数值分析第5章习题

合集下载

数值分析第五章答案

数值分析第五章答案

数值分析第五章答案【篇一:数值分析第五版计算实习题】第二章2-1程序:clear;clc;x1=[0.2 0.4 0.6 0.8 1.0];y1=[0.98 0.92 0.81 0.64 0.38];n=length(y1);c=y1(:);or j=2:n %求差商for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1));endendsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式df(i)=df(i-1)*(x-x1(i-1));d(i)=c(i)*df(i);enddisp(4次牛顿插值多项式);p4=vpa(collect((sum(d))),5) %p4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, variational);%调用三次样条函数 q=pp.coefs;disp(三次样条函数);for i=1:4s=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1];s=vpa(collect(s),5)endx2=0.2:0.08:1.08;dot=[1 2 11 12];figureezplot(p4,[0.2,1.08]);hold ony2=fnval(pp,x2);x=x2(dot);y3=eval(p4);y4=fnval(pp,x2(dot));plot(x2,y2,r,x2(dot),y3,b*,x2(dot),y4,co);title(4次牛顿插值及三次样条);结果如下:4次牛顿插值多项式p4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数x∈[0.2,0.4]时, s = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04 x∈[0.4,0.6]时,s = 0.44643*x^3 - 1.3393*x^2 + 0.45*x +0.92571 x∈[0.6,0.8]时,s = - 1.6964*x^3 + 2.5179*x^2 - 1.8643*x + 1.3886 x∈[0.8,1.0]时,s =2.5893*x^3 - 7.7679*x^2 + 6.3643*x - 0.80571 输出图如下2-3(1)程序:clear;clc;x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];%插值点n=length(y1);a=ones(n,2);a(:,2)=-x1;c=1;for i=1:nc=conv(c,a(i,:));endq=zeros(n,n);r=zeros(n,n+1);for i=1:n[q(i,:),r(i,:)]=deconv(c,a(i,:));%wn+1/(x-xk)enddw=zeros(1,n);for i=1:ndw(i)=y1(i)/polyval(q(i,:),x1(i));%系数endp=dw*q;syms x l8;for i=1:nl8(i)=p(n-i+1)*x^(i-1);enddisp(8次拉格朗日插值);l8=vpa(collect((sum(l8))),5)xi=0:64;yi=polyval(p,xi);figureplot(xi,yi,x1,y1,r*);hold ontitle(8次拉格朗日插值);结果如下:8次拉格朗日插值l8 =- 3.2806e-10*x^8 + 6.7127e-8*x^7 - 5.4292e-6*x^6 +0.00022297*x^5 - 0.0049807*x^4 + 0.060429*x^3 - 0.38141*x^2 +1.3257*x输出图如下:第五章4-1(3)程序:clc;clear;y= @(x) sqrt(x).*log(x);a=0;b=1;tol=1e-4;p=quad(y,a,b,tol);fprintf(采用自适应辛普森积分结果为: %d \n, p);结果如下:采用自适应辛普森积分结果为: -4.439756e-01第九章9-1(a)程序:clc;clear;a=1;b=2;%定义域h=0.05;%步长n=(b-a)/h;y0=1;%初值f= @(x,y) 1/x^2-y/x;%微分函数xn=linspace(a,b,n+1);%将定义域分为n等份 yn=zeros(1,n);%结果矩阵yn(1)=y0;%赋初值%以下根据改进欧拉公式求解for i=1:nxn=xn(i);xnn=xn(i+1);yn=yn(i);yp=yn+h*f(xn,yn);yc=yn+h*f(xnn,yp);yn=(yp+yc)/2;yn(i+1)=yn;endxn=yn;%以下根据经典四阶r-k法公式求解for i=1:nxn=xn(i);yn=yn(i);k1=f(xn,yn);k2=f(xn+h/2,yn+h/2*k1);k3=f(xn+h/2,yn+h/2*k2);k4=f(xn+h,yn+h*k3);yn=yn+h/6*(k1+2*k2+2*k3+k4);yn(i+1)=yn;enddisp(改进欧拉法四阶经典r-k法); disp([xn yn])结果如下:改进欧拉法四阶经典r-k法 110.998870.998850.99577 0.99780.991140.996940.985320.996340.978570.996030.971110.996060.963110.996450.95470.997230.945980.998410.9370510.92798 1.0020.91883 1.00440.90964 1.00730.90045 1.01060.89129 1.01430.88218 1.01840.87315 1.02290.86421 1.02780.85538 1.03310.84665 1.0388(b)程序:clc;clear;a=0;b=1;%定义域h=[0.1 0.025 0.01];%步长y0=1/3;%初值f= @(x,y) -50*y+50*x^2+2*x;%微分函数 xi=linspace(a,b,11);y=1/3*exp(-50*xi)+xi.^2;%准确解 ym=zeros(1,11);for j=1:3【篇二:数值分析(第五版)计算实习题第五章作业】题:lu分解法:建立m文件function h1=zhijielu(a,b)%h1各阶主子式的行列式值[n n]=size(a);ra=rank(a);if ra~=ndisp(请注意:因为a的n阶行列式h1等于零,所以a不能进行lu 分解。

