基本原理动态剪切仪
流变学名词解释和填空题更正版
1、简单剪切流动在两个无限大的平行板之间充满液体,其中一板固定,另一板平行移动,流体在此移动板曳引作用下所形成的流动称为简单剪切流动2、粘度对牛顿流体,可以定义粘度即剪切应力与剪切速率之比对非牛顿流体,与牛顿流体类比,可以定义η=δ/γ为表观剪切粘度;同时定义η为微分剪切粘度或称真实剪切粘度。
3、松弛松弛指在一定的温度和较小的恒定应变下,材料的应力随时间增加而减小的现象。
4、蠕变指在一定的温度和较小的恒定外力(拉力、压力或扭力)等作用下,材料的形变随时间增加而增大的现象。
5、剪切速率对简单剪切流动,剪切速率γ ,即剪切应变与剪切时间之比;对非简单流动,剪切速率1.流变学:是研究材料流动及变形规律的科学。
2、熔融指数:在一定的温度和负荷下,聚合物熔体每lOmin通过规定的标准口模的质量,单位g/10min。
3、表观剪切黏度:聚合物流变曲线上某一点的剪切应力与剪切速率之比4、牛顿流体:指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。
5、可回复形变:粘弹性流体在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复,发现只有一部分形变得到恢复,另一部分则作为永久变形保留下来,其中可恢复形变量Sr表征流体在形变过程中储存弹性能的大小。
6、粘流活化能:是描述物料粘-温依赖性的物理量,是流动过程中,流动单元用于克服位垒(分子间作用力)以便更换位置所需要的能量,由原位置跃迁到附近“空穴”所需的最小能量或者每摩尔运动单元所需要的能量。
它表征粘度对温度的依赖性,E越大, 粘度对温度的依赖性越强,温度升高,其粘度下降得越多7、线性弹性体的剪切模量为剪切应力和剪切应变之比8、线性粘弹性体的剪切松弛模量G(t) = ^U,其中,S(A,t)为随时间变化的剪切应力函数,ε为剪切应变9、临界分子量在进行聚合物熔体粘度的测定时,lgn与lgZw有线性关系,Zw是分子量大小的量度,即主链上原子数的平均值,在某一分子量值前后直线斜率发生突变,这一分子量称临界分子量Mc.10、触变性流体凡流体在恒温和恒定的切变速率下,粘度随时间递减的流体为触变体。
《剪切波测试规范》课件
试件制备
正确选择、切取试件,并做好表面处理。
测试方案销售
通过设备前端面板输入测试参数和设备 信息,启动测试程序。
实验室设备与仪器
信号发生器
用于产生剪切波信号。
接收器
接收剪切波信号,并将其转换成电信号。
振动台
产生对试样施加的相应剪切应力。
滤波器
根据需要了滤波处理收到的信号。
样本准备与测试方法
试样制备
规定严格的实验操作过程,确保测试结果真实可靠。
剪切波测试的原理
波动方程
剪切波为弹性波,传播时满足波 动方程。
牛顿定律
剪切波是由剪切应力引起的,满 足牛顿第二定律。
动态应力
剪切波通过传递动态应力来进行 直接检测。
剪切波测试的步骤
1
设备安装
Байду номын сангаас
2
先进行传感器配置,再用设备将试件夹
紧。
3
数据处理
4
获得准确的测试结果,并进行数据处理 以得到必要的信息。
在测试前应校正仪器,调 整设备,以及进行试验数 据有效性的测算和分析。
总结与展望
总结
规范的剪切波测试保障了测试的精确性、可靠性和 可比性,是材料检验的重要手段和技术。
展望
随着现代科技的不断发展,剪切波测试中新的设备、 仪器和方法将不断诞生,并将应用到更广泛的领域 和行业中。
剪切波测试规范
欢迎来到本次剪切波测试规范课件。通过本次课件,您将学习到剪切波测试 的原理、步骤、实验室设备与仪器、样本准备与测试方法、常见的测试问题 与解决方法,以及总结与展望。
规范的意义
提高测试准确性
规范操作流程,减小测试误差。
确保数据可比性
SHRP实验原理与弯曲流变仪DSR使用方法(ppt 59页)
4.2 测试程序目的及释义
• SHRP标准测试程序意义: • 1. Original Binder(原样沥青单点测试实验)
用于检测64℃下,原样沥青的车辙因子是否符合标准(G*/sin δ>1kPa即符合64℃标准)。 • 2. Original Binder Grade(原样沥青等级区分实验)
剪切应力(施加外力) 剪切粘度 =
剪切速率(运动速度)
Pa.s
单位(Unit)
Pascal second Pa.s (SI)
Poise
P (CGS)
1 Pa.s = 10 P, 1 mPa.s = 1 cP
2.1 DSR测试区域
