数值分析第四版习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四版

数值分析习题

第一章 绪 论

1. 设x >0,x 的相对误差为δ,求ln x 的误差.

2. 设x 的相对误差为2%,求n

x 的相对误差.

3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指

出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯

4. 利用公式求下列各近似值的误差限:

********12412324(),(),()/,i x x x ii x x x iii x x ++其中****

1234

,,,x x x x 均为第3题所给的数.

5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?

6. 设028,Y =按递推公式

1n n Y Y -=…)

计算到100Y .(五位有效数字),试问计算100Y 将有多大误差?

7. 求方程2

5610x x -+=的两个根,使它至少具有四位有效数字.

8. 当N 充分大时,怎样求

2

11N

dx x +∞

+⎰

?

9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2

? 10. 设

212S gt =

假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误

差增加,而相对误差却减小.

11. 序列

{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),

计算到

10y 时误差有多大?这个计算过程稳定吗?

12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?

3

--

13.

()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式

ln(ln(x x =-

计算,求对数时误差有多大?

14. 试用消元法解方程组

{

101012121010;2.

x x x x +=+=假定只用三位数计算,问结果是否可靠?

15. 已知三角形面积1sin ,2s ab c =

其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为

,,.a b c ∆∆∆证明面积的误差s ∆满足

.s a b c

s a b c ∆∆∆∆≤++

第二章 插值法

1. 根据定义的范德蒙行列式,令

2000011211

121

()(,,,,)11

n n n n n n n n n x x x V x V x x x x x x x x

x x ----==

L L L L L L L L L

证明()n V x 是n 次多项式,它的根是01,,n x x -L ,且

101101()(,,,)()()n n n n V x V x x x x x x x ---=--L L .

2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.

3.

4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数

字,研究用线性插值求cos x 近似值时的总误差界. 5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.

6. 设

j

x 为互异节点(j =0,1,…,n ),求证:

i) 0()(0,1,,);

n

k k

j j j x l x x

k n =≡=∑L

ii)

()()1,2,,).

n

k j

j j x

x l x k n =-≡0(=∑L

7. 设[]2

(),f x C a b ∈且()()0f a f b ==,求证21

()()().

8max max a x b

a x

b f x b a f x ≤≤≤≤≤-"

8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x

e 的近似值,要使截

断误差不超过6

10-,问使用函数表的步长h 应取多少?

9. 若2n

n y =,求4n y ∆及4n y δ.

10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分

()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).

11. 证明

1()k k k k k k f g f g g f +∆=∆+∆.

12. 证明1

1

0010

.

n n k

k

n n k k k k f g

f g f g g f --+==∆=--∆∑∑

13. 证明

1

2

00

.

n j n j y y y -=∆

=∆-∆∑

14. 若1011()n n

n n f x a a x a x a x --=++++L 有n 个不同实根12,,,n x x x L ,证明

{

10,02;

, 1.

1

()

n k n

j

k n a k n j j

x f x -≤≤-=-==

'∑

15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则

[][]0101,,,,,,n n F x x x cf x x x =L L ;

ii) 若()()()F x f x g x =+,则[][][]01

0101,,,,,,,,,n n n F x x x f x x x g x x x =+L L L .

16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣

⎦L 及0182,2,,2f ⎡⎤⎣⎦L . 17. 证明两点三次埃尔米特插值余项是

(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈

并由此求出分段三次埃尔米特插值的误差限.

18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次

埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件

(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.

20. 设

[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()

n x ϕ并证明当n →∞时,()n x ϕ在[

],a b 上一致收敛到()f x .

21. 设2

()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,

计算各节点间中点处的()h I x 与()f x 的值,并估计误差.

22. 求2

()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4

()f x x =在[

],a b 上的分段埃尔米特插值,并估计误差.

试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)

(0.25)(0.53)0.S S "="=

25. 若

[]2

(),f x C a b ∈,()S x 是三次样条函数,证明 i)

[][][][]2

2

2

()()()()2()()()b

b

b

b

a a a a f x dx S x dx f x S x dx S x f x S x dx

"-"="-"+""-"⎰⎰⎰⎰;

ii) 若

()()(0,1,,)i i f x S x i n ==L ,式中i x 为插值节点,且01n a x x x b =<<<=L ,则

相关文档
最新文档