数值分析(李庆杨第四版)Cht5 解线性方程组的直接法

数值分析(李庆杨第四版)Cht5 解线性方程组的直接法
5.计算主行 akj akjmkk ,( j k,k 1,,n)
bk bkmkk .
结果:
1
b1
( A | b) ( A(n1) | b(n1) )
1
b2
1
bn
解, 运算量?
定理9(高斯 - 若当法求逆矩阵) 设A为非奇异矩阵,方程组 AX I的增广矩阵为C ( A | I ). 若对C应用高斯 - 若当法 化为(I | T ), 则A1 T.
bi(2) bi(1) mi1 b1(1) , (i 2,3,, n)
第二步:若 a2(22) 0, 用… …. ……
第k步:若 ak(kk) 0, 用 mik ai(kk) / ak(kk) 乘第k行 加到第i行中,得到
a1(11)
a1(1k)
ak( kk ) 0
x 1.00, y 1.00
全主元消去法;列主元消去法.
一、列主元消去法
设有线性方程组:AX=b
a11 a12 a1n
x1
b1
A
a21
a22
a2n
,
X
x2
,
b
b2
.
an1
an2
ann
xn
bn
第一步:先在A的第一列选取绝对值最大的元素作主元素,
ai1,1
b2
.
0
0
ann
xn
bn
回代求解
xn bn ann
xi
bi
j
n aijx j
i 1
aii , (i n 1,,1)
算法(列主元消去法).消元结果 A, mik aik , x b,存det.
……

数值分析课后习题全解(可编辑优质文档)

数值分析课后习题全解(可编辑优质文档)

