎫x - 2x -1 x ,再从-1、0、2中选取一个合适的数作为x 的值代入求值.23.(8分)如图,在△ABC 中,∠ACB =90º,CD ⊥AB ,BC =1.(1)如果∠BCD =30º,求AC ;(2)如果tan ∠BCD = 1 3,求CD .24.(8分)如图,已知菱形ABCD ,AB =AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF .(1)证明:四边形AECF 是矩形;(2)若AB =8,求菱形的面积.25.(8分)西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类:A —特别好、B —好、C —一般、D —较差,并将调查结果绘制成两幅不完整的统计图.请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表或画树状图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(10分)如图1,AB是⊙O的直径,C为⊙O上一点,直线CD与⊙O相切于点C,AD⊥CD,垂足为D.(1)求证:△ACD∽△ABC;(2)如图2,将直线CD向下平移与⊙O相交于点C、G,但其它条件不变.若AG=4,BG=3,求tan∠CAD的值.27.(10分)召开的青海省居民阶梯电价听证会,征求了消费者、经营者和有关方面的意见,对青海省居民阶梯电价发、方案的必要性、可行性进行了论证.阶梯电价方案规定:若每月用电量为130度以下,收费标准为0.38元/度;若每月用电量为131度~230度,收费标准由两部分组成:①其中130度,按0.38元/度收费,②超出130度的部分按0.42元/度收费.现提供一居民某月电费发票的部分信息如下表所示:根据以上提供的信息解答下列问题:(1)如果月用电量用x(度)来表示,实付金额用y(元)来表示,请你写出这两种情况实付金额y 与月用电量x之间的函数关系式;(2)请你根据表中本月实付金额计算这个家庭本月的实际用电量;(3)若小芳和小华家一个月的实际用电量分别为80度和150度,则实付金额分别为多少元?28.(12分)如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,已知A(0,4)、C(5,0).作∠AOC 的平分线交AB 于点D ,连接CD ,过点D 作DE ⊥CD 交OA 于点E .(1)求点D 的坐标;(2)求证:△ADE ≌△BCD ;(3)抛物线y = 4 5x 2- 24 5x +4经过点A 、C ,连接AC .探索:若点P 是x 轴下方抛物线上一动点,过点P 作平行于y 轴的直线交AC 于点M .是否存在点P ,使线段MP 的长度有最大值?若存在,求出点P 的坐标;若不存在,请说明理由.。

2019年青海省西宁市城区中考数学试题及参考答案(word解析版)

2019年青海省西宁市城区中考数学试题及参考答案(word解析版)

2019年青海省西宁市中考数学试题及参考答案与解析(满分120分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,恰有一项是符合题目要求的)1.若等式﹣2□(﹣2)=4成立,则“□”内的运算符号是()A.+ B.﹣C.×D.÷2.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.3.下列各数是无理数的是()A.B.3.141 141 114 C.D.3.4.下列计算正确的是()A.(ab)2=ab2B.(a3)2=a6C.a6÷a2=a3D.a4•a3=a125.下列说法正确的是()A.过一点有且只有一条直线与已知直线垂直B.相等的圆心角所对的弧相等C.若a2=b2,则a=b D.一组数据3,2,5,3的中位数、众数都是3 6.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x﹣4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.B.C.D.17.如图,Rt△ABC中,∠ACB=90°,CD是AB边上的中线,BC=6,CD=5,则∠ACD的正切值是()A.B.C.D.8.边长为2的正三角形的外接圆的半径是()A.2B.2 C.D.9.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠使点A落在点G处,延长BG交CD于点F,连接EF,若CF=1,DF=2,则BC的长是()A.3B.C.5 D.210.如图1,甲、乙两人沿湟水河滨水绿道同向而行,甲步行的速度为100米/分,乙骑公共自行车的速度为v米/分,起初甲在乙前a米处,两人同时出发,当乙追上甲时,两人停止前行.设x分钟后甲、乙两人相距y米,y与x的函数关系如图2所示有以下结论:①图1中a表示为1000;②图1中EF表示为1000﹣200x;③乙的速度为200米/分;④若两人在相距a米处同时相向而行,分钟后相遇.其中正确的结论是()A.①②B.③④C.①②③D.①③④二、填空题(本大题共10小题,每小题2分,共20分。