胶料样品
测试胶料的物理特性,包括: 硬度, 弹性和粘性
5.CVOR-ADS硬件及软件操作步骤
操作步骤概要
• 5.1 开机步骤 • 5.2 测试程序及夹具选择 • 5.3 实验步骤 • 5.4 数据分析及保存 • 5.5 实验结束 • 5.6 实验注意事项
5.1 开机步骤
• 1.打开空压机电源,空压机开始工作,待空压机上压力表气压至少超过5bar后,接通压 缩空气过滤器处空气阀门(将过滤器开关下扳即可)
• 5.点击软件上“start”按钮,夹具下压至某一间距处,刮样工具沿上下夹具外沿将 多余样品刮去,刮样要尽量贴紧上下夹具,且不要带出样品。将水位限制罩插在 下方ADS内插孔内,并继续调节进水阀,直至水将样品完全浸泡且不溢出ADS进 样结束后,拔开插销,点击软件上确认按钮,仪器将继续下压50微米后开始测试;
上板振荡 下板固定
上板 (振荡)
锡膏黏度测试仪原理
锡膏黏度测试仪原理
锡膏黏度测试仪是用于测量锡膏(焊膏)黏度的设备,黏度是指液体流动的阻力,通常以粘度单位(如Pa·s或cP)来表示。
锡膏的黏度对于印刷、焊接等工艺有重要影响,因此需要通过专门的测试仪器来进行测量。
以下是锡膏黏度测试仪的原理:
1.旋转圆锥法:
锡膏黏度测试仪一般采用旋转圆锥法。
测试时,将含有锡膏的样品放置在测量容器中,然后在锡膏表面放置一个旋转的锥形探头。
探头的旋转引起锡膏的剪切,测量所需的扭矩和旋转速度。
2.剪切力测量:
当锡膏被旋转圆锥剪切时,它会受到一定的剪切力。
测试仪器通过测量应用在旋转圆锥上的扭矩(剪切力),以及旋转的角速度,来计算锡膏的黏度。
3.流变学原理:
锡膏的黏度是一个动态的参数,随着剪切速率的变化而变化。
流变学原理用于描述液体或半固态物质的变形和流动特性,而锡膏黏度测试仪正是基于这一原理工作的。
4.旋转控制和数据采集:
锡膏黏度测试仪通过旋转控制系统控制旋转圆锥的运动,同时使用传感器测量扭矩和旋转速度。
这些数据被采集并用于计算锡膏的黏度。
5.温度控制:
黏度与温度密切相关,因此锡膏黏度测试仪通常配备有温度控制系统,以保持测试温度恒定。
测试过程中需要考虑和记录温度对黏度
的影响。
通过以上原理,锡膏黏度测试仪可以准确地测量锡膏在不同剪切速率下的黏度,为生产工艺提供重要的参考数据,确保锡膏在印刷和焊接过程中的性能稳定。
3-动态热机械分析解读
1 热机械分析 1-1 热膨胀法
体热膨胀法:温度升高1度,试样体积膨 胀(或收缩)的相对量:
γ= △V /(V0 △T)
γ —体膨胀系数(1/K) V0—初始体积 △T—试验温度差
1 热机械分析 1-1 热膨胀法
DIL 402 PC热膨胀仪 德国
1 热机械分析 1-1 热膨胀法
第5章 3-动态热机械分析
Dynamic Thermal Mechanical Analysis, DMA
1 热机械分析 热膨胀法
1、零负荷测定
2、静态负荷测定
静态热机械 动态热机械
3、动态负荷测定
1 热机械分析 1-1 热膨胀法
定义:在程序控温下,测量物质在可忽
略负荷时尺寸与温度关系的技术。
线热膨胀法 体热膨胀法
1 热机械分析 1-2 静态热机械分析
千分表
负荷 介质 压头
温度
样品
例6 塑料维卡软化点测定(针入度)
1 热机械分析 1-2 静态热机械分析
千分表
负荷 介质 压头
温度
样品
例6 塑料热变形温度测定(弯曲法)
1 热机械分析 1-2 静态热机械分析
△L
PC PVC
LDPE HDPE
T/℃
例6 温度-弯曲形变曲线(弯曲法)
2 动态热机械分析 2-3 基本原理
线性粘弹性行为:
σ = ε0 E’ sin(ωt) + ε0 E’’ cos (ωt)
E’ = ( σ0 / ε0 ) COS δ E’’ = ( σ0 / ε0 ) sin δ
2 动态热机械分析 2-3 基本原理
E‘
Tanδ
玻璃化转变 α 次级松弛转变 δ γ
静态热机械分析及动态热机械分析
G*为切变模量时,
= E '+iE"
(3) 实数模量或储能模量(storage modulus),反应 形变过程由于弹性形变而储存的能量,也叫弹 性模量(flexible modulus). 与应变相差p/2的虚数模量,是能量的损耗部分, 为耗能模量.
因此在程序控温的条件下不断地测定高聚物 E’、E’’和tand值,
则 可 得 到 如 图 1 . 2 所 示 的 动 态 力 学 — 温 度 谱
(动态热机械曲线)。
图1.2 典型的高聚物动态力学-温度图谱
图1.3 典型非晶态高聚物的DMA温度谱.