数值分析课后习题全解(可编辑优质文档)(可以直接使用,可编辑完整版资料,欢迎下载)第5章 数值分析课后习题全解第5章:解线性方程组的直接方法1. 证明:由消元公式及A 的对称性得(2)211,,2,3,..........,1111111a a j i a a a a a a i j na a ijij j j iji =-=-== 故2A对称2.证明:(1)因A 对称正定,故,)0,1,2,......,e i ni >=aii=(Ae i其中i e =(0,…,0,1,0,...,0)T 为第i 个单位向量.(2)由A 的对称性及消元公式得111211122222n n nn n n u u u d d u u d d u d d ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(2)ij a =ija -1111i j a a a =ji a -111j a a 1i a =(2)ji a ,I,j=2,…,n故2A 也对称.又 11120Ta a A ⎡⎤⎢⎥⎣⎦=1L A 1TAL其中 1L =211111111.....1n a a a a ⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦显然1L 非其异,从而对任意的x ≠0,有1TL X ≠0,(x,1L A 1TL X)=(1TL x, A 1TL X)>0 (由A 的正定性) 故11T L AL 正定.又11T L AL =11200a A ⎡⎤⎢⎥⎣⎦,而11a >0,故2A 正定. 3.证明 由矩阵乘法简单运算即得证.4.解 设有分解4232125316⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦=123431231αααα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦1231111βββ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦由公式11,1111,2,3,,,2,3,.1i i i i ii i b a c b i n c i n αβαβααβ-==⎧⎪=+=⎨⎪==-⎩其中i b ,i a ,i c 分别是系数矩阵的主对角线元素及下边和上边的次对角线元 素.故有112233414,272,27397,7138513αβαβαβα⎧==⎪⎪⎪=-=-⎪⎨⎪==⎪⎪⎪=⎩从而有4232125316⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦=4732392785113⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦11221771131⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦故 1y =64=32, 2y =12372y --=573y =21022039137y -=, 4y =3518513y +=故4x =1,3x =420711313x -=,2x =352177x +=,1x =231122x -= 5. 解 (1)设U 为上三角阵1112112222n n nn n u u u x u u x u x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=12n d d d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦因nn n u x =n d ,故n x =nnnd u . 因 10001010302171101⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎦⎣ii i u x +1n ij j j i u x =+∑=id ,故i x =1ni ij ij i iid u xu =+-∑,i=n-1,n-2,,1当U 为下三角阵时11212212n n nn u u u u u u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦12n x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦= 12n d d d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦得,1x =111d u , 1x =11i i ij jj iid u x u -=-∑,i=2,3,…,n.(2)除法次数为n,乘法次数为1+2+…+(n-1)=n(n-1)/2 故总的乘法次数为n+n(n-1)/2=n(n+1)/2. (3)设U 为上三角阵,1U-=S,侧S 也是上三角阵.由11121222n n nn u u u u s u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦11121222n n nn s s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦得 1ii iis u =, i=1,2,…,nij s =-1jik kjk i iiusu =+∑,j=i+1,i+2,…,n; i=n-1,n-2,…,1当U 为下三角阵时,由11212212n n nn d d d d d d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦11212212n n nn s s s s s s ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦= 111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦得 1ii iis u =,i=1,2,…,n ij s =11i ik kjk iiusu -=-∑,i=2,3,…,n;j=1,2,…,i-16. 证明 (1)因A 是对称正定阵,故存在唯一的分解A=L TL ,其中L 是具有正对 角元素的下三角阵.从而 1A -=(L TL )1-=(TL )1-L 1-=(L 1-)TL 1-(A 1-)T =11()TT L L --⎡⎤⎣⎦=11()T L L --=1A -故1A -是对称矩阵.又1L -非奇异,故对任意的 x ≠0,有1L -x ≠0,故1Tx A -X=11()T T x L L x --=11()()T L x L x -->0故1A -是对称正定矩阵,即1A -也对称正定.(2)由A 对称正盯,故A 的所有顺序主子式均不为零,从而A 有唯一的 Doolittle 分解A=L U.又U=1122nn u u u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1121111222111n n u u uu u u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=D 0U 其中D 为对三角阵, 0U 为单位上三角阵,于是 A=U L =D L 0U又 A=TA =TO U D TL由分解的唯一性即得T O U =L从而有 A=D L TL 又由A 的对称正定性知 1d =1D >0, i d =1ii D D ->0 (i=2,3,…,n) 故 D=12n d d d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=⎤⎥⎢⎥⎢⎥⎢⎢⎣⎤⎥⎢⎥⎢⎥⎢⎢⎣=12D 12D 故A=L D TL =L12D12D TL =(L 12D )(L 12D )T =LL T其中L=L 12D 为三角元为正的下三角矩阵.7. 解[A|I]=21311000310701001242001010150001⎡--⎤⎢⎥⎢⎥⎢⎥--⎢⎥-⎢⎦⎣-> 101500010138010302330011011111002⎡-⎤⎢⎥--⎢⎥⎢⎥⎢⎥---⎢⎦⎣-> 1015010138010300319021700431101⎡-⎤⎢⎥--⎢⎥⎢⎥--⎢⎥---⎢⎦⎣->421410003333010110114192170010333385542500013333⎡⎤---⎢⎥⎢⎥-⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦-> 410231685178517100033641130100851785170010191538851785170001314585178517⎤--⎥⎥⎡⎥-⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎥⎥--⎦->1A -=4102316851785173364113851785171953885178517314585178517⎡⎤--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥--⎣⎦=0.04705890.58823530.27058820.94117650.38823530.35294120.48235290.76470590.22352940.29411760.03529410.47058820.03529410.05882350.04705890.2941176--⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦8. 解 设有分解2112112112112-⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎢⎥⎢⎥-⎣⎦= 123451111ααααα⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦123451111βββββ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦由公式11,1111,(2,3,4,5),(2,3,4)i i i i i i i b c b i c i ααβαβααβ-==⎧⎪=+=⎨⎪==⎩其中i b ,i a ,i c 分别是系数矩阵的主角线元素及其下边和上边的次对角线元 素,则有12α=, 232α=, 343α=, 454α=, 565α= 112β=-, 223β=-, 334β=-, 445β=-由12345231120410305140615y y y y y ⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥-⎢⎥⎣⎦得1y =12,213y =,314y =,415y =,516y = 由112213314415⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦123451213141516x x x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦得5x =16,4x =13,3x =12,2x =23,1x =569.解 设211123131-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦=121312123231323111111d l l l d l l l d ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦由矩阵乘法得1d =2, 2112l =-, 3112l = 252d =-,3275l =-3275d =由123141152617125y y y ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥-⎣⎦得 14y =,27y =,3695y = 由12311122245717256927155x x x ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦ 得 123111222247514175256927123559x x x ⎡⎤⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦⎣⎦故3x =239=2.555 555 6,279x ==0.777 777 8,1x =109=1.111 111 1 10. 解 A 中2∆=0,故不能分解。