青海省西宁市2019-2020学年中考数学模拟试题(4)含解析

青海省西宁市2019-2020学年中考数学模拟试题(4)含解析

青海省西宁市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个2.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )A.(5,5) B.(5,4) C.(6,4) D.(6,5)3.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球4.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A.B.C.D5.下列运算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.a6÷a2=a3D.(﹣2a3)2=4a66.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.7.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-8.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.19.下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.410.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=34,EF=,则AB的长为()A 533B.536C.1 D17211.若代数式11xx-x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠112.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A.甲B.乙C.丙D.丁二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.14.化简:4= .15.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.16.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为________.17.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.18.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组:,并把解集在数轴上表示出来.20.(6分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?21.(6分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a=20,b=10,求整个长方形运动场的面积.22.(8分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.求甲、乙两种品牌空调的进货价;该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.23.(8分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.24.(10分)关于x 的一元二次方程230x x k -+=有实数根.求k 的取值范围;如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.25.(10分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z (元/件)与年销售量x (万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W 万元.(毛利润=销售额﹣生产费用)(1)请直接写出y 与x 以及z 与x 之间的函数关系式;(写出自变量x 的取值范围)(2)求W 与x 之间的函数关系式;(写出自变量x 的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?26.(12分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为()76(120)2030mx m x x n x x -≤<⎧⎪⎨≤≤⎪⎩,为整数,为整数 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?27.(12分)如图,一次函数y=kx+b 与反比例函数y=的图象相较于A (2,3),B (﹣3,n )两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x 轴,垂足为C,求S△ABC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.2.B【解析】【分析】由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【详解】解:∵四边形ABCD 是矩形∴AB ∥CD ,AB=CD ,AD=BC ,AD ∥BC ,∵A (1,4)、B (1,1)、C (5,1),∴AB ∥CD ∥y 轴,AD ∥BC ∥x 轴∴点D 坐标为(5,4)故选B .【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.3.A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.4.D【解析】【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②, 解不等式①得,x >2.5,解不等式②的,x <5,所以,不等式组的解集是2.5<x <5,正确反映y 与x 之间函数关系的图象是D 选项图象.故选:D .5.D【解析】【分析】根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D.【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.6.B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=.故选B.7.B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、3yx=,每个象限内,y随着x的增大而减小,故此选项错误;D、3yx=-,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.8.B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB 于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F 分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.9.B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B.考点:简单几何体的三视图10.B【解析】【分析】由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE ,∴AB=DE=CD ,即D 为CE 中点,∵EF ⊥BC ,∴∠EFC=90°,∵AB ∥CD ,∴∠ECF=∠ABC ,∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF 34,∴,根据勾股定理得,3,∴AB=12CE=6, 故选B .【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE 是解决问题的关键. 11.D【解析】试题分析:∵代数式11x +- ∴10{0x x -≠≥,解得x≥0且x≠1.故选D .考点:二次根式,分式有意义的条件.12.D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.22.5【分析】连接半径OC,先根据点C为»BE的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=12×45°,可得结论.【详解】连接OC,∵OE⊥AB,∴∠EOB=90°,∵点C为»BE的中点,∴∠BOC=45°,∵OA=OC,∴∠A=∠ACO=12×45°=22.5°,故答案为:22.5°.【点睛】本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.14.2【解析】【分析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4=2.【点睛】本题考查求算术平方根,熟记定义是关键.15.17【解析】∵8是出现次数最多的,∴众数是8,∵这组数据从小到大的顺序排列,处于中间位置的两个数都是9,∴中位数是9,所以中位数与众数之和为8+9=17.故答案为17小时.16.-1或1【解析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】解:当y=1时,x2-2x-2=1,解得:x1=-1,x2=3,∵当a≤x≤a+2时,函数有最大值1,∴a=-1或a+2=3,即a=1.故答案为-1或1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.17.1【解析】试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=1.18.1002.【解析】解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=2AN=1002(米),故答案为1002.点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.20.(1)y1=273x-+;y2=13x2﹣4x+2;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=⎧⎨+=⎩,解得237kb⎧=-⎪⎨⎪=⎩.∴y1=﹣23x+1.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+2.(2)收益W=y1﹣y2,=﹣23x+1﹣(13x2﹣4x+2)=﹣13(x﹣5)2+73,∵a=﹣13<0,∴当x=5时,W最大值=73.故5月出售每千克收益最大,最大为73元.【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法21.(1)4a(2)8a(3)1500S=【解析】试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可.(1)矩形B 的长可表示为:a+b ,宽可表示为:a-b ,∴每个B 区矩形场地的周长为:2(a+b+a-b )=4a ;(2)整个矩形的长为a+a+b=2a+b ,宽为:a+a-b=2a-b ,∴整个矩形的周长为:2(2a+b+2a-b )=8a ;(3)矩形的面积为:S=(2a+b )(2a-b )=224a b - ,把20a =,10b =代入得,S=4×202-102=4×400-100=1500. 点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽. 22.(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】【分析】(1)设甲种品牌空调的进货价为x 元/台,则乙种品牌空调的进货价为1.2x 元/台,根据数量=总价÷单价可得出关于x 的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a 台,所获得的利润为y 元,则购进乙种品牌空调(10-a )台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再由总利润=单台利润×购进数量即可得出y 关于a 的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)由(1)设甲种品牌的进价为x 元,则乙种品牌空调的进价为(1+20%)x 元,由题意,得 ()720030002120%xx =++, 解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)×1500=1800(元). 答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a 台,则购进乙种品牌空调(10-a )台,由题意,得1500a+1800(10-a )≤16000,解得 203≤a , 设利润为w ,则w=(2500-1500)a+(3500-1800)(10-a )=-700a+17000,因为-700<0,则w 随a 的增大而减少,当a=7时,w 最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x 的分式方程;(2)根据总利润=单台利润×购进数量找出y 关于a 的函数关系式. 23.(1)连接A 、B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h ;(2)y=﹣80x+60(0≤x≤34);(3)机场大巴与货车相遇地到机场C 的路程为1007km . 【解析】【分析】 (1)根据AB AC BC =+可求出连接A 、B 两市公路的路程,再根据货车13h 行驶20km 可求出货车行驶60km 所需时间; (2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式;(3)利用待定系数法求出线段ED 对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C 的路程.【详解】解:(1)60+20=80(km),14802033÷⨯=(h) ∴连接A. B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h . (2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、3(,0)4代入y=kx+b , 得:6030,4b k b =⎧⎪⎨+=⎪⎩ 解得:8060k b =-⎧⎨=⎩, ∴机场大巴到机场C 的路程y(km)与出发时间x(h)之间的函数关系式为38060(0).4y x x =-+≤≤(3)设线段ED 对应的函数表达式为y=mx+n(m≠0) 将点14(,0)(,60)33、代入y=mx+n , 得:103460,3m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:6020m n =⎧⎨=-⎩, ∴线段ED 对应的函数表达式为146020().33y x x =-≤≤解方程组80606020,y xy x=-+⎧⎨=-⎩得471007xy⎧=⎪⎪⎨⎪=⎪⎩,∴机场大巴与货车相遇地到机场C的路程为1007km.【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.24.(1)94k≤;(2)m的值为32.【解析】【分析】(1)利用判别式的意义得到()2340k∆=--≥,然后解不等式即可;(2)利用(1)中的结论得到k的最大整数为2,解方程2320x x-+=解得121,2x x==,把1x=和2x=分别代入一元二次方程()2130m x x m-++-=求出对应的m,同时满足10m-≠.【详解】解:(1)根据题意得()2340k∆=--≥,解得94k≤;(2)k的最大整数为2,方程230x x k-+=变形为2320x x-+=,解得121,2x x==,∵一元二次方程()2130m x x m-++-=与方程230x x k-+=有一个相同的根,∴当1x=时,1130m m-++-=,解得32m=;当2x=时,()41230m m-++-=,解得1m=,而10m-≠,∴m的值为32.【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根. 25.(1)y=110x 1.z=﹣110x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】【分析】(1)利用待定系数法可求出y 与x 以及z 与x 之间的函数关系式;(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w 与x 的函数关系式,再利用配方法求出最值即可;(3)首先求出x 的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y =ax 1(a≠0),将点(100,1000)代入得:1000=10000a ,解得:a =110, 故y 与x 之间的关系式为y =110x 1. 图②可得:函数经过点(0,30)、(100,10),设z =kx +b ,则1002030k b b +=⎧⎨=⎩, 解得: 1k 10b 30⎧⎪⎨⎪⎩==,故z 与x 之间的关系式为z =﹣110x +30(0≤x≤100); (1)W =zx ﹣y =﹣110x 1+30x ﹣110x 1 =﹣x 1+30x =﹣15(x 1﹣150x ) =﹣15(x ﹣75)1+1115, ∵﹣15<0, ∴当x =75时,W 有最大值1115,∴年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y=360,得110x1=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=﹣15(x﹣75)1+1115的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.26.(1)m=﹣12,n=25;(2)18,W最大=968;(3)12天.【解析】【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值;(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得32=12m﹣76m,解得m=12 -,当第26天的售价为25元/千克时,代入y=n,则n=25,故答案为m=12-,n=25;(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,当1≤x<20时,W=(4x+16)(12-x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,∴当x=18时,W最大=968,当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,∵28>0,∴W随x的增大而增大,∴当x=30时,W最大=952,∵968>952,∴当x=18时,W最大=968;(3)当1≤x<20时,令﹣2x2+72x+320=870,解得x1=25,x2=11,∵抛物线W=﹣2x2+72x+320的开口向下,∴11≤x≤25时,W≥870,∴11≤x<20,∵x为正整数,∴有9天利润不低于870元,当20≤x≤30时,令28x+112≥870,解得x≥271 14,∴27114≤x≤30∵x为正整数,∴有3天利润不低于870元,∴综上所述,当天利润不低于870元的天数共有12天.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.27.(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】【分析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S△ABC=×2×1=1.。

2019年青海省西宁市中考数学试卷(解析版)

2019年青海省西宁市中考数学试卷(解析版)

