平抛运动:平抛(类平抛)运动基本规律的理解及应用
考点16 平抛运动——2021年高考物理专题复习附真题及解析
考点16 平抛运动考点解读一、平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关。
2.水平射程:x =v 0t =vgh2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关。
3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关。
4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量为Δv =g Δt ,相同,方向恒为竖直向下,如图所示。
5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示。
(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ。
二、常见平抛运动模型的运动时间的计算方法(1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定。
(2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t 。
(3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t ,221gt y =,x y =θtan 可求得gv t θtan 20=。
②对着斜面平抛(如图)方法:分解速度 v x =v 0,v y =gt ,0tan v gt v v xy ==θ 可求得gv t θtan 0=。
(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同,vd t =。
三、类平抛问题模型的分析方法 1.类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直。
高中物理:平抛运动知识点总结与解题技巧
一. 主要知识点:知识点1 平抛运动的特点1. 平抛运动的概念水平抛出的物体只在重力(不考虑空气阻力)作用下所做的运动。
2. 平抛运动的特点由于做平抛运动的物体只受重力的作用,由牛顿第二定律可知,其加速度恒为g,所以平抛运动是匀变速运动;又因为重力与速度不在一条直线上,故物体做曲线运动。
所以,平抛运动是匀变速曲线运动,其轨迹是抛物线。
3. 平抛运动的研究方法(1)运动的独立性原理:物体的各个分运动都是相互独立、互不干扰的。
(2)研究的方法:利用运动的合成与分解。
做平抛运动的物体在水平方向上不受力的作用,做匀速直线运动,在竖直方向上初速为零,只受重力,做自由落体运动。
所以平抛运动是水平方向上的匀速直线运动和竖直方向上的自由落体运动的合运动。
知识点2 平抛运动的规律以抛出点为坐标原点,水平抛出的方向为x轴的正方向,竖直向下的方向为y轴正方向,建立一个直角坐标系xOy。
1. 平抛运动物体的运动轨迹如图所示。
①水平方向上:物体不受力,所以水平方向上做匀速直线运动,有;②竖直方向上:物体只受重力作用,加速度恒为g,而初速度为零,所以做自由落体运动,有;③运动轨迹:。
所以平抛运动的轨迹为抛物线(一半)2. 平抛运动物体的位移如图所示。
①位移的大小:l=;②位移的方向:。
思考:能否用l求P点的位移?3. 平抛运动物体的速度如图所示速度的方向和大小:思考:①能否用求P点的速度?②由以上分析得:,是否有?二. 重难点分析:1、平抛运动的速度变化水平方向分速度保持,竖直方向,加速度恒为g,速度,从抛出点起,每隔△t时间的速度的矢量关系如图所示,这一矢量关系有两个特点:(1)任意时刻的速度水平分量均等于初速度;(2)任意相等时间间隔△t内的速度改变量均竖直向下,且△v=△=。
做平抛运动的物体,在任一时刻的速度都可以分解为一个大小和方向不变的水平速度分量和一个竖直方向随时间正比例变化的分量和构成速度直角三角形如图所示,通过几何知识容易建立起以及之间的关系,许多问题可以从这里入手解决。
平抛运动与类平抛运动
2014届高一物理校本课程
平抛运动与类平抛运动
1.类平抛运动:一般来说,质点受恒力作用具有恒定的加速度,初速度与恒力垂直,质点的运动就与平抛运动类似,通常我们把物体的这类运动称做类平抛运动.例如带电粒子在电场中的偏转运动等.