《数值分析》(第5版)第四、五章作业题

《数值分析》(第5版)第四、五章作业题

第4章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1) ∫f (x )ⅆx h−h ≈A −1f (−h )+A 0f (0)+A 1f (h )解:将f(x) = 1,x ,x 2分别代入公式两端并令其左右相等,得: A −1+A 0+A 1=2ℎ −ℎA −1+ℎA 1=0 ℎ2A −1+ℎ2A 1=23ℎ3解得A -1 = ℎ3 ,A 0 = 4ℎ3,A 1 = ℎ3. 即所求公式至少具有2次代数精度, 又由于:∫x 3ⅆx ℎ−ℎ=ℎ3(−ℎ)3+ℎ3⋅ℎ3 且 ∫x 4ⅆx ℎ−ℎ≠ℎ3(−ℎ)4+ℎ3⋅ℎ4∴ ∫f (x )ⅆx ℎ−ℎ≈A −1f (−ℎ)+A 0f (0)+A 1f (ℎ) 具有3次代数精度(2) ∫f (x )ⅆx 2h−2h ≈A −1f (−h )+A 0f (0)+A 1f (h )解:将f(x) = 1,x ,x 2分别代入公式两端并令其左右相等,得: A −1+A 0+A 1=4ℎ −ℎA −1+ℎA 1=0 ℎ2A −1+ℎ2A 1=163ℎ3解得A -1 = 8ℎ3 ,A 0 = -4ℎ3,A 1 = 8ℎ3. 即所求公式至少具有2次代数精度, 又由于:∫x 3ⅆx 2ℎ−2ℎ=8ℎ3(−ℎ)3+8ℎ3⋅ℎ3 且 ∫x 4ⅆx 2ℎ−2ℎ≠8ℎ3(−ℎ)4+8ℎ3⋅ℎ4∴ ∫f (x )ⅆx 2ℎ−2ℎ≈A −1f (−ℎ)+A 0f (0)+A 1f (ℎ) 具有3次代数精度2. 分别用梯形公式和辛普森公式计算下列积分: (2)∫√x ⅆx 91,n = 4解:h =b−a n=9−14= 2根据复合梯形公式:∫√x ⅆx 91= ℎ2[f (1)+f (9)+2∑f (x k )3k=1] =(1 + 3 + 2√3+2√5+2√7) ≈17.228 根据复合辛普森求积公式: ∫√x ⅆx 91= ℎ6[f (1)+4∑f(x k+12)3k=0+2∑f (x k )3k=1+f (9)]= 13(1 + 4√2+4√4+4√6+4√8 + 2√3+2√5+2√7 + 3) ≈ 17.3326. 若用复合梯形公式计算积分I = ∫ⅇx ⅆx 10,问区间[0, 1]应分多少等份才能使截断误差不超过12×10-5 ?若改用复合辛普森公式,要达到同样精度区间[0, 1]应分多少等份?解:f(x) = e x , f’’(x) = f (4)(x) = e x , b-a = 1, h = 1n , ∴根据复合梯形公式: | R n (f) | = | -b−a 12ℎ2f ′′(η) | =ⅇx 12n≤ ⅇ12n≤ 12× 10-5 求得n ≥ 212.85, 取n = 213, 即将区间[0, 1]分为213等份时,用复合梯形公式计算,截断误差不超过12×10-5。

数值分析习题(含答案)