2019年青海省西宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,恰有一项是最符合题目要求的.)1.(3分)(2019•西宁)﹣3的相反数是()A.﹣3 B.C.D.3﹣考点:相反数.分析:根据只有符号不同的两个数互为相反数解答.解答:解:﹣3的相反数是3.故选D.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2019•西宁)下列各式计算正确的是()A.3a+2a=5a2B.(2a)3=6a3C.(x﹣1)2=x2﹣1 D.2×=4考点:二次根式的乘除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则,积的乘方,二次根式的乘法与完全平方公式的知识求解即可求得答案.解答:解:A、3a+2a=5a,故A选项错误;B、(2a)3=8a3,故B选项错误;C、(x﹣1)2=x2﹣2x+1.故C选项错误;D、2×=4,故D选项正确.故选:D.点评:此题考查了合并同类项的法则,积的乘方,二次根式的乘法与完全平方公式的知识,解题要熟记法则,公式.3.(3分)(2019•西宁)下列线段能构成三角形的是()A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,6考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边,对各选项的数据进行判断即可.解答:解:A、2+2=4,不能构成三角形,故本选项错误;B、3、4、5,能构成三角形,故本选项正确;C、1+2=3,不能构成三角形,故本选项错误;D、2+3<6,不能构成三角形,故本选项错误.故选B.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.(3分)(2019•西宁)一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是()A.中位数是91 B.平均数是91 C.众数是91 D.极差是78考点:中位数;算术平均数;众数;极差.分析:根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.解答:解:A、将数据从小到大排列为:78,85,91,98,98,中位数是91,故本选项正确;B、平均数是(91+78+98+85+98)÷5=90,故本选项错误;,C、众数是98,故本选项错误;D、极差是98﹣78=20,故本选项错误;故选:A.点评:本题考查了极差、中位数、众数及平均数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,极差是用最大值减去最小值.5.(3分)(2019•西宁)如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛考点:专题:正方体相对两个面上的文字.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“鱼”.故选C.点评:本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.(3分)(2019•西宁)将两个全等的直角三角形纸片构成如图的四个图形,其中属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.点评:此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)(2019•西宁)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC 于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30°B.A D=BD C.B D=2CD D.C D=ED考点:含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.分析:根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.解答:解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故D.点评:本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.8.(3分)(2019•西宁)反比例函数y1=和正比例函数y2=mx的图象如图,根据图象可以得到满足y1<y2的x的取值范围是()A.x>1 B.﹣<x<1或x<﹣C.﹣1<x<0或x>1 D.x>2或x<11考点:反比例函数与一次函数的交点问题.专题:数形结合.分析:先根据正比例函数和反比例函数图象的性质得反比例函数y1=和正比例函数y2=mx 的另一个交点坐标为(﹣1,﹣2),然后观察函数图象得到当﹣1<x<0或x>1时,正比例函数图象都在反比例函数图象上方,即y1<y2.解答:解:∵反比例函数y1=和正比例函数y2=mx的交点关于原点中心对称,∴反比例函数y1=和正比例函数y2=mx的另一个交点坐标为(﹣1,﹣2),∴当﹣1<x<0或x>1时,y1<y2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.9.(3分)(2019•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.故选:D.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.10.(3分)(2019•西宁)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C1处;作∠BPC1的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为()A.B.C.D.考点:动点问题的函数图象.分析:根据翻折变换的性质可得∠CPD=∠C′PD,根据角平分线的定义可得∠BPE=∠C′PE,然后求出∠BPE+∠CPD=90°,再根据直角三角形两锐角互余求出∠CPD+∠PDC=90°,从而得到∠BPE=∠PDC,根据两组角对应相等的三角形相似求出△PCD和△EBP相似,根据相似三角形对应边成比例列式求出y与x的关系式,再根据二次函数的图象解答即可.解答:解:由翻折的性质得,∠CPD=∠C′PD,∵PE平分∠BPC1,∴∠BPE=∠C′PE,∴∠BPE+∠CPD=90°,∵∠C=90°,∴∠CPD+∠PDC=90°,∴∠BPE=∠PDC,又∵∠B=∠C=90°,∴△PCD∽△EBP,∴=,即=,∴y=x(5﹣x)=﹣(x﹣)2+,∴函数图象为C选项图象.故选C.点评:本题考查了动点问题的函数图象,主要利用了翻折变换的性质,相似三角形的判定与性质,表示出y与x的函数解析式是解题的关键,还需注意C、D两选项的区别.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)11.(2分)(2019•西宁)计算:a2•a3=a5.考点:同底数幂的乘法.分析:根据同底数的幂的乘法,底数不变,指数相加,计算即可.解答:解:a2•a3=a2+3=a5.故答案为:a5.点评:熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.(2分)(2019•西宁)2019年6月4日据经济日报报道:青海格尔木枸杞已进入国际市场,远销美国、欧盟、东南亚等国家和地区,出口创汇达4000000美元,将4000000美元用科学记数法表示为4×106美元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:4000000=4×106.故答案为:4×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2分)(2019•西宁)二次根式在实数范围内有意义,则x的取值范围为x≥﹣.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵二次根式在实数范围内有意义,∴2x+1≥0,解得x≥﹣.故答案为:x≥﹣.点评:本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.14.(2分)(2019•西宁)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70.考点:因式分解的应用.专题:压轴题.分析:应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.解答:解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.点评:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.15.(2分)(2019•西宁)如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为.考点:几何概率.分析:先求出黑色方砖在整个地板面积中所占面积的比值,根据此比值即可解答.解答:解:∵黑色方砖的面积为5,所有方砖的面积为20,∴键子恰落在黑色方砖上的概率为P(A)==.故答案为;.点评:此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是求出黑色方砖在整个地板面积中所占面积的比值,.16.(2分)(2019•西宁)若扇形的圆心角为60°,弧长为2π,则扇形的半径为6.考点:弧长的计算.专题:计算题.分析:利用扇形的弧长公式表示出扇形的弧长,将已知的圆心角及弧长代入,即可求出扇形的半径.解答:解:∵扇形的圆心角为60°,弧长为2π,∴l=,即2π=,则扇形的半径R=6.故答案为:6点评:此题考查了弧长的计算公式,扇形的弧长公式为l=(n为扇形的圆心角度数,R 为扇形的半径),熟练掌握弧长公式是解本题的关键.17.(2分)(2019•西宁)如图,已知直角梯形ABCD的一条对角线把梯形分为一个直角三角形和一个以BC为底的等腰三角形.若梯形上底为5,则连接△DBC两腰中点的线段的长为5.考点:直角梯形;等腰三角形的性质;三角形中位线定理.分析:利用直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质和三角形中位线性质进而得出四边形AEFD是平行四边形,进而求出EF的长.解答:解:连接△DBC两腰中点的线段EF,AE,由题意可得出:AD∥BC,∵EF是△DBC的中位线,∴EF BC∴AD∥BC,∵BD=CD,∴∠DBC=∠DCB,则∠DEF=∠DFE,∵AD∥EF,∴∠ADE=∠DEF,∵BE=DE,∠BAD=90°,∴AE=DE=BE,∴∠EAD=∠ADE,∴∠AED=∠FDE,∴AE∥DF,∴四边形AEFD是平行四边形,∴AD=EF=5.故答案为:5.点评:此题主要考查了直角梯形以及等腰三角形和三角形中位线定理等知识,得出四边形AEFD是平行四边形是解题关键.18.(2分)(2019•西宁)⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为4.考点:直线与圆的位置关系;根的判别式.分析:先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.解答:解:∵d、R是方程x2﹣4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16﹣4m=0,解得,m=4,故答案为:4.点评:本题考查的是切线的性质及一元二次方程根的判别式,熟知以上知识是解答此题的关键.19.(2分)(2019•西宁)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC 上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标(2,4)或(8,4).考点:矩形的性质;坐标与图形性质;等腰三角形的判定.分析:根据点A、C的坐标求出OA、OC,再根据线段中点的定义求出OD=5,过点P作PE⊥x 轴于E,根据已知点P(3,4)判断出OP=OD,再根据PD=OD利用勾股定理列式求出DE的长,然后分点E在点D的左边与右边两种情况求出OE,然后写出点P的坐标即可.