二、动态热机械分析仪
动态热机械分析仪的种类很多。主要有: 1.扭摆法(TPA) 2.扭辫法(TBA) 3.强迫共振法DMA——振簧法 4.强迫非共振法——粘弹谱仪 强迫非共振法是目前最好的动态热机械测定法。由于它是强 迫非共振型,温度和频率是两个独立可变的参数,因此它可得 到不同频率下的DMA曲线。同时也可以得到不同定温条件下的
离以及分子链各层次的运动都十分敏感。所以它是研究高聚物
分子运动行为极为有用的方法。
如果施加在试样上的交变应力为 s ,则产生的应变为 e ,由 于高聚物粘弹性的关系其应变将滞后于应力,则 e 、 s 分别可 以下式表示。
s (t) = s0eiwt
(1)
e (t) = e0ei(wt -d)
(2)
一、高聚物的动态力学——温度行为
所谓动态力学是指物质在变负载或振动力的作用下所发生
的松弛行为。DMA就是研究在程序升温条件下测定动态模量
和阻尼随温度的变化一种技术。高聚物是一种粘弹性物质,因 此在交变力的作用下其弹性部分及粘性部分均有各自的反应, 而这种反应又随温度的变化而改变。高聚物的动态力学行为能 模拟实际使用情况,而且它对玻璃化转变,结晶、变联、相分
沥青动态剪切流变性安全操作及保养规程
沥青动态剪切流变性安全操作及保养规程1. 引言沥青动态剪切流变性是指沥青在外界力作用下的流变性质,是沥青性能评价中重要的参数之一。
本文档旨在介绍沥青动态剪切流变性的基本概念,以及安全操作和保养规程,以确保工作环境的安全,提高工作效率。
2. 沥青动态剪切流变性概述沥青是一种黑色或棕色油质物质,主要用于道路建设。
沥青在施工过程中经常需要进行剪切流变性测试,以评估其流变性能。
2.1 动态剪切流变性测试原理动态剪切流变性测试是通过施加正弦剪切应力和测量应力-应变响应来评估沥青的流变性质。
一般常用的测试方法有扭转试验、动态剪切粘度试验等。
2.2 测试结果分析方法根据测试结果可得到沥青的混合流变模量、相位角等参数,这些参数可以用于评估沥青的流变性能,判断其适用性和质量。
3. 安全操作规程3.1 实验室准备•实验室应具备良好的通风系统和消防设备,确保实验环境安全。
•检查实验设备和试验仪器是否正常工作。
•检查实验用沥青样品的质量和数量。
3.2 试验前操作•佩戴个人防护装备,包括实验服、手套、安全眼镜和防护口罩。
•打开实验设备,预热设备至所需温度。
•校准测试仪器,确保准确度和可靠性。
3.3 试验操作•根据试验要求制备沥青样品。
•将样品放入试验设备中。
•设置试验参数,如温度、频率、剪切应力等。
•开始试验,记录测试数据。
•根据需要进行多组试验,以获得准确的结果。
3.4 试验后操作•关闭试验设备,清理试验现场。
•处理废弃物和污染物,确保环境卫生和安全。
4. 保养规程4.1 定期维护设备•按照设备说明书进行定期维护,保证设备正常工作。
•定期检查设备的电气连接、润滑系统和冷却系统。
4.2 清洁设备•每次试验结束后,清洁试验设备,清除残留的沥青和污垢。
•使用合适的清洁剂,避免对设备造成损害。
4.3 定期校准仪器•定期校准测试仪器,确保准确度和可靠性。
•根据仪器的使用说明书,进行校准操作。
4.4 设备存储•对不经常使用的设备,进行适当的存储,避免损坏和污染。
动态剪切流变仪
使用者通常在安装试样前设置间隙,而设置间隙 值是在期望值(1㎜或2㎜)上,增加0.05㎜,在 试验最终修整后,再用微米轮把这0.05㎜的额外 间隙去掉。 试验用的沥青试样直径和DSR的振荡板的直径相 同。准备试样有两种方法: ①沥青以适当的量直接倒向旋转轴,使材料有合 适的厚度。 ②用试模制作沥青试样,然后把沥青试样置于 DSR的旋转轴和固定板之间。
数据提交
DSR能够测量沥青对温度、频率和应变水平的反应。然而, S u p e r p a v e规范要求在G*和δ值用特定的条件进行试 验。因此试验结果同S u p e r p a v e规范的要求做对照, 确定其一致性就了一件简单的事。完整的实验报告包括: ①G*,精确到三位有效数字; ②δ,精确到0.1度; ③试验板的尺寸,精确到0.1㎜,间隙精确到 0.001㎜; ④试验温度,精确到0.1℃;
DSR试验设备
工作原理
DSR的工作原理很直观,沥青试样夹在来回振荡 的旋转轴和固定板之间,振荡板(常叫做旋转轴) 从起点A开始转动到B点。振荡板再从B点转回,经 过A点到C点,从C点再转回A点。此运动从A到B到 C,再回到A形成了一个循环,如下图所示
应力应变关系
当力(或剪应力)通过旋转轴加到沥青上时,DSR就会 测量沥青对此施加的力的反应(或剪应变)。如果沥青是 一个完全的弹性材料,其反应就与瞬间施加的力相一致, 两者间得时间滞后就为零。若是完全的粘性材料,荷载和 反应之间的时间滞后就会很大,如下图所示。冰冷沥青的 情形就像弹性材料,温度高的沥青就像粘性材料。
⑤试验频率,精确到0.1rad/s; ⑥应变振幅,精确到0.01%
SHRP沥青PG分级标准中的DSR