数值分析习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

数值分析第五章实习题答案

数值分析第五章实习题答案

数值分析第五章实习题答案数值分析第五章实习题答案数值分析是一门研究如何使用计算机来解决数学问题的学科。

在数值分析的学习过程中,实习题是非常重要的一部分,通过实习题的练习,可以帮助我们巩固所学的知识,并且提高我们的解题能力。

本文将为大家提供数值分析第五章实习题的答案,希望对大家的学习有所帮助。

第一题:求下列方程的一个正根,并用二分法和牛顿法分别计算根的近似值。

方程:x^3 - 3x + 1 = 0解答:首先,我们可以通过绘制函数图像来初步估计方程的根的范围。

根据图像,我们可以大致确定根在区间[0, 2]之间。

接下来,我们使用二分法来计算根的近似值。

根据二分法的原理,我们将区间[0, 2]等分为两部分,然后判断根在哪一部分。

不断重复这个过程,直到找到根的近似值。

具体计算过程如下:- 将区间[0, 2]等分为两部分,得到中点x = 1。

- 计算方程在x = 1处的函数值f(1) = -1。

- 根据函数值的正负性,我们可以确定根在区间[1, 2]之间。

- 将区间[1, 2]等分为两部分,得到中点x = 1.5。

- 计算方程在x = 1.5处的函数值f(1.5) = 1.375。

- 根据函数值的正负性,我们可以确定根在区间[1, 1.5]之间。

- 重复以上步骤,直到找到根的近似值。

最终得到根的近似值为x ≈ 1.365。

接下来,我们使用牛顿法来计算根的近似值。

牛顿法是一种迭代法,通过不断逼近根的位置来计算根的近似值。

具体计算过程如下:- 选择初始近似值x0 = 1。

- 计算方程在x = 1处的函数值f(1) = -1。

- 计算方程在x = 1处的导数值f'(1) = 4。

- 利用牛顿法的迭代公式x1 = x0 - f(x0)/f'(x0),我们可以得到x1 ≈ 1.333。

- 重复以上步骤,直到找到根的近似值。

最终得到根的近似值为x ≈ 1.365。

通过二分法和牛顿法,我们分别得到了方程x^3 - 3x + 1 = 0的一个正根的近似值为x ≈ 1.365。

数值分析第5章习题

数值分析第5章习题

1. 过点),(),...,,(),,(551100y x y x y x 的插值多项式P(x)是()次的多项式 A. 6 B. 5 C. 4 D. 3 考查知识点:插值多项式的基本概念 答案:B2. 通过点),(),,(1100y x y x 的拉格朗日插值基函数)(),(10x l x l 满足() A. 0)(,0)(1100==x l x l B. 1)(,0)(1100==x l x l C. 0)(,1)(1100==x l x l D. 1)(,1)(1100==x l x l 考查知识点:拉格朗日插值基函数的性质 答案:D3. 设)(x L 和)(x N 分别是)(x f 满足同一插值条件的n 次拉格朗日和牛顿插值多项式,它们的插值余项分别是)(x r 和)(x e ,则(B.) 考查知识点:插值多项式的存在唯一性 A.)()(),()(x e x r x N x L =≠B.)()(),()(x e x r x N x L ==C.)()(),()(x e x r x N x L ≠=D.)()(),()(x e x r x N x L ≠≠解析:插值多项式存在唯一性定理可知,满足同一插值条件的拉格朗日插值多项式和牛顿插值实际上是同一个多项式,故,余项也相同。

4. =∇+∆k k y y _______ 考查知识点:差分的概念 答案:11-+-k k y y5. ]2,,2,2[]2,,2,2[,13)(817147f f x x x x f 和则+++=为 与[][]!80!8)(22221!7!7!7)(222)8(8710)7(710===⋯⋯===⋯⋯ξξf f f f ,,,,,,,根据差商和导数关系6. 的二次插值多项式为则时当)(4,3,0)(2,1,1x f ,x ,f x -=-= (拉格朗日插值) 解: 4,3,2,1,110210=-===-=y y x x x ,Lagrange 这里插值公式利用二次得,42=y)()()()(2211002x l y x l y x l y x L ++=3723653)1)(1(406)2)(1(32-+=-+⨯++--⨯-=x x x x x x7. 设2)(x x f =,则)(x f 关于节点2,1,0210===x x x 的二阶向前差分为_2_。

数值分析习题

数值分析习题

第一章 绪论习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

(误差限的计算)6 设x 的相对误差为%a ,求nx y =的相对误差。

(函数误差的计算)7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算)8 设⎰-=11dx e x eI x n n ,求证: (1))2,1,0(11 =-=-n nI I n n(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。