解答:解:∵A(10,0),C(0,4),∴OA=10,OC=4,∵点D是OA的中点,∴OD=OA=×10=5,过点P作PE⊥x轴于E,则PE=OC=4,∵P(3,4),∴OP==5,∴此时,OP=OD,当PD=OD时,由勾股定理得,DE===3,若点E在点D的左边,OE=5﹣3=2,此时,点P的坐标为(2,4),若点E在点D的右边,则OE=5+3=8,此时,点P的组别为(8,4),综上所述,其余的点P的坐标为(2,4)或(8,4).故答案为:(2,4)或(8,4).点评:本题考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理,难点在于要分两种情况写出点P的坐标.20.(2分)(2019•西宁)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:首先连接BD交AC于O,由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.解答:解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.点评:此题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.三、解答题(本大题共8小题,第21、22题每小题7分,第23、24、25题每小题7分,第26、27题每小题7分,第28题12分,共70分,解答时写出文字说明、证明过程或演算步骤)21.(7分)(2019•西宁)计算:﹣12019+|﹣|﹣sin45°.考点:实数的运算;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣1+﹣=﹣1.点评:此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.22.(7分)(2019•西宁)(1)解关于m的分式方程=﹣1;(2)若(1)中分式方程的解m满足不等式mx+3>0,求出此不等式的解集.考点:解分式方程;解一元一次不等式.专题:计算题.分析:(1)方程去分母转化为整式方程,求出整式方程的解得到m的值,检验即可;(2)将m的值代入不等式,即可求出解集.解答:解:(1)去分母得:﹣m+3=5,解得:m=﹣2,经检验m=﹣2是分式方程的解;(2)将m=﹣2代入不等式得:﹣2x+3>0,解得:x<1.5.点评:此题考查了解分式方程,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.23.(8分)(2019•西宁)如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.(1)求反比例函数y=的解析式;(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.考点:平行四边形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.分析:(1)利用待定系数法把B(3,5)代入反比例函数解析式可得k的值,进而得到函数解析式;(2)根据A、D、B三点坐标可得AB=5,AB∥x轴,根据平行四边形的性质可得AB∥CD∥x轴,再由C点坐标可得▱ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),根据反比例函数图象上点的坐标特点可得点C落在反比例函数y=的图象上.解答:解:(1)∵点B(3,5)在反比例函数y=(x>0)图象上,∴k=15,∴反比例函数的解析式为y=;(2)平移后的点C能落在y=的图象上;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5),∴AB=5,AB∥x轴,∴DC∥x轴,∴点C的坐标为(5,1),∴▱ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),∴平移后的点C能落在y=的图象上.点评:此题主要考查了平行四边形的性质,以及待定系数法求反比例函数和反比例函数图象上点的坐标特点,根据题意得到AB=5,AB∥x轴是解决问题的关键.24.(8分)(2019•西宁)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).考点:全等三角形的应用;勾股定理的应用.分析:(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∴∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)由题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,根据勾股定理可得(4a)2+(3a)2=252,再解即可.解答:(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,在Rt△ACD中:AD2+CD2=AC2,∴(4a)2+(3a)2=252,∵a>0,解得a=5,答:砌墙砖块的厚度a为5cm.点评:此题主要考查了全等三角形的应用,以及勾股定理的应用,关键是正确找出证明三角形全等的条件.25.(8分)(2019•西宁)2019年西宁市教育局建立了“西宁招考信息网”,实现了“网上二填报三公开三查询”,标志着西宁中考迈出网络化管理第一步,在全市第二次模拟考试实战演练后,通过网上查询,某校数学教师对本班数学成绩(成绩取整数,满分为120分)作了统计分析,绘制成频数分布步和频数分布直方图,请你根据图表提供的信息,解答下列问题:频数分布表:分组频数频率60<x≤72 2 0.0472<≤84 8 0.1684<x≤96 20 a96<x≤108 16 0.32108<x≤120 b0.08合计50 1(1)频数分布表中a=0.4,b=4;(2)补全频数分布直方图;(3)为了激励学生,教师准备从超过108分的学生中选2人介绍学习经验,那么取得118分的小红和112分的小明同时被选上的概率是多少?请用列表法或画树形图加以说明,并列出所有可能的结果.考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法.专题:图表型.分析:(1)根据频率之和为1与频数之和等于50分别列式计算即可求出a、b;(2)根据b的值补全统计图即可;(3)设另外两个人分别是A、B,然后画出树状图,再根据概率公式进行计算即可得解.解答:解:(1)a=1﹣0.04﹣0.16﹣0.32﹣0.08=1﹣0.6=0.4,b=50﹣2﹣8﹣20﹣16=50﹣46=4;故答案为:0.4,4;(2)补全统计图如图所示;(3)设另外两个人分别是A、B,根据题意画出树状图如下:所有可能出现的结果是:(小明,小红),(小明、A),(小明,B),(小红,小明),(小红,A),(小红,B),(A,小明),(A,小红),(A,B),(B,小明),(B,小红),(B,A),由此可见,共有12种可能出现的结果,这些结果出现的可能性相等,其中抽到小明、小红两名学生的结果有2种,所以,P(恰好抽到小明,小红)==.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.(10分)(2019•西宁)如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.考点:切线的性质;等边三角形的判定与性质;菱形的判定与性质;解直角三角形.分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得==,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得=,则∠DCA=∠CAB可证明四边形AOCD 是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH 的长.解答:解:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴==,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵=,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.点评:本题考查了切线的性质、等边三角形的判定和性质、菱形的判定和性质以及解直角三角形,是中学阶段的重点内容.27.(10分)(2019•西宁)今年5月1日起实施《青海省保障性住房准入分配退出和运营管理实施细则》规定:公共租赁住房和廉租住房并轨运行(以下简称并轨房),计划10年内解决低收入人群住房问题.已知第x年(x为正整数)投入使用的并轨房面积为y百万平方米,且y与x的函数关系式为y=﹣x+5.由于物价上涨等因素的影响,每年单位面积租金也随之上调.假设每年的并轨房全部出租完,预计第x年投入使用的并轨房的单位面积租金z与时间x满足一次函数关系如下表:时间x(单位:年,x为正整数) 1 2 3 4 5 …单位面积租金z(单位:元/平方米)50 52 54 56 58(1)求出z与x的函数关系式;(2)设第x年政府投入使用的并轨房收取的租金为W百万元,请问政府在第几年投入使用的并轨房收取的租金最多,最多为多少百万元?考点:二次函数的应用.分析:(1)设z与x的一次函数关系为z=kx+b(k≠0),然后任取两组数据,利用待定系数法求一次函数解析式解答即可;(2)根据租金=单位面积租金×面积列式整理得到W与x的关系式,再整理成顶点式形式,然后根据二次函数的最值问题解答.解答:解:(1)设z与x的一次函数关系为z=kx+b(k≠0),∵x=1时,z=50,x=2时,z=52,∴,解得,∴z与x的函数关系式为z=2x+48;(2)由题意得,W=yz=(﹣x+5)(2x+48),=﹣x2+2x+240,=﹣(x2﹣6x+9)+3+240,=﹣(x﹣3)2+243,∵﹣<0,∴当x=3时,W有最大值为243,答:政府在第3年投入使用的并轨房收取的租金最多,最多为243百万元.点评:本题考查了二次函数的应用,(2)读懂题目信息,列出W关于x的函数关系式并整理成顶点式形式是解题的关键.28.(12分)(2019•西宁)如图,抛物线y=﹣x2+x﹣2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将△BDC绕点C逆时针旋转,使点D旋转到y轴上得到△FEC,连接BF.(1)求点B,C所在直线的函数解析式;(2)求△BCF的面积;(3)在线段BC上是否存在点P,使得以点P,A,B为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据坐标轴上点的坐标特征可得点B,C的坐标,再根据待定系数法可得点B,C所在直线的函数解析式;(2)根据勾股定理可得BC的长,根据旋转的性质和三角形面积公式即可求解;(3)存在.分两种情况讨论:①过A作AP1⊥x轴交线段BC于点P1,则△BAP1∽△BOC;②过A作AP2⊥BC,垂足点P2,过点P2作P2Q⊥x轴于点Q.则△BAP2∽△BCO;依此讨论即可求解.解答:解:(1)当y=0时,﹣x2+x﹣2=0,解得x1=2,x2=4,∴点A,B的坐标分别为(2,0),(4,0),当x=0时,y=﹣2,∴C点的坐标分别为(0,﹣2),设直线BC的解析式为y=kx+b(k≠0),则,解得.∴直线BC的解析式为y=x﹣3;(2)∵CD∥x轴,BD∥y轴,∴∠ECD=90°,∵点B,C的坐标分别为(4,0),(0,﹣2),∴BC===2,∵△FEC是由△BDC绕点C逆时针旋转得到,∴△BCF的面积=BC•FC=×2×2=10;(3)存在.分两种情况讨论:①过A作AP1⊥x轴交线段BC于点P1,则△BAP1∽△BOC,∵点A的坐标为(2,0),∴点P1的横坐标是2,∵点P1在点BC所在直线上,∴y=x﹣2=×2﹣2=﹣1,∴点P1的坐标为(2,﹣1);②过A作AP2⊥BC,垂足点P2,过点P2作P2Q⊥x轴于点Q.∴△BAP2∽△BCO,∴=,=∴=,解得AP2=,∵=,∴AP2•BP=CO•BP2,∴×4=2BP2,解得BP2=,∵AB•QP2=AP2•BP2,∴2QP2=×,解得QP2=,∴点P2的纵坐标是﹣,∵点P2在BC所在直线上,∴x=∴点P2的坐标为(,﹣),∴满足条件的P点坐标为(2,﹣1)或(,﹣).点评:考查了二次函数综合题,涉及的知识点为:坐标轴上点的坐标特征,待定系数法可求直线的函数解析式,勾股定理可,旋转的性质,三角形面积,分类思想,相似三角形的性质,综合性较强,有一定的难度.。