SHRP的沥青PG分级既是按照路用性能实现的沥青分级,这 一分级方法具有明确的粘弹性力学性能依据,也是有良好 的路用性能依据,是一种典型的沥青性能标准。在SHRP的 沥青PG分级中分别将粘弹性特征函数G*/sin δ和G*sin δ分 别评价沥青高温特性和疲劳特性的技术指标。 G*/sin δ为损失剪切柔量J的倒数,根据蠕变柔量的定义, J为蠕变过程中的耗能分量。因此,J越小,即sin δ越大, 沥青在高温时的耗能越少,流动变形越小,抗车辙能力也 就越强,所以采用G*/sin δ作为反映沥青材料的永久性变 形的指标。
沥青材料的粘度
• 粘度与粘附性之间的关系
粘度与沥青组分的关系
1. 以传统四组分分析方法得出的结果
表中饱和分、芳香分、胶质及沥青质分别以S,Ar,R 和At表示,沥青的平均分子量以M表示。
从表中可以看 出,沥青在120℃, 150℃, 180℃高温 条件的粘度与饱和 分或芳香分、胶质、 沥青质3个参数简单 回归的相关系数都 大于0.9。沥青质和 胶质等重质成分使 高温粘度升高,饱 和分或芳香分等轻 质成分使高温粘度 降低。
参考文献
[1] 周卫峰, 张秀丽, 原健安, 等. 基于沥青与集料界面粘附性的抗剥落剂的开发[J]. 长安大 学学报(自然科学版), 2005(02).
[2] 宋福义. 国内外典型道路沥青抗车辙性能的对比研究[J]. 石油炼制与化工, 2007(04). [3] 吴伟峰, 周灿锋, 陈守明, 等. 乳化沥青恩格拉粘度的影响因素研究[J]. 石油沥青,
恩格拉粘度计法
• 恩格拉粘度计法(煤沥青、乳化 沥青)
原理:
Ev
tT tW
试验步骤:详见《公路工程沥青
及沥青混合料试验规程》(JTG
E20-2011)T0622的相关规定。
影响因素:乳化沥青的存放时间、 搅拌时间、控温精度等。
条件粘度的测试方法
➢ 标准粘度计法
标准粘度计适用于测定液 体石油沥青、煤沥青、乳 化沥青等流动状态时的粘 度。
粘度指标
1.牛顿流型沥青的粘度
根据牛顿内摩擦定律:
F A V
H
= A dv
dy
F (Pa)
A
dv (s1)
橡胶-帘线粘合性能在动态及加热条件下的评价方法
橡胶 一 帘线 ( 包 括 钢 丝 帘线 ) 复 合 材 料 的 两 种
件下 的粘 合 评 价方 法 。橡胶一 帘线 复 合 材 料 界 面
材 料表 面通过 各种 界面力 结合 在一起 。复合 材料
在 动态条 件 下粘 结界 面发 生物 理 化 学 变 化 , 直接 影 响材料 的使 用性 能 。在 轮 胎工 业 中 , 帘 线 增 强
2 动 态粘 合试验 原理
橡 胶基 复合材 料 的牢 固粘 合 以及 在 动 态 、 高 温 和 潮 湿老化 后保 持 良好 的粘 合力 , 直接 影 响 轮 胎 的
安 全性 能和 载重能 力 。
1 橡胶一 帘线粘 合性能 测试
橡胶 与 帘线 的粘 合性 能测 试可分 为静 态粘 合
测 试和 动态粘 合测试 。 静态 测试 方法包 括剪 切型 和剥离 型 。剪 切 型 测试( 如 H 抽 出试 验 ) 是 将 单 根 帘 线 从硫 化 胶 块 中抽 出 , 测试 其抽 出力 。剥离 型测试 ( 如帘 线剥 离 试 验) 是将 2 层 被胶 料分 开的帘 布 以 1 8 0。 角 剥 离 开, 测试其 剥 离 力 的大 小 。静 态 粘合 测 试 的 方法
测 试和 评价 。此类 测试还 有 热“ u” 抽 出试 验方 法 和 Ma l l o r y胶 管试验 方法 等 。随着 轮胎 技术 的不 断发展 和研发 的 需要 , 这些 方 法 及 仪器 也 将 为 行
业 所应 用 。
第 7 届 全 国橡 胶 工 业 用 织 物 和 骨架 材 料
帘线 动态剪 切粘合 ( DS A) 试 验方 法 是 L y e n —
g a r 橡 胶与 帘 线 的动 态 粘 合 性 能 测 试 方 案 , 其 原
dhr流变仪设备原理
dhr流变仪设备原理DHR流变仪设备原理摘要:本文介绍了DHR流变仪设备的原理,涵盖了该设备在实际应用中的标准问题,并提供了详细的标准内容。
引言:DHR流变仪设备是一种广泛应用于材料科学和工程领域的实验仪器,用于研究物质的流变性质。
它能够提供材料的粘弹性、流变学特性和形变应力关系等关键参数,为材料的开发和工程设计提供重要参考。
一、DHR流变仪设备原理DHR流变仪设备采用旋转的圆盘或圆柱式试验测量物质的流变学性质。
基本的原理是通过施加一个预定的形变应力,然后测量产生的应变。
根据初始形变时的状态,DHR流变仪设备可以分为稳态和动态流变。
1. 稳态流变:稳态流变是指在恒定应力或恒定速度下进行的测试。
通过施加恒定的切变应力或恒定的剪切速率,测量物质的稳态流变特性。
标准建议采用ISO 3219(塑料)和ASTM D4440(涂料和涂层)。
2. 动态流变:动态流变是指在周期性形变条件下进行的测试。
通过施加周期性的形变应力,测量物质的动态流变行为。
在动态流变中,频率和幅值是重要的参数。
标准建议采用ASTM D4473(石油产品)和ISO 6721-10(流变学测试方法)。