2.由平抛运动可推广得到物体做类平抛运动的条件
(1)有初速度;
(2)受恒力作用,且与初速度方向垂直。
3.解决此类问题要正确理解合运动与分运动的关系
(1)等时性:合运动与分运动经历的时间相等,即同时开始,同时进行,同时停止;
(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他分运动的影响;
(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果。
1.如图所示,A、B 两质点以相同的水平速度v0抛出,A 在竖直面内运动,落地点为P1,
B 沿光滑斜面运动,落地点为P2,不计空气阻力,比较P1、P2在x 轴方向上距抛出点的远近关系及落地瞬时速度的大小关系,则有
A.P1较近
B.P1、P2一样远
C.A 落地时,速率大
D.A、B 落地时,速率一样大
2.甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,水平面上的P点在丙的正下方.在同一时刻甲、乙、丙开始运动,甲以初速度v0做平抛运动,乙以水平速度v0沿光滑水平面向右做匀速直线运动,丙做自由落体运动.则
A.若甲、丙两球在空中相遇,此时乙球还没有到达P点
B.若甲、乙、丙三球同时相遇,则一定发生在P点
C.若只有甲、乙两球在水平面上相遇,此时丙球还未着地
D.无论初速度v0大小如何,甲、乙、丙三球一定会同时在P点相遇
2022-2-21。
(完整版)平抛运动的知识点
平抛运动的规律与典型例题分析一. 平抛运动的条件1.平抛运动的初始条件:物体拥有水平初速度 V 02.平抛运动的受力特色:只受重力:F=mg(实质问题中阻力远远小于重力,能够简化为只受重力)3.平抛运动的加快度: mg=mα,α=g,方向竖直向下,与质量没关,与初速度大小没关4.平抛运动的理论推理:水平方向—— x :物体不受外力,依据牛顿第必定律,水平方向的运动状态保持不变,水平方向应做匀速直线运动, V x=V0.竖直方向——y:初速度为 0,只受重力,加快度为g,做自由落体运动, V y=gt .二 . 平抛运动的规律如左图所示,以抛出点为坐标原点,沿初速度方向成立x 轴,竖直向下为y 轴.在时间t 时,加快度:α=g,方向竖直向下,与质量没关,与初速度大小没关;平抛运动速度规律:速度方向与水平方向成θ 角平抛运动位移规律:位移方向与水平方向成α 角平抛运动的轨迹方程:为抛物线平抛运动在空中飞翔时间:,与质量和初速度大小没关,只由高度决定平抛运动的水平最大射程:由初速度和高度决定,与质量没关三. 平抛运动的观察知识点与典型例题1.平抛运动定义的观察例题:飞机在高度为 0.8km 的上空,以 2.5 ×10 2 km/h 的速度水平匀速飞翔,为了使飞机上投下的炮弹落在指定的轰炸目标,应当在离轰炸目标的水平距离多远处投弹?分析:设炮弹走开飞机后做平抛运动,在空中飞翔时间为:,炮弹走开飞机后水平位移答案:炮弹走开飞机后要在空中水平飞翔0.9km ,因此要在离轰炸目标0.9km 处投弹问题睁开:轰炸定点目标;轰炸运动目标;飞车跨壕沟等问题研究方法同样2.平抛运动中模型规律观察例题:一架飞机水平匀速飞翔从飞机上每隔一秒开释一个炮弹,不计空气阻力在它们落地之前,炮弹()A、在空中任何时辰老是排成抛物线,它们的落地址是等间距的B、在空中任何时辰老是排成抛物线,它们的落地址是不等间距的C、在空中任何时辰老是在飞机的正下方排成竖直直线,它们的落地址是等间距的D、在空中任何时辰老是在飞机的正下方排成竖直直线,它们的落地址是不等间距的分析:炮弹走开飞机时,拥有和飞机共同的水平初速度,在空中做平抛运动.相关于地面,每一个炮弹在空中的轨迹为抛物线,但在空中的几个炮弹自己其实不排成抛物线.因为它们与飞机的水平速度同样,因此相关于飞机,它们都做自由落体运动,总在飞机的正下方,排成竖直直线.答案:C3.平抛运动试验的观察例题:如何用平抛运动知识丈量子弹的初速度?分析:子弹初速度相当大,水平射程相当远,假如丈量实质水平射程很不方便,且因为空气阻力影响,将出现较大的丈量偏差.能够记录子弹的初始地点,如右图所示,在离枪口必定的距离上,竖直放一块厚纸板,用枪将子弹水平射出,丈量枪口到地面的高度H、子弹在纸板上留下的弹孔到地面的距离h、枪口到纸板的水平距离x.