2019年青海省中考数学试卷-答案

2019年青海省中考数学试卷-答案

青海省2019年初中毕业升学考试数学答案解析一、填空题1.【答案】532【解析】|5|5-=;∵332728⎛⎫= ⎪⎝⎭,∴278的立方根是32。

【考点】绝对值、立方根。

2.【答案】2(3)m a - 6x =-【解析】22269(69)(3)ma ma m m a a m a -+=-+=-;分式方程323x x=-去分母,得3 2(3)x x =-,解得6x =-,经检验6x =-是原分式方程的解。

【考点】分解因式、解分式方程。

3.【答案】9610-⨯【解析】0.000000006米9610-=⨯米。

【考点】用科学记数法表示较小的数。

4.【答案】10%【解析】设平均每次下调的百分率为x ,依据题意,得260(1)48.6x -=,解得10.1x =,2 1.9x =(不合题意,舍去),故每次下调的百分率为10%。

【考点】列一元二次方程解决实际问题。

5.【答案】2y x= 【解析】由题意,知1||12k =,解得2k =±,Q 反比例函数图象在第一、三象限,∴0k >,2k =,∴反比例函数解析式为2y x=。

【考点】反比例函数比例系数的含x 义。

6.【答案】(3,2)--【解析】绕点O 旋转180°,则点C 与点A 关于原点成中心对称,∵点(3,2)A ,∴点C 的坐标为(3,2)--。

【考点】旋转的性质、中心对称图形。

7.【答案】4【解析】设CD x =米,:4AM =米,45MAD ∠=︒,4MD =米,(4)MC x =+米,又·:30MBC ∠=︒,4tan 48MC x MBC MB +∠==+,解得4x =,即CD 的长为4)米。

【考点】解直角三角形的应用。

8.【答案】14【解析】布袋中共有珠子34512++=(个),其中有3个红珠子第10次摸到红珠子的概率31124P ==才。

【考点】随机事件的概率。

9.【答案】50【解析】如图,由图知~ACD BCE △△,::AC BC AD BE =,即5:1:10AD =,∴50cm AD =,即至少要将杠杆的A 端向下压50cm 。

2019年青海省中考数学试卷(含解析版)

2019年青海省中考数学试卷(含解析版)