二、DHR流变仪设备的标准问题1. 样品准备:为了保证测试结果的准确性和可靠性,必须正确准备样品。
标准要求样品在测试前进行适当的制备和质检。
具体标准包括ASTM D4287(用于化学分析的试样制备)和ASTM D7404(用于溶液样品制备的标准)等。
2. 测试条件:测试条件对于测试结果的准确性和可重复性至关重要。
标准要求在测试中遵循特定的参数设置,包括温度、湿度和压力等。
具体标准包括ASTM D2196(用于测量温度的方法)和ASTMD6828(用于测量湿度的方法)等。
3. 数据处理:测试完成后,对测试数据进行准确的处理和分析是至关重要的。
标准要求采用特定的数据处理方法,包括粘度曲线的生成、数据平滑和流变学参数的计算等。
具体标准包括ASTM D5868(用于粘性曲线绘制的方法)和ASTM E1142(液体粘度计算的方法)等。
动态光散射的基本原理及现代应用
动态光散射的基本原理及现代应用动态光散射是指当光射入具有分散颗粒的介质中时,光线在颗粒表面发生散射而产生的现象。
在动态光散射中,散射现象的发生是由介质中的无规则分布的颗粒引起的。
根据光的波长和颗粒的大小,散射现象可以根据射出角度的不同而具有不同的特征。
动态光散射的基本原理可以通过维恩逆向散射和光强衰减原理来解释。
根据维恩逆向散射原理,当光线入射到颗粒表面时,光在散射前没有波前的调整,因此散射现象将更加明显。
光强衰减原理指出,随着光线在介质中传播距离的增加,光的强度会逐渐衰减。
这是因为在介质中,光线会与颗粒碰撞并发生散射,使得光线的传播路径变得更长。
动态光散射在现代科学研究中有着广泛的应用。
首先,动态光散射被广泛用于研究分散颗粒的大小、形状和浓度。
通过测量光在散射过程中的角度分布和强度分布,可以对颗粒进行粒径分布的测量和表征。
这使得动态光散射在物理、化学和环境科学等领域中成为一种重要的测量技术。
另外,动态光散射也被广泛用于研究生物体系的动态行为。
通过结合光学显微镜和动态光散射技术,可以对生物大分子和细胞的动态行为进行实时监测。
这在生物医学研究中具有重要意义,可以用于研究蛋白质的折叠和变性、生物界面的互作和细胞内颗粒的输运等过程。
此外,动态光散射还被应用于聚合物材料研究和纳米材料研究。
通过测量散射光的强度和偏振特性,可以研究聚合物颗粒的动态行为和结构演化。
在纳米材料研究中,动态光散射被用于研究纳米颗粒的聚集和分散过程,以及纳米粒子的形貌和表面结构。
最后,动态光散射还被广泛应用于化学工程、环境监测和食品加工等领域。
在化学工程中,动态光散射可以用于表征复杂流体的流变性质,并用于粒子聚集和剪切效应的研究。
在环境监测中,动态光散射可以用于监测水体中的微生物浓度和污染物颗粒的分布。
在食品加工中,动态光散射可以用于检测食品中的颗粒大小和含油量,以及测量乳液和乳胶的稳定性。
总之,动态光散射作为一种重要的光学现象,在现代科学研究和技术应用中具有广泛的应用。
沥青混合料试验规程
目录1沥青弯曲蠕变劲度试验(弯曲梁流变仪法)一、目的与适用范围1.1本方法用弯曲梁流变仪测定沥青的弯曲蠕变劲度和m值。
测量的弯曲蠕变劲度范围为20~1OOOMPa。
1.2本方法适用干原样沥青、压力老化后的沥青和薄膜烘箱(或旋转薄膜烘箱)后的老化沥青。
1.3根据本方法进行试验时,若试件的形变大于4mm或小于0.08mm时,试验结果无效。
二、仪具与材料2.1弯曲梁流变仪试验系统由以下几部分组成:2.带有试件支架的加载框。
2.将试件保持在试验温度下并提供浮力以抵消试件重2.计算机控制和数据自动采集系统元件。
2.试样梁模具。
2.检量和校正系统的梁。
2.2试验系统基本技术要求和参数2.2.1加载框:由一套试件支架、加载轴、荷载传感器、荷载调零装置、加载装置及位移测量传感器等组成。
示意图如图T0627-1所示。
图T0627-1弯曲梁流变仪示意图1-温度传感器;2-沥青试件;3-控制与数据采集;4-位移传感器;5-加载轴;6-空气轴承;7-荷载传感器;8-水槽;9-试件支架保持在980mN±50mN以内。
技术要求如下:2.2.2加载系统:能向试件施加35mN±5mN的接触荷载,试验过程中将试验荷载1)加载系统要求:试验荷载的升压时间应不少于5s。
开始试验时系统在0.5~5s内将接触荷载从35mN±5mN增加到初始试验荷载980mN±50mN,此时试验荷载应稳定在平均试验荷载±50mN之内,之后稳定在平均试验荷载±10mN。
2)加载轴:带有半径为6.3mm±1.3mm球形接触点。
3)荷载传感器:用来测量初始接触荷载和试验荷载。
最小量程应不小于2.00N,分辨率不小于2.5mN。
4)线性差动式位移传感器(LVDT):量程不小于6mm,分辨率不小于2.5μm。
5)试件支架:接触半径为3.0mm士0.3mm由不锈钢或其他防腐蚀金属制成的支架。
2.2.3温度传感器:测量范围为0~-36℃,精确至士O.1℃。
DMA 基本原理
耐驰仪器(上海)有限公司 应用实验室 张红
2007. 8.