(计算方法的比较选择)第二章 插值法习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。

1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。

(拉格朗日插值)2 已知9,4,10===x x x y ,用线性插值求7的近似值。

(拉格朗日线性插值)3 若),...1,0(n j x j =为互异节点,且有)())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------=+-+-试证明),...1,0()(0n k x x l xnj k jk j =≡∑=。

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析习题(含答案)

数值分析习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

应用数值分析(第四版)课后习题答案第5章

应用数值分析(第四版)课后习题答案第5章

第五章习题解答1、给出数据点:013419156i i x y =⎧⎨=⎩(1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。

(2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。

(3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。

解:(1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数2202130301191501031013303152933()()()()()()()()()()()()()()i i i x x x x x x L x l x y x x =------==⨯+⨯+⨯-------++=∑代入可得2151175(.).L =。

(2)利用123134,,x x x ===,1239156,,y y y ===构造如下差商表:于是可得插值多项式:229314134196()()()()()N x x x x x x =+-+---=-+-代入可得215135(.).N =。

(3)用事后误差估计的方法可得误差为1501511751350656304.(.)(..).R -=-=-◆ 2、设Lagrange 插值基函数是0012()(,,,,)nj i j i jj ix x l x i n x x =≠-==-∏试证明:①对x ∀,有1()ni i l x ==∑②00110001211()()(,,,)()()nk i i i n n k l x k n x x x k n =⎧=⎪==⎨⎪-=+⎩∑ 其中01,,,n x x x 为互异的插值节点。

证明:①由Lagrange 插值多项式的误差表达式101()()()()()!n ni i f R x x x n ξ+==-+∏知,对于函数1()f x =进行插值,其误差为0,亦即0()()ni ii f x l x f==∑精确成立,亦即1()ni i l x ==∑。

数值分析第五版第5章习题答案

数值分析第五版第5章习题答案

第5章
)矩阵行列式的值很小。

)矩阵的范数小。

)矩阵的范数大。

(7)奇异矩阵的范数一定是零。

答:错误,

•可以不为0。

(8)如果矩阵对称,则|| A||1 = || A||∞。

答:根据范数的定义,正确。

(9)如果线性方程组是良态的,则高斯消去法可以不选主元。

答:错误,不选主元时,可能除数为0。

(10)在求解非奇异性线性方程组时,即使系数矩阵病态,用列主元消去法产生的误差也很小。

答:错误。

对于病态方程组,选主元对误差的降低没有影响。

(11)|| A ||1 = || A T||∞。

答:根据范数的定义,正确。

(12)若A是n n的非奇异矩阵,则
)
(
cond
)
(
cond1-
=A
A。

答:正确。

A是n n的非奇异矩阵,则A存在逆矩阵。

根据条件数的定义有:
1
111111 cond()
cond()()
A A A
A A A A A A A
-
------
=•
=•=•=•
习题
如有侵权请联系告知删除,感谢你们的配合!。

李庆扬-数值分析第五版第5章和第7章习题答案解析

李庆扬-数值分析第五版第5章和第7章习题答案解析

WORD格式.分享第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?k答:使用高斯消去法时,在消元过程中可能出现a的情况,这时消去法无法进行;即kkk时主元素0和舍入增长a,但相对很小时,用其做除数,会导致其它元素数量级的严重kk计误差的扩散,最后也使得计算不准确。

因此高斯消去法需要选主元,以保证计算的进行和算的准确性。

当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。

计算时一般选择列主元消去法。

2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。

用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。

A需要满足的条件是,顺序主子式(1,2,⋯,n-1)不为零。

3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。

4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。

,切对角元素恒为正数,因此,是一个稳定的平方根法在分解过程中元素的数量级不会增长算法。

5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。

向量范数定义见p53,符合3个运算法则。

正定性齐次性三角不等式x为向量,则三种常用的向量范数为:(第3章p53,第5章p165)设n||x|||x|1ii11n22||x||(x)2ii1||x||max|x i|1in7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(a ij)的三种范数||A||1,||A||2,精品.资料WORD格式.分享||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。

北师大数值分析习题及答案

北师大数值分析习题及答案

北师大数值分析习题及答案第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差. 25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+. 27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数值分析第五版第5章习题答案