2019年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)﹣5的绝对值是;的立方根是.2.(4分)分解因式:ma2﹣6ma+9m=;分式方程=的解为.3.(2分)世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为米.4.(2分)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为.5.(2分)如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为.6.(2分)如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是.7.(2分)如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM =4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为米.(结果保留根号)8.(2分)一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是.9.(2分)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.10.(2分)根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y值等于.11.(2分)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.12.(4分)如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有个菱形……,第n个图中共有个菱形.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13.(3分)下面几何体中,俯视图为三角形的是()A.B.C.D.14.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30°角的三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°15.(3分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g 16.(3分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为()每周做家务的时间(h)01 1.52 2.53 3.54人数(人)2268121343 A.2.5和2.5B.2.25和3C.2.5和3D.10和1317.(3分)如图,小莉从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,……,照这样走下去,她第一次回到出发点A时,一共走的路程是()A.150米B.160米C.180米D.200米18.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=1.2,则DF的长为()A.3.6B.4.8C.5D.5.219.(3分)如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.B.C.2πD.2π20.(3分)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A.B.C.D.三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21.(5分)计算:(﹣1)0+(﹣)﹣1+|﹣1|﹣2cos45°22.(5分)化简求值:(+m﹣2)÷;其中m=+123.(8分)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?25.(8分)如图,在⊙O中,点C、D分别是半径OB、弦AB的中点,过点A作AE⊥CD 于点E.(1)求证:AE是⊙O的切线;(2)若AE=2,sin∠ADE=,求⊙O的半径.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型A B AB O人数105(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p =(周长的一半),则S=②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,△ABC的内切圆半径为r,三角形三边长为a,b,c,仍记p=,S为三角形面积,则S=pr.28.(12分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B (5,0)、C(0,4)三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足P A+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)2019年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)﹣5的绝对值是5;的立方根是.【分析】分别根据绝对值的定义、立方根的定义即可求解.【解答】解:﹣5的绝对值是5;的立方根是.故答案为:5,.【点评】此题主要考查了实数的定义及有关性质,要求学生熟悉立方根、绝对值的相关概念和性质.2.(4分)分解因式:ma2﹣6ma+9m=m(a﹣3)2;分式方程=的解为x=﹣6.【分析】原式提取公因式,再利用完全平方公式分解即可;分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原式=m(a2﹣6a+9)=m(a﹣3)2;去分母得:3x=2x﹣6,解得:x=﹣6,经检验x=﹣6是分式方程的解.故答案为:m(a﹣3)2;x=﹣6【点评】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.3.(2分)世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为6×10﹣9米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000006=6×10﹣9.故答案为:6×10﹣9【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2分)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为10%.【分析】设平均每次降价的百分比是x,则第一次降价后的价格为60×(1﹣x)元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x)元,从而列出方程,然后求解即可.【解答】解:设平均每次降价的百分比是x,根据题意得:60(1﹣x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去),答:平均每次降价的百分比是10%;故答案为:10%.【点评】本题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5.(2分)如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为y=.【分析】根据反比例函数系数k的几何意义可知,△P AO的面积=|k|,再根据图象所在象限求出k的值即可.【解答】解:依据比例系数k的几何意义可得,△P AO面积等于|k|,即|k|=1,k=±2,由于函数图象位于第一、三象限,则k=2,∴反比例函数的解析式为y=;故答案为:y=.【点评】本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.6.(2分)如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是(﹣3,﹣2).【分析】根据中心对称的性质解决问题即可.【解答】解:由题意A,C关于原点对称,∵A(3,2),∴C(﹣3,﹣2),故本答案为(﹣3,﹣2).【点评】本题考查中心对称,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(2分)如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM =4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为4﹣4米.(结果保留根号)【分析】在Rt△CMB中求出CM,在Rt△ADM中求出DM即可解决问题.【解答】解:在Rt△CMB中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,∴CM=MB•tan30°=12×=4,在Rt△ADM中,∵∠AMD=90°,∠MAD=45°,∴∠MAD=∠MDA=45°,∴MD=AM=4米,∴CD=CM﹣DM=(4﹣4)米,故答案为:4﹣4.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于基础题中考常考题型.8.(2分)一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是.【分析】每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,可以直接应用求概率的公式.【解答】解:因为每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,所以第10次摸出红珠子的概率是=.故答案是:.【点评】本题考查了概率的意义,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.9.(2分)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压50cm.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【解答】解:如图;AM、BN都与水平线垂直,即AM∥BN;易知:△ACM∽△BCN;∴=,∵杠杆的动力臂AC与阻力臂BC之比为5:1,∴=,即AM=5BN;∴当BN≥10cm时,AM≥50cm;故要使这块石头滚动,至少要将杠杆的端点A向下压50cm.故答案为:50.【点评】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.10.(2分)根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y值等于﹣2.【分析】由题意输入x=1然后平方得x2,然后再﹣小于0,乘以1+,可得y的值.【解答】解:当x=1时,x2﹣=1﹣<0,∴y=(1﹣)(1+)=1﹣3=﹣2,故答案为:﹣2.【点评】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型.11.(2分)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为1.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=S△ABC=S正方形ABCD=×2×2=1故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.12.(4分)如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有13个菱形……,第n 个图中共有3n﹣2个菱形.【分析】观察图形可知,每剪开一次多出3个菱形,然后写出前4个图形中菱形的个数,根据这一规律写出第n个图形中的菱形的个数的表达式;【解答】解:(1)第1个图形有菱形1个,第2个图形有菱形4=1+3个,第3个图形有菱形7=1+3×2个,第4个图形有菱形10=1+3×3个,…,第n个图形有菱形1+3(n﹣1)=(3n﹣2)个,当n=5时,3n﹣2=13,故答案为:13,(3n﹣2).【点评】此题考查图形的变化规律,通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13.(3分)下面几何体中,俯视图为三角形的是()A.B.C.D.【分析】利用从上面看到的图叫做俯视图判断即可.【解答】解:A、俯视图为矩形;B、俯视图为圆(带有圆心);C、俯视图为圆;D、俯视图为三角形;故选:D.【点评】此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.14.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30°角的三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.【点评】本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.15.(3分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g【分析】根据图可得:3块巧克力的重=2个果冻的重;1块巧克力的重+1个果冻的重=50克,由此可设出未知数,列出方程组.【解答】解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组.16.(3分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为()每周做家务的时间(h)01 1.52 2.53 3.54人数(人)2268121343 A.2.5和2.5B.2.25和3C.2.5和3D.10和13【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,第25个,第26个数都是2.5,故中位数是2.5;数据3小时出现了13次最多为众数.故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17.(3分)如图,小莉从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,……,照这样走下去,她第一次回到出发点A时,一共走的路程是()A.150米B.160米C.180米D.200米【分析】多边形的外角和为360°,每一个外角都为20°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为20°,∴多边形的边数为360°÷20°=18,∴小莉一共走了:18×10=180(米).故选:C.【点评】本题考查了多边形的外角与内角,利用多边形外角和除以一个外角得出多边形的边数是解题关键.18.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=1.2,则DF的长为()A.3.6B.4.8C.5D.5.2【分析】根据平行线分线段成比例定理即可解决问题.【解答】解:∵AD∥BE∥CF,∴=,即=,∴EF=3.6,∴DF=EF+DE=3.6+1.2=4.8,故选:B.【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(3分)如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.B.C.2πD.2π【分析】连接OC,根据等边三角形的性质得到∠BOC=80°,根据弧长公式计算即可.【解答】解:连接OC,∵OA=OC,∠CAO=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠BOC=∠AOB﹣∠AOC=140°﹣60°=80°,则的长==,故选:B.【点评】本题考查的是弧长的计算,等边三角形的判定和性质,掌握弧长公式:l=是解题的关键.20.(3分)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A.B.C.D.【分析】由于原来水位较低,乌鸦沉思一会后才想出办法,说明将在沉思的这段时间内水位没有变化,乌鸦衔来一个个小石子放入瓶中,水位将会上升,乌鸦喝水后的水位应不低于一开始的水位,由此即可作出判断.【解答】解:∵乌鸦在沉思的这段时间内水位没有变化,∴排除C,∵乌鸦衔来一个个小石子放入瓶中,水位将会上升,∴排除A,∵乌鸦喝水后的水位应不低于一开始的水位,∴排除B,∴D正确.故选:D.【点评】本题考查动点问题的函数图象问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21.(5分)计算:(﹣1)0+(﹣)﹣1+|﹣1|﹣2cos45°【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=1﹣3+﹣1﹣2×=1﹣3+﹣1﹣=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(5分)化简求值:(+m﹣2)÷;其中m=+1【分析】先化简分式,然后将m的值代入求值.【解答】解:原式=()÷=•=,当m=+1时,原式==.【点评】本题考查了分式的化简求值,熟练分解因式是解题的关键.23.(8分)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.【分析】(1)由“AAS”可证△AFE≌△DBE;(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,即可得四边形ADCF是菱形.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD在△AFE和△DBE中,,∴△AFE≌△DBE(AAS)(2)由(1)知,AF=BD,且BD=CD,∴AF=CD,且AF∥BC,∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴四边形ADCF是菱形.【点评】本题考查了菱形的判定,全等三角形的判定和性质,直角三角形的性质,证明AD=CD是本题的关系.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?【分析】(1)设安排x辆大型车,则安排(30﹣x)辆中型车,根据30辆车调拨不超过190吨蔬菜和162吨肉制品补充当地市场,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为整数即可得出各运输方案;(2)根据总运费=单辆车所需费用×租车辆车可分别求出三种租车方案所需费用,比较后即可得出结论.【解答】解:(1)设安排x辆大型车,则安排(30﹣x)辆中型车,依题意,得:,解得:18≤x≤20.∵x为整数,∴x=18,19,20.∴符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车.(2)方案1所需费用为:900×18+600×12=23400(元),方案2所需费用为:900×19+600×11=23700(元),方案3所需费用为:900×20+600×10=24000(元).∵23400<23700<24000,∴方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.25.(8分)如图,在⊙O中,点C、D分别是半径OB、弦AB的中点,过点A作AE⊥CD 于点E.(1)求证:AE是⊙O的切线;(2)若AE=2,sin∠ADE=,求⊙O的半径.【分析】(1)连接OA,如图,利用△AOB的中位线得到CD∥OA.则可判断AO⊥AE,即可证得结论;(2)连接OD,如图,利用垂径定理得到OD⊥AB,再在Rt△AED中利用正弦定义计算出AD=3,接着证明∠OAD=∠ADE.从而在Rt△OAD中有sin∠OAD=,设OD=2x,则OA=3x,利用勾股定理可计算出AD=x,从而得到x=3,然后解方程求出x即可得到⊙O的半径长.【解答】(1)证明:连接OA,如图,∵点C、D分别是半径OB、弦AB的中点,∵DC∥OA,即EC∥OA,∵AE⊥CD,∴AE⊥AO,∴AE是⊙O的切线;(2)解:连接OD,如图,∵AD=CD,∴OD⊥AB,∴∠ODA=90°,在Rt△AED中,sin∠ADE==,∴AD=3,∵CD∥OA,∴∠OAD=∠ADE.在Rt△OAD中,sin∠OAD=,设OD=2x,则OA=3x,∴AD==x,即x=3,解得x=,∴OA=3x=,即⊙O的半径长为.【点评】本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定和性质,勾股定理的应用以及解直角三角形,熟练掌握性质定理是解题的关键.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型A B AB O人数1210523(1)本次随机抽取献血者人数为50人,图中m=20;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数;(4)画出树状图,根据概率公式即可得到结果.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),血型A B AB O人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,1300×=312,估计这1300人中大约有312人是A型血;(4)画树状图如图所示,所以P(两个O型)==.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了统计图.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p。

青海省西宁市2019-2020学年第三次中考模拟考试数学试卷含解析

青海省西宁市2019-2020学年第三次中考模拟考试数学试卷含解析

青海省西宁市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数为无理数的是 ( )A .-5B .72C .0D .π2.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .14B .12C .34D .563.下列各数中,比﹣1大1的是( )A .0B .1C .2D .﹣34.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .45.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .96.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )A .12B .18C .38D .111222++ 7.将一次函数2y x =-的图象向下平移2个单位后,当0y >时,a 的取值范围是( ) A .1x >- B .1x > C .1x <- D .1x <8.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A .B .1C .D .9.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-= 10.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④ 11.将抛物线y=12x 2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( ) A .y=12(x ﹣8)2+5 B .y=12(x ﹣4)2+5 C .y=12(x ﹣8)2+3 D .y=12(x ﹣4)2+3 12.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若分式15x -有意义,则实数x 的取值范围是_______. 14.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm ,则截面圆的半径为 cm .15.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为________元。