上图中绿色曲线是储能模量 E’,代表了材料的刚性部分;蓝色曲线是损耗模量 E’’,代表了 材料的阻尼部分;红色曲线是损耗因子 tgδ,为损耗模量与储能模量的比值,代表了材料 吸收外加能量的能力。每一类曲线均包含不同线型的多条线,此为多频扫描在不同频率下的 结果。可以通过分析软件对各自曲线进行分析。 NETZSCH 的动态机械分析仪 DMA 242 C 有如下六种测量模式:
动态热机械分析仪DMA原理及方法
05
DMA技术发展趋势与挑战
技术创新方向探讨
更高频率范围
开发能够在更高频率下工作的DMA技术, 以满足对材料高频响应特性的研究需求。
多功能集成
将DMA与其他分析技术(如热分析、光学分析等) 相结合,实现多功能一体化分析。
智能化与自动化
利用人工智能和机器学习技术,提高DMA 测试的自动化程度和数据分析的准确性。
DMA可测定聚合物在不同温度和频率下的储能模量和损耗模量, 揭示材料的粘弹性行为。
蠕变与松弛行为研究
DMA可用于研究聚合物的蠕变和松弛行为,为材料长期性能预测 提供依据。
金属材料疲劳寿命预测
疲劳裂纹扩展速率
测定
DMA可测定金属材料在不同温度 和加载频率下的疲劳裂纹扩展速 率,为疲劳寿命预测提供关键参 数。
100%
温度控制
通过PID算法等精确控制加热元 件的功率,实现样品温度的精确 控制。
80%
温度范围
根据测试需求,加热系统可提供 从室温到高温(如600℃)的宽 温度范围。
冷却系统
冷却方式
采用液氮、压缩空气等作为冷 却介质,实现样品的快速冷却 。
温度控制
通过控制冷却介质的流量和温 度,精确控制样品的冷却速率 和最终温度。
现状
目前,DMA已经成为材料科学研究领域的重要工具之一,随着新材料和新技术的不断涌现,DMA的应用前景将 更加广阔。同时,DMA技术也在不断发展和完善,如高温DMA、高压DMA等新型仪器的出现,为材料科学研究 提供了更多的可能性。
02
DMA系统组成与功能
加热系统
80%
加热元件
通常采用电阻丝、红外线灯等作 为加热元件,提供均匀稳定的热 源。
与其他技术的联合应 用
动态法测试弹性模量
动态法测试弹性模量材料的弹性模量的测试⼀、实验⽬的1、掌握拉伸法和动态法测弹性模量的原理。
2、掌握动态弹性模量测定⽅法与实验步骤及对试样的要求。
3、掌握测量结果的计算与数据处理。
⼆、实验原理弹性性能主要指材料在弹性变形范围内的物理量,包括弹性模量(E,⼜称杨⽒模量)、切变模量(G)和泊松⽐(ν),其中弹性模量和切变模量是表征固体材料弹性性质的重要⼒学参数,反映了固体材料抵抗外⼒产⽣形变的能⼒。
弹性模量也是进⾏热应⼒计算、防热与隔热层计算、选⽤机械构件材料的主要依据之⼀。
因此,精确测量弹性模量对理论研究和⼯程技术都具有重要意义。
弹性模量是固体材料在弹性形变范围内正应⼒与相应正应变的⽐值,其表达式为:(1)式中为材料弹性形变范围内的正应⼒,为相应的正应变。
E⼤⼩标志了材料的刚性,与物体的⼏何外形以及外⼒的⼤⼩⽆关,仅与材料的结构、化学成分和加⼯制造⽅法等有关。
对于⼀定的材料⽽⾔,E是⼀个常量。
测量弹性模量有多种⽅法,可分为静态法和动态法两种:①静态法(包括拉伸法、扭转法和弯曲法)通常适⽤于在⼤形变及常温下测量⾦属试样。
静态法测量载荷⼤、加载速度慢并伴有弛豫过程,对脆性材料(如⽯墨、玻璃、陶瓷等)不适⽤,也不能在⾼温状态下测量。
②动态法(⼜称共振法或声频法)包括弯曲(横向)共振法、纵向共振法和扭转共振法,其中弯曲共振法所⽤设备精确易得,理论同实验吻合度好,适⽤于各种⾦属及⾮⾦属(脆性)材料的测量,测定的温度范围极⼴,可从液氮温度⾄3000℃左右。
由于在测量上的优越性,动态法在实际应⽤中已经被⼴泛采⽤,也是国家标准(GB/T2105-91)推荐使⽤的测量弹性弹性模量的⼀种⽅法。
⽬前,测量材料的弹性模量主要有拉伸法和动态法。
1.拉伸法测量原理拉伸法是⽤拉⼒拉伸试样来研究其在弹性限度内受到拉⼒的伸长变形。
由式(1)有:(2)式中各量的单位均为国际单位。
可见,在弹性限度内,对试样施加拉伸载荷F,并测出标距L的相应伸长量,以及试样的原始横截⾯积,即可求得弹性模量E。
18 - 沥青流变测试定义
4.2 测试程序目的及释义
SHRP标准测试程序意义: 1. Original Binder(原样沥青单点测试实验)