将子弹在不太长时间内的运动当作是平抛运动.则子弹竖直方向的位移为H-h,由自由落体运动关系水平位移联立求解得:4.平抛运动中合速度与两个分速度的关系例题:一个物体以初速度V 0水平抛出,落地时速度的大小为V ,则运动时间为()分析:末速度与初速度不在同一个方向上,不可以用代数方法运算.物体在竖直方向做自由落体运动,在竖直方向的速度比重力加快度才是运动时间,不可以用末速度与重力加快度的比值求时间.由矢量的合成分解关系:如左图所示,竖直分速度答案:C。
类平抛运动知识点总结笔记
类平抛运动知识点总结笔记一、基本概念1. 平抛运动的定义平抛运动是指一个物体在水平方向上做匀速直线运动的过程。
在平抛运动中,物体的运动轨迹是一个抛物线,而竖直方向上的运动是受到重力的影响而做匀变速直线运动。
2. 平抛运动的特点(1)水平速度恒定:在平抛运动中,物体在水平方向上的速度是恒定的,不受外力的影响;(2)竖直加速度恒定:在竖直方向上,物体受到重力的作用,因而竖直方向上的加速度恒定;(3)运动轨迹为抛物线:由于水平方向速度恒定、竖直方向加速度恒定,物体的运动轨迹为一个抛物线。
二、运动规律1. 水平方向的运动规律(1)速度:物体在水平方向上的速度是恒定的,可用以下公式表示:v = v0其中v表示物体的水平速度,v0表示物体的初始速度。
(2)位移:物体在水平方向上的位移可以用以下公式表示:x = v0t + 0.5at^2其中x表示物体在水平方向上的位移,t表示时间,a表示物体的水平加速度。
2. 竖直方向的运动规律(1)速度:物体在竖直方向上的速度可以用以下公式表示:v = v0 + gt其中v表示物体的竖直速度,v0表示物体的初始竖直速度,g表示重力加速度,t表示时间。
(2)位移:物体在竖直方向上的位移可以用以下公式表示:y = v0t + 0.5gt^2其中y表示物体在竖直方向上的位移。
3. 平抛运动轨迹方程由于平抛运动是在水平和竖直方向上同时进行的,所以物体的轨迹可以用以下方程表示:y = xtanθ - (gx^2) / (2v0^2cos^2θ)其中y表示物体在竖直方向上的位移,x表示物体在水平方向上的位移,θ表示抛出角度,v0表示初始速度,g表示重力加速度。
三、应用实例1. 投掷运动当我们往前抛一个物体时,它会在空中做平抛运动。
我们可以利用平抛运动的规律来分析物体的飞行轨迹和落点位置,从而提高投掷的准确性。
2. 炮弹射击在军事领域,炮弹的射击轨迹是一个重要的考量因素。
利用平抛运动的规律,可以精确计算炮弹的射击角度和发射速度,从而达到精确打击目标的目的。
(完整版)平抛运动的知识点总结
(完整版)平抛运动的知识点总结平抛运动是一种常见的物理现象,它涉及到物体在重力作用下沿水平方向以恒定速度运动的情况。
以下是平抛运动的关键知识点总结:1. 基本概念:- 平抛运动是指物体在水平方向上以初速度抛出,同时受到竖直方向重力加速度(g)作用的运动。
- 这种运动可以看作是水平方向的匀速直线运动和竖直方向的自由落体运动的叠加。
2. 运动方程:- 水平方向:$x = v_{0x}t$,其中$v_{0x}$是水平方向的初速度,$t$是时间。
- 竖直方向:$y = v_{0y}t - \frac{1}{2}gt^2$,其中$v_{0y}$是竖直方向的初速度(在纯平抛运动中通常为0),$g$是重力加速度。
3. 速度和位移:- 水平方向的速度保持不变,为$v_{0x}$。
- 竖直方向的速度随时间变化,为$v_{y} = gt$。
- 总速度$v$可以通过速度分量合成得到,使用勾股定理:$v =\sqrt{v_{0x}^2 + v_{y}^2}$。
- 位移分量同样可以通过水平和竖直方向的位移合成得到。
4. 运动时间:- 平抛运动的最大高度由公式$h = \frac{1}{2}gt^2$给出,解出时间$t = \sqrt{\frac{2h}{g}}$。
- 物体落地时间是指从抛出到落地的时间,可以通过竖直位移来计算。
5. 能量分析:- 动能:物体在水平和竖直方向上的动能分别为$K_x =\frac{1}{2}m v_{0x}^2$和$K_y = \frac{1}{2}m v_{y}^2$,总动能为两者之和。