2019年青海省西宁中考数学真题及答案

2019年青海省西宁中考数学真题及答案

2019年青海省西宁中考数学真题及答案一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2的相反数是()A.2B.C.D.12.下列计算正确的是()A.a•a2=a2B.(a2)2=a4C.3a+2a=5a2D.(a2b)3=a2•b33.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.4.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°5.已知y关于x成正比例,且当x=2时,y=﹣6,则当x=1时,y的值为()A.3 B.﹣3 C.12 D.﹣126.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°7.在同一平面直角坐标系中,直线y=2x+3与y=2x﹣5的位置关系是()A.平行B.相交C.重合D.垂直8.如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A.B.C.D.9.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,AC=4,则OD的长为()A.1 B.1.5 C.2 D.2.510.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(本大题共10小题,每小题2分,共20分)11.不等式﹣9+3x≤0的非负整数解的和为.12.如果3tanα=,则∠α=.13.代数式中x的取值范围是.14.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.15.一组数据2,7,x,y,4中,唯一众数是2,平均数是4,这组数据的方差是.16.如图,在平面直角坐标系中,直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D(0,4),则k的值为.17.已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、y轴的正半轴上滑动,点C在第四象限,连结OC,则线段OC长的最小值是.18.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△AOB的位似△CDE,则位似中心的坐标为.19.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为.20.如图,分别以正六边形ABCDEF的顶点A,D为圆心,以AB长为半径画弧BF,弧CE,若AB=1,则阴影部分的面积为.三、解答题(本大题共8小题,共70分)21.计算: +tan60°﹣(sin45°)﹣1﹣|1﹣|22.先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.23.如图,在□CBCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.24.如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A 的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?25.某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.26.如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=,求⊙O的直径AB和弦BC的长.27. 如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD。

2019年西宁市中考数学试题(含答案)

2019年西宁市中考数学试题(含答案)

2019年西宁市中考数学试题(含答案)一、选择题1.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m2.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 3.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+4.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数6.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .97.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°8.已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确命题的序号是( )①x=1是二次方程ax 2+bx +c=0的一个实数根; ②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧; ④不等式4a+2b+c>0一定成立. A .①②B .①③C .①④D .③④9.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .10011.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折12.下列各式化简后的结果为32 的是( ) A .6B .12C .18D .36二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.15.分解因式:x 3﹣4xy 2=_____.16.如图,点A 在双曲线y=4x上,点B 在双曲线y=kx (k≠0)上,AB ∥x 轴,过点A 作AD⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)18.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.19.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.20.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.23.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y =x﹣3的图象l交于点E(m ,﹣5).(1)m=__________;(2)直线l 与x 轴交于点B ,直线l 与y 轴交于点C ,求四边形OBEC 的面积; (3)如图2,已知矩形MNPQ ,PQ =2,NP =1,M (a ,1),矩形MNPQ 的边PQ 在x 轴上平移,若矩形MNPQ 与直线l 或l 有交点,直接写出a 的取值范围_____________________________ 25.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度. 【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==, 所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153m ==/ 故选:C . 【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.2.A【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .3.D解析:D 【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.4.C解析:C 【解析】试题分析:由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x 轴交点负半轴明显大于﹣1,∴y=a ﹣b+c <0,故本选项正确; ③由抛物线的开口向下知a <0, ∵对称轴为1>x=﹣>0,∴2a+b <0, 故本选项正确; ④对称轴为x=﹣>0, ∴a 、b 异号,即b >0, ∴abc <0, 故本选项错误;∴正确结论的序号为②③. 故选B .点评:二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0; (2)b 由对称轴和a 的符号确定:由对称轴公式x=﹣b2a 判断符号; (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0; (4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值.5.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 6.A解析:A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.7.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.8.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax2+bx+c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2ba,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确. 故选:C.9.C解析:C 【解析】 【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积. 【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2). 故选C . 【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.10.B解析:B 【解析】 【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可. 【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得 11.B解析:B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.12.C解析:C 【解析】A 不能化简;BC ,故正确;D ,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比解析:【解析】 【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果. 【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=.故答案为8. 【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.【解析】【分析】延长AD 和BC 交于点E 在直角△ABE 中利用三角函数求得BE 的长则EC 的长即可求得然后在直角△CDE 中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E∵∠B=90°∴∴BE=∴ 解析:65【解析】 【分析】延长AD 和BC 交于点E ,在直角△ABE 中利用三角函数求得BE 的长,则EC 的长即可求得,然后在直角△CDE 中利用三角函数的定义求解. 【详解】如图,延长AD 、BC 相交于点E ,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.15.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB ∽△DCO , ∴AB AC 2DA CD 1==, ∵OD=a ,则AB=2a ,∴点B 的横坐标是3a ,∴3a=ak 4, 解得:k=12.故答案为12. 17.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.18.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x >﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.19.cm 【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换20.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C类所对应扇形的圆心角的度数为360°×60400=54°;(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)23.(1)(-8,0)(2)k=-19225 (3)(﹣1,3)或(0,2)或(0,6)或(2,6) 【解析】【分析】(1)解方程求出OB 的长,解直角三角形求出OA 即可解决问题;(2)求出直线DE 、AB 的解析式,构建方程组求出点C 坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB 的长是方程x 2﹣2x ﹣8=0的解,∴OB=4,在Rt △AOB 中,tan ∠BAO=12OB OA =,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.25.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可.试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.。

青海省2019届数学中考模拟试卷及参考答案

青海省2019届数学中考模拟试卷及参考答案

(1) AB=m; (2) 求旗杆MN的高度.(结果保留两位小数) (参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
24. 如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连接CD,DE.
(1) 求证:DE是⊙O的切线; (2) 若BD=4,CD=3,求AC的长. 25. 为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小 组.学生报名情况如图(每人只能选择一个小组):
二、填空题
8. -2的倒数是________,4的算术平方根是________. 9. 分解因式:3ma-6mb=________;计算:(-20)+16=________. 10. 已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为________.
11. 函数y=
中自变量x的取值范围是_______.
15. 如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.
16. 如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴影部分的面 积为________.
17. 如图,扇形OAB是圆锥的侧面展开图,若小正方形的边长均为1cm,则这个圆锥的底面圆的半径为________cm。
青海省2019届数学中考模拟试卷
一、单选题
1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A.
B.
C.
D.
2. 反比例函数y= 的图象经过点P(a,b),其中a,b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西宁城区2019年高中招生考试数 学 试 卷考生注意:1.本试卷满分120分,考试时间120分钟。

2.本试卷为试题卷,不允许作为答题卷使用,答题部分请在答题卡上作答,否则 无效。

3.答题前,考生务必将自己的姓名、准考证号、考点、考场、座位号写在答题卡上,同时填写在试卷上。

4.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑(如需改动,用橡皮擦 干净后,再选涂其他答案标号)。