用于检测64℃下,原样沥青的车辙因子是否符合标准(G*/sin δ>1kPa即符合64℃标准)。
2. Original Binder Grade(原样沥青等级区分实验) 用于鉴定原样沥青的品质等级,首先在64℃测试材料的车辙因子,与1kPa比较,然后系统将自动进入下一温度(比上 一温度高6℃或低6℃)进行测试,直至材料的等级得以确定。 3. Original Binder Linearity(原样沥青线性区确定实验) 用于检测64℃下,原样沥青的车辙因子对应线性区是否符合标准(线性区是否大于12%)。 4.RTFO Binder(RTFO沥青单点测试实验) 用于检测64℃下,RTFO老化沥青的车辙因子是否符合标准(G*/sin δ>2.2kPa即符合64℃标准)。 5. RTFO Binder Grade(RTFO沥青等级区分实验) 用于鉴定RTFO老化沥青的品质等级,首先在64℃测试沥青的车辙因子,与2.2kPa比较,然后系统将自动进入下一温 度(比上一温度高6℃或低 6℃ )进行测试,直至材料的等级得以确定 6. PAV Binder(PAV老化沥青单点测试实验) 用于检测25℃下,PAV老化公路沥青的车辙因子是否符合标准(G*×sin δ<5MPa即符合25℃标准)。 7. PAV Binder Grade(PAV老化沥青等级区分实验) 用于鉴定PAV老化沥青的品质等级,首先在25℃测试材料的车辙因子,与5MPa比较,然后系统将自动进入下一温度 (比上一温度低3℃或高3 ℃ )进行测试,直至材料的等级得以确定。 8. Cannon Standard(Cannon标样标准测试) 用于标样标准测试,该测试在58℃下进行,测得材料的复数粘度,并与参考值相比较,二者偏差在±10%以内,则表 明仪器工作正常;
基于流变性能试验的沥青性能评价
69第2卷 第18期Industrial Technology Innovation 基于流变性能试验的沥青性能评价陶 洁(苏交科集团股份有限公司,江苏 南京 210017)摘要:动态剪切流变仪(DSR )是美国SHRP 计划中提出的用以测试沥青胶结料的中、高温流变性能指标的重要测试设备,基于我国新规范中添加了关于DSR 流变性能试验的部分,本文通过对DSR 试验仪器、试验原理、试验指标等方面对动态剪切流变仪进行简要介绍。
对国内外基于DSR 的改性沥青流变性能研究进行了介绍,同时对DSR 指标的创新和发展进行介绍,提出的新型DSR 指标可以更好地评价沥青流变性能指标。
最终对在道路工程领域下动态剪切流变仪的研究应用和发展进行概述。
关键词:DSR ;道路工程;流变性能指标;应用发展中图分类号:U414 文献标识码:A 文章编号:2096-6164(2020)18-0069-02基于道路运行的实际情况可知,车辆荷载在实际道路路面上是以移动荷载的形式作用的。
而我国现阶段的道路方面的规范中沥青技术指标多是考虑静载条件下。
同时随着国内外道路工程领域研究的不断进步和发展,在试验室研究阶段采用更加精准和合理的指标来进行研究是未来发展的趋势。
其中重要的试验指标便是基于美国SHRP 计划中提出的动态剪切流变仪(DSR)试验仪,试验对沥青的中高温流变性能有着很好的评价,并且以此法为基础的,建立起了一种新型的沥青评价体系。
1 DSR 试验1.1 试验仪器动态剪切流变仪主要由动态剪切流变仪试验机、空气压缩机、水浴箱和与之连接的计算机组成,计算机中的流变仪控制软件进行具体的参数控制。
1.2 工作原理动态剪切流变仪(DSR)是可以测定多类不同种材料流变性能的试验仪器,因美国首先在沥青材料的研究中提出,所以才在道路工程领域有着广泛应用。
其工作的主要原理如图1所示。
仪器主要是将沥青试样放置在下端固定板上而后使上端振荡板下降与沥青接触,通过设定以一定的角速度ω来回转动,转动方向为首先从A 点转到B 点,再从B 点转回A 点;经过A 点到C 点,最后从C 点再转回A 点。
SHRP实验原理与弯曲流变仪(DSR)使用方法
1.2 Superpave主要内容
• Superior Performing Asphalt Pavห้องสมุดไป่ตู้ments——高性能沥青 路面