- 势能:由于竖直方向的初速度通常为0,物体在初始时刻的势能为$E_p = mgh$,其中$h$是初始高度。
6. 实验验证:- 平抛运动可以通过实验来验证,例如使用高速摄像机捕捉物体的运动轨迹,或者通过测量不同时间点的位置来计算速度和加速度。
7. 应用场景:- 平抛运动的原理广泛应用于各种领域,如体育运动中的投掷项目、军事中的炮弹发射等。
类平抛运动
类平抛运动类平抛运动是物理学中的一种基本运动形式,当物体受到初速度和重力作用时,会经过一条抛物线轨迹运动。
在该过程中,物体的速度和高度都会随着时间的推移而发生变化,因此该运动也是一种变速运动。
在实际生活中,类平抛运动是非常常见的一种现象,比如投掷运动员投掷铅球或投掷短跑运动员完成起跑等都是类平抛运动的例子。
接下来,我们将通过力学和物理的角度来探讨类平抛运动的基本规律和特征。
一、定义和基本概念类平抛运动是指一个物体在平面内的抛体运动。
此时物体的运动轨迹为抛物线,初速度和重力是物体做功的主要力。
类平抛运动与匀速直线运动、匀变速直线运动以及简谐运动等是物理学中最基本的一些运动形式之一。
基本概念如下:1. 初速度:物体在运动开始时的速度;2. 初位置:物体在运动开始时所处的位置;3. 加速度:物体在运动过程中速度发生变化的大小和方向;4. 重力:物体受到向下作用的引力;5. 时间:物体运动所经历的时间;6. 抛体运动:物体沿着抛物线运动的运动形式。
二、类平抛运动的基本规律在类平抛运动中,物体的运动轨迹为抛物线形,其基本规律包括:1. 匀速直线运动:物体在水平方向上的速度恒定,保持匀速直线运动;2. 加速度:物体在竖直方向上受到重力的作用,速度会不断增加,因此竖直方向的加速度为重力加速度g;3. 抛体运动:整个运动过程中物体沿着一个抛物线形的轨迹做运动,轨迹曲线的形状由初速度的大小和方向以及重力的作用于物体上的时间决定;4. 水平运动:竖直方向上的运动是纯粹的自由落体运动,与水平方向上的运动是完全独立的,因此物体在水平方向上的运动是均匀的;5. 时间的关系:整个运动过程中,竖直方向的运动与水平方向的运动是独立的,因此竖直方向的运动时间和水平方向的运动时间是相同的;6. 能量守恒:在类平抛运动过程中,能量守恒是一条重要的规律。
物体在落地前,重力势能逐渐转化为动能,而在触地瞬间的动能最大,落地后,物体的能量将被转化为热能等其他形式的能量而消失。
平抛运动的性质与基本规律(公式)(含标准答案)
平抛运动的性质与基本规律(公式)一、基础知识 (一)平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2、性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3、基本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.(二)平抛运动基本规律的理解 1、飞行时间:由t = 2hg知,时间取决于下落高度h ,与初速度v 0无关. 2、水平射程:x =v 0t =v 0 2hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3、落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. 4、速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以 做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图所示. 5、两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.二、练习1、关于平抛运动,下列说法不正确的是( )A .平抛运动是一种在恒力作用下的曲线运动B .平抛运动的速度方向与恒力方向的夹角保持不变C .平抛运动的速度大小是时刻变化的D .