非选择题用0.5毫米的黑色签字笔答在答题 卡相应位置,字体工整,笔迹清楚。

作图必须用2B 铅笔作答,并请加黑加粗, 描写清楚。

第Ⅰ卷 (选择题 共30分)一、选择题(本大题共10题,每题3分,共30分.在每题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1. 31-的相反数是 A .31B .3-C .3D .31-2.下列计算正确的是A .a a a 632=⋅B .()623a a =-C .a a a 326=÷D .()3362a a -=-3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是A .cm 3,cm 4,cm 8B .cm 8,cm 7,cm 15C .cm 5,cm 5,cm 11D .cm 13,cm 12,cm 204.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A B C D 5.下列几何体中,主视图和俯视图都为矩形的是ABCD6.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健 步走的步数(单位:万步),将记录结果绘制成了如图1所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是 A .2.1,3.1B .4.1,3.1C .4.1,35.1D .3.1,3.17.将一张长方形纸片折叠成如图2所示的形状,则=∠ABC A .︒73B .︒56C .68︒D .︒146图1图2 图39.如图3,在ABC ∆中,︒=∠90B ,43tan =∠C ,cm AB 6=,动点P 从点A 开始沿边AB 向点B 以s cm 1的速度移动,动点Q 从点B 开始沿边BC 向点C 以s cm 2的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,PBQ ∆的最大面积是 A .218cmB .212cmC .29cmD .23cm9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有A .103块B .104块C .105块D .106块 10.如图4,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ∆,使︒=∠90BAC ,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是图4 A B C D第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共10题,每题2分,共20分.不需写出解答过程,请把最后结果填在答题卡对应的位置上) 11.因式分解:a a 242+ = .12.青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近1.86万人.将1.86万用科学记数法表示为 . 13.若式子1+x 有意义,则x 的取值范围是 .14.若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是 .15.已知052=-+x x ,则代数式()()()()22312-++---x x x x x 的值为 .16.如图5,在菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若2=EF ,则菱形ABCD的周长是 .图5图617.如图6,OP 平分AOB ∠,︒=∠15AOP ,PC ∥OA ,OA PD ⊥于点D ,4=PC则=PD .19.⊙O 的半径为1,弦2=AB ,弦3=AC ,则BAC ∠度数为 .19.如图7,为保护门源百里油菜花海,由“芬芳浴”游客中心A 处修建通往百米..观景长廊BC 的两条栈道AB ,AC .若︒=∠56B ,︒=∠45C ,则游客中心A 到观景长廊BC 的距离AD 的长约为 米.(sin560.8︒≈,tan56 1.5︒≈)图7图920.如图9,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且︒=∠45EDF .将DAE ∆绕点D 逆时针旋转︒90,得到DCM ∆.若1=AE ,则FM的长为 .三、解答题(本大题共9题,第21、22题每题7分,第23、24、25题每题9分,第26、27题每题10分,第29题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上) 21.(本题共7分)计算:012016)21(3127-+-+-.22.(本题共7分)化简:1221421222+-+÷-+-+x x x x x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.23.(本题共9分)如图9,一次函数m x y +=的图像与反比例函数xky =的图象交于A ,B 两点, 且与x 轴交于点C ,点A 的坐标为(2,1). (1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<m x +≤xk的解集.图924.(本题共9分)如图10,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:CF AB =;(2)连接DE ,若AB AD 2=,求证:AF DE ⊥.图1025.(本题共9分)随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)2015年国庆期间,西宁周边景区共接待游客 万人,扇形统计图中“青海湖”所对应的圆心角的度数是 ,并补全条形统计图;(2)预计2019年国庆节将有90万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个 景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果. 26.(本题共10分)如图11,D 为⊙O 上一点,点C 在直径BA 的延长线上,且CBD CDA ∠=∠. (1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,6=BC ,32=BD AD .求BE 的长.图11 27.(本题共10分)青海新闻网讯:2019年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资5.340万元,新建120个公共自行车站点、配置2205辆公共自行车. (1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2019年到2019年市政府配置公共自行车数量的年平均增长率.29.(本题共12分)如图12,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,MBC ∆是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分 . (1)求过A ,B ,E 三点的抛物线的解析式; (2)求证:四边形AMCD 是菱形;(3)请问在抛物线上是否存在一点P ,使得ABP ∆的面积等于定值5?若存在,请求出所有的点P 的坐标;若不存在,请说明理由.图12西宁城区2019年高中招生考试数学试题参考答案一、选择题(本大题共10题,每题3分,共30分)1.A 2.B 3.D 4.D 5.B 6.B 7.A 9.C 9.C 10.A 二、填空题(本大题共10题,每题2分,共20分)11.()122+a a 12.51061.8⨯13.x ≥1- 14.615.2 16.1617.2 19.︒15或︒75 19.60 20.25三、解答题(本大题共9题,第21、22题每题7分,第23、24、25题每题9分,第26、27每题10分,第29题12分,共70分)21.解:原式=121333-+-+ =3422.解:原式=()()()()211122122+-⋅-++-+x x x x x x x =12212+--+x x x x =1222++-x x x=12+x∵不等式x ≤2的非负整数解是0,1,2答案不惟一,如: 把0=x 代入212=+x23.解:(1)由题意可得:点A (2,1)在函数m x y +=的图象上∴12=+m 即1-=m ∵A (2,1)在反比例函数xky =的图象上 ∴12=k∴2=k(2)∵一次函数解析式为1y x =-,令0y =,得1x = ∴点C 的坐标是(1,0)由图象可知不等式组0<m x +≤xk的解集为1<x ≤224.证明:(1)∵四边形ABCD 是平行四边形 ∴AB ∥DF (平行四边形两组对边分别平行) ∴F BAE ∠=∠(两直线平行,内错角相等) ∵E 是BC 中点 ∴CE BE = 在AEB ∆和FEC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠EC BE FEC AEB FBAE ∴AEB ∆≌FEC ∆(AAS )∴CF AB =(全等三角形对应边相等) (2)∵四边形ABCD 是平行四边形 ∴AB CD =(平行四边形的对边相等)∵CF AB =,DF DC CF =+ ∴2DF CF = ∴AB DF 2=∵AB AD 2= ∴DF AD = ∵AEB ∆≌FEC ∆∴EF AE =(全等三角形对应边相等)∴AF ED ⊥ (等腰三角形三线合一) 25.解:(1)50,︒108,图形补全正确(2)6809.650⨯=(万人) 估计将有9.6万人会选择去贵德旅游.(3)设A ,B ,C 分别表示青海湖、塔尔寺、原子城.树状图如下:由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种. ∴P (同时选择去同一个景点)31=26.(1)证明:连结OD ∵OD OB =∴BDO OBD ∠=∠ ∵CBD CDA ∠=∠ ∴ODB CDA ∠=∠又∵AB 是O ⊙的直径∴90ADB ∠=︒(直径所对的圆周角是直角)∴︒=∠+∠90ODB ADO ∴︒=∠+∠90CDA ADO即︒=∠90CDO ∴CD OD ⊥ ∵OD 是O ⊙半径∴CD 是O ⊙的切线(经过半径外端并且垂直于这条半径的直线是圆的切线) (2)解:∵C C ∠=∠,CBD CDA ∠=∠∴CDA ∆∽CBD ∆∴BD ADBC CD =∵32=BD AD 6=BC ∴4=CD∵CE ,BE 是O ⊙的切线 ∴DE BE = BC BE ⊥∴222EC BC BE =+ 即()22264BE BE +=+解得25=BE27.解:(1)设每个站点造价x 万元,自行车单价为y 万元.根据题意可得⎩⎨⎧=+=+5.340220512011272040y x y x解得:⎩⎨⎧==1.01y x答:每个站点造价为1万元,自行车单价为1.0万元.(2)设2019年到2019年市政府配置公共自行车数量的年平均增长率为a .根据题意可得:()220517202=+a解此方程:()14444112=+a 12211±=+a 即:%75431==a ,12332-=a (不符合题意,舍去)EODA答:2019年到2019年市政府配置公共自行车数量的年平均增长率为%75. 29.解:(1)由题意可知MBC ∆为等边三角形 点A ,B ,C ,E 均在⊙M 上∴2====ME MC MB MA又∵MB CO ⊥ ∴1==BO MO ∴A (3-,0),B (1,0),E (1-,2-) 抛物线顶点E 的坐标为(1-,2-) 设函数解析式为()212-+=x a y (0≠a )把点B (1,0)代入()212-+=x a y解得:21=a ∴二次函数解析式为 ()21212-+=x y (2)连接DM ,∵MBC ∆为等边三角形 ∴︒=∠60CMB ∴︒=∠120AMC∵点D 平分弧AC ∴︒=∠=∠=∠6021AMC CMD AMD ∵MA MC MD ==∴MCD ∆,MDA ∆是等边三角形 ∴AD MA CM DC ===∴四边形AMCD 为菱形(四条边都相等的四边形是菱形)(3)存在. 理由如下:设点P 的坐标为(m ,n ) ∵12ABP S AB n ∆=g ,4=AB ∴5421=⨯⨯n 即52=n 解得25±=n当25=n 时,()2521212=-+m解此方程得:21=m ,42-=m即点P 的坐标为(2,25),(4-,25) 当25-=n 时,()2521212-=-+m此方程无解∴所求点P 坐标为(2,25),(4-,25)(注:每题只给出一种解法,如有不同解法请参照评分标准给分)。

相关文档
最新文档