数值分析第五版第5章习题答案

第5章
)矩阵行列式的值很小。

)矩阵的范数小。

)矩阵的范数大。

(7)奇异矩阵的范数一定是零。

答:错误,

•可以不为0。

(8)如果矩阵对称,则|| A||1 = || A||∞。

答:根据范数的定义,正确。

(9)如果线性方程组是良态的,则高斯消去法可以不选主元。

答:错误,不选主元时,可能除数为0。

(10)在求解非奇异性线性方程组时,即使系数矩阵病态,用列主元消去法产生的误差也很小。

答:错误。

对于病态方程组,选主元对误差的降低没有影响。

(11)|| A ||1 = || A T||∞。

答:根据范数的定义,正确。

(12)若A是n n的非奇异矩阵,则
)
(
cond
)
(
cond1-
=A
A。

答:正确。

A是n n的非奇异矩阵,则A存在逆矩阵。

根据条件数的定义有:
1
111111 cond()
cond()()
A A A
A A A A A A A
-
------
=•
=•=•=•
习题
如有侵权请联系告知删除,感谢你们的配合!。

(完整版)数值分析课后习题答案

(完整版)数值分析课后习题答案

第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析试卷习题5

数值分析试卷习题5

32 第五章 习题解答与问题一、习题解答1.求经过A (0,1),B (1,2),C (2,3)三个样点的插值多项式解:令x 0 = 0,x 1 = 1,x 2 = 2,则有f (x 0)=1,f (x 1)=2,f (x 2)=3,由Lagrange 二次插值公式)())(())(()())(())(()())(())(()(2120210121012002010212x f x x x x x x x x x f x x x x x x x x x f x x x x x x x x x L ----+----+----=3)12)(02()1)(0(2)21)(01()2)(0(1)20)(10()2)(1(⨯----+⨯----+⨯----=x x x x x x = x+12.已知函数)(x f y =的数据如下表试作一个三次插值多项式P 3(x ),利用P 3(x )计算3解:令x k = kk根据Newton )]}()[({))(()()(2342121213412213-+-++=--+-++=x x xx x x x x x x P由于被插值函数xx f 3=)(,故取 x = 1/2,便得222134212122112133=-+-++=≈)]}()[({)/(P3.已知函数y = f (x )解:由于x=0是二重零点,令3。

又由3,H 3(1)=1得方程组33⎩⎨⎧=+-=-11b a a b 解之:a =1,b = 0 所以,H 3(x ) = x 3。

4.设被插值函数f (x )在区间[x 0,x 1]上具有2阶连续导数,求证:两点线性插值函数L (x )的误差界满足不等式8)(|)(|max |)(|20110x x x f x R x x x -''≤≤≤证:由拉格朗日插值误差定理,得))((!2)()()()(10x x x x f x L x f x R --''=-=ξ 令h (x ) = (x – x 0)(x – x 1),求导数并令其为零,可得极值点x *=0.5×(x 0 + x 1)。

(完整版)数值分析部分课后答案第二版朱晓临

(完整版)数值分析部分课后答案第二版朱晓临

数值分析第二版 朱晓临第一章 习题3.324.045≈324.0 60.0876≈60.090.00035167≈0.0003517 2.00043≈2.000 6.①**x x x-≤51441111111010100.005%222a a -+--⨯=⨯⨯≤⨯=(1≤1a ≤9) 故它的相对误差限为0.005%②∵*12120....100....10n n n n x a a a a a a =±⨯=⨯<()10.110na +⨯相对误差限=0.03%***3311*n n n x x x x x x----=⨯⨯⨯⨯⨯⨯<0.03%0.(a +1)10=0.3(0.a +1)10<0.510 ∴至少有3位有效数字。

7.6*1), 1.4,0.004096A A =≈=则1.4≈时,⑴()610.005232781≈⑵(330.008-≈⑶()310.0051252613≈+⑷991-≈所以利用第三个得到的计算结果的绝对误差最小。

8.由函数的绝对误差公式:***(())'()()e f x f x e x ≈ ① 令2**2*(),()(),100f x x f x x x ===cm由题目得,*(())1e f x =,**'()2f x x = ②把②代入①,得: 1≈**2()x e x ⋅ 1≈*2100()e x ⨯⋅ *()e x 0.005cm ≈边长的测量误差不超过0.005cm 时,才能使其面积的误差不超过12cm 。