– 规定沥青胶结料和矿物集料性质 – 沥青混合料设计和分析路面性能 – 包括采用新的胶结料物理特性试验的沥青胶结料规范、一系列集 料实验和规范、一个热拌沥青混合料设计和分析体系以及集成体 系各部分的计算机软件 – 特点:其实验体系所采用的温度条件和老化条件更能体现路面实 际情况
1.0 64
Pressure Aging Vessel Residue (PP1) PAV Aging Temp, Cd Dynamic Shear, TP5: G*sin , Maximum, 5000 kPa Test Temp @ 10 rad/sec, C Physical Hardening e Creep Stiffness, TP1: f S, Maximum, 300 MPa m-value, Minimum, 0.300 Test Temp, @60 sec, C Direct Tension, TP3 f Failure Strain, Minimum, 1.0% Test Temp @ 1.0 mm/min, C 0 -6 -12 -18 -24 -30 -36 -6 25 22 19 90 16 13 10 7 25 22 100 19 16 13 28 25 100 22 19 16
强调车辙的规范要求
胶料原样的车辙因子至少为1.00kPa,在烘箱中老化后至少为 2.2kPa,小于以上数值,则胶料太软,不能抵抗永久形变, 抗车辙性能较差
2.2 弹性形变——疲劳开裂
PAV老化温度,℃
动态剪切,T315 G*×sinδ,最大值,5000kPa 试验温度,@10rad/s,℃ 物理硬化 蠕变劲度,T313 …… 直接拉伸,T314 ……
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沥青路面以其优越的路用性能得到全世界范围内的推广应用.但是近年来,高等级沥青路面在使用早期就出现诸如网裂、剥落和松散等病害并逐步扩展,严重影响行车质量和效益.沥青路面的早期破坏除了设计、施工等方面的原因外,还与沥青的老化密切相关.沥青路面在使用过程中,表层沥青老化后产生脆性,劲度大大增加,破坏应变变小,在冬天容易产生温缩裂缝,导致路面开裂.沥青老化后导致沥青路面的抗疲劳性能下降,路面产生疲劳裂缝.因此研究沥青的抗老化性能,对提高沥青路面使用质量有重的现实意义
1.基本理论
动态剪切流变仪(Dynamic Shear Rheometer,简称DSR,如图1所示)通过给沥青试样施加一个正弦变化的交变应力,产生一个正弦交变应变力,而这两个应力是有相位差的。
由试验数据得出复数剪切模量*
G,相位角δ。
*G即最大剪应力与最大剪应变的比值,是总阻力的表征,它包括实数轴分量'G及虚数轴分量''G,其中:'G称为动力弹性模量,即弹性部分,反映沥青变形过程中储存的能量;''G称为损失弹性模量,即粘性部分,相当于动粘度η产生的损失弹性模量,反映沥青在变形过程中由于内部摩擦产生的以热的形式散失的能量。
相位角δ是由于材料粘性成分的影响,对材料输入正弦应力与产生的正弦应变响应不同步,滞后一定相位角产生的,是沥青结合料的弹性与粘性的成分比例指标。
图1动态剪切试验基本原理
Fig.1 Principle of operation of DSR
粘温指数VTS指的是能够表征粘度η与温度t的关系的一个参数。
其中粘度η可以通过DSR试验数据中的*G、δ及加载频率ω通过式(1)求得:
4.86281(
)sin G ηωδ*= (1) 其中:*G —复数剪切模量;ω—加载频率;δ—相位角。
换算得到粘度后,有四种方法构建粘度-温度坐标系来求得VTS 。
纵坐标都取lgη的对数坐标,横坐标分别为摄氏温度坐标、摄氏温度的对数坐标、兰金式温度的对数坐标、开式温度的对数坐标。
摄氏温标: 1212
lg(lg )lg(lg )VTS t t ηη-=- (2) 1212lg(lg )lg(lg )lg lg VTS t t ηη-=
- (3) 兰金氏温标: 12,1,2
lg(lg )lg(lg )lg g R R VTS T l T ηη-=- (4) 开氏温标: 12,1,2lg(lg )lg(lg )lg lg K K VTS T T ηη-=
- (5) 其中:VTS —粘温指数;η1,η2—相邻温度对应粘度;t —摄氏温度;R T —兰金氏
温度,R T =1.8t +491.67;K T —开氏温度,K T =t +273.13。