11.**()ln ,()ln f x x f x x ==令则由公式***(())'()()e f x f x e x ≈,得: ***1(())0.510e f x x x l x≈-<⨯- 又***()r x x x xε-≤, 由此可知,*()0.510l r x ε-=⨯所以*x 的相对误差限为0.510l -⨯,有l 位有效数字。

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于
15. 已知在处的函数值,求及的近似值并估计误差。 考查知识点:等距节点插值公式 解:首先构造查分表如下:
0
1.00000
0.1
0.99500 -0.00500
0.2
0.98007 -0.01493 -0.00993
0.3
0.95534 -0.02473 -0.00980 0.00013
0.4
出题情况(营销) 8陈飞 11李欣雨
6周莹舒 5张明晓 12张慧 14李墩芝、王雪松
4. _______ 考查知识点:差分的概念 答案:
5. 为 与
6. (拉格朗日插值) 解:
7. 设,则关于节点的二阶向前差分为_2_。 考查知识点:各阶前向差分的应用 解析:由节点可求出对应的函数值,如下表:
0
0
1
1
1
2
4
3
2
8. 已知中有,求的拉格朗日插值多项式。(拉格朗日插值) 解法一(待定系数法):设,由插值条件,有 解得:。 故。 解法二(基函数法):由插值条件,有
9.设,取作出关于的差商表,给出关于的Newton插值多项式,并给出插 值误差。 考查知识点:牛顿插值公式
解析:差商表为
-1
-1
-0.8 0.16032 5.8016
0
1
1.0496 -4.725
0.5 1.15625 0.3125 -0.567 2.79
1
3
3.6875 3.375
2.19
-0.3
0.92106 -0.03428 -0.00955 0.00025
(1) 用牛顿前插公式计算的近计 其中 。
(2) 用牛顿后插公式计算的近似值 后插公式: 取,代入公式得
误差估计 其中 。
出题情况(电信) 张楠 2 张爽 13 李锋 15 陆亚男 3,7,9 张云雪 10 宋剑 1,4
考查知识点:分段插值 解:分段线性Lagrange插值的公式为
14. 已知的函数表
求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余 项表达式估计误差. 解:根据给定函数表构造均差表
由式(5.14)当n=3时得Newton均差插值多项式 N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得 f(0.23) N3(0.23)=0.23203 由余项表达式(5.15)可得
1. 过点的插值多项式P(x)是()次的多项式
A. 6
B. 5
C. 4
D. 3
考查知识点:插值多项式的基本概念
答案:B
2. 通过点的拉格朗日插值基函数满足()
A.
B.
C.
D.
考查知识点:拉格朗日插值基函数的性质
答案:D
3. 设和分别是满足同一插值条件的n次拉格朗日和牛顿插值多项式,它 们的插值余项分别是和,则(B.) 考查知识点:插值多项式的存在唯一性 A. B. C. D. 解析:插值多项式存在唯一性定理可知,满足同一插值条件的拉格朗日 插值多项式和牛顿插值实际上是同一个多项式,故,余项也相同。
0.36
0.04
0.3 2.08
0.40
0.04
0
0.4 2.52
0.44
0.04
0
0
0.5 3.00
0.48
0.04
0
0
0
= =
由x=0.45得t=
11.
x
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291 -0.693147 -0.510826 -0.357765 -0.223144
解:
12.设。(1)试求在上的三次埃尔米特插值多项式,使得,以升幂形式给
Newton插值多项式:
10. 已知函数的函数表如图所示,试列出向后差分表,并写出牛顿的 向后差值公式,用其估计出。
考查知识点:各阶后向差分的运用
x
0.0
0.1
0.2
0.3
0.4
0.5
f(x)
1.00
1.32
1.68
2.08
2.52
3.00
解析:
0.0 1.00
0.1 1.32
0.32
0.2 1.68
出。(2)写出余项的表达式。(埃尔米特插值及其余项的计算)。
解:,,,,
设,
解得:,,,。
故。
,其中,。
12. 设f(x)在各点处的数据,求f(x)在x=0.36,0.98处的近似值。(用分 段插值)
i
0
1
2
3
4
5
0.30
0.40
0.55
0.65
0.80
1.05
0.30163 0.41075 0.57815 0.69675 0.87335 1.18885
相关文档
最新文档