平抛运动的速度方向与加速度方向的夹角一定越来越小 答案 B解析 平抛运动物体只受重力作用,故A 正确;平抛运动是曲线运动,速度时刻变化,由v =v 20+(gt )2知合速度v 在增大,故C 正确;对平抛物体的速度方向与加速度方向的夹角,有tan θ=v 0v y =v 0gt ,因t 一直增大,所以tan θ变小,θ变小.故D 正确,B 错误.本题应选B.2、对平抛运动,下列说法正确的是( )A .平抛运动是加速度大小、方向不变的曲线运动B .做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关 答案 AC解析 平抛运动的物体只受重力作用,其加速度为重力加速度,故A 项正确;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy =gt 2,水平方向位移不变,故B 项错误.平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t =2hg,落地速度为v =v 2x +v 2y =v 20+2gh ,所以C 项正确,D 项错误.3、质点从同一高度水平抛出,不计空气阻力,下列说法正确的是 ( )A .质量越大,水平位移越大B .初速度越大,落地时竖直方向速度越大C .初速度越大,空中运动时间越长D .初速度越大,落地速度越大 答案 D解析 物体做平抛运动时,h =12gt 2,x =v 0t ,则t =2hg,所以x =v 0 2hg,故A 、C 错误.由v y =gt =2gh ,故B 错误. 由v =v 20+v 2y =v 20+2gh ,则v 0越大,落地速度越大,故D 正确. 4、关于做平抛运动的物体,说法正确的是( )A .速度始终不变B .加速度始终不变C .受力始终与运动方向垂直D .受力始终与运动方向平行 答案 B解析 物体做平抛运动的条件是物体只受重力作用,且初速度沿水平方向,故物体的加速度始终不变,大小为g ,B 正确;物体的平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,其合运动是曲线运动,速度的大小和方向时刻变化,A 错误;运动过程中,物体所受的力与运动方向既不垂直也不平行,C 、D 错误. 5、某人用细线系一个小球在竖直面内做圆周运动,不计空气阻力,若在小球运动到最高点时刻,细线突然断了,则小球随后将做( )A .自由落体运动B .竖直下抛运动C .竖直上抛运动D .平抛运动答案 D6、(2012·课标全国·15)如图,x 轴在水平地面内,y 轴沿竖直方向. 图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动 轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( ) A .a 的飞行时间比b 的长 B .b 和c 的飞行时间相同C .a 的水平初速度比b 的小D .b 的水平初速度比c 的大 答案 BD解析 根据平抛运动的规律h =12gt 2,得t =2hg,因此平抛运动的时间只由高度决定,因为h b =h c >h a ,所以b 与c 的飞行时间相同,大于a 的飞行时间,因此选项A 错误,选项B 正确;又因为x a >x b ,而t a <t b ,所以a 的水平初速度比b 的大,选项C 错误;做平抛运动的物体在水平方向上做匀速直线运动,b 的水平位移大于c ,而t b =t c ,所以v b >v c ,即b 的水平初速度比c的大,选项D正确7、如图所示,一战斗机由东向西沿水平方向匀速飞行,发现地面目标P后开始瞄准并投掷炸弹,若炸弹恰好击中目标P,则(假设投弹后,飞机仍以原速度水平匀速飞行且不计空气阻力) ()A.此时飞机正在P点正上方B.此时飞机是否处在P点正上方取决于飞机飞行速度的大小C.飞行员听到爆炸声时,飞机正处在P点正上方D.飞行员听到爆炸声时,飞机正处在P点偏西一些的位置答案AD8、为了探究影响平抛运动水平射程的因素,某同学通过改变抛出点的高度及初速度的方法做了6次实验,实验数据记录如下表所示.以下探究方案符合控制变量法的是() 序号抛出点的高度(m)水平初速度(m/s)水平射程(m)10.20 2.00.4020.20 3.00.6030.45 2.00.6040.45 4.0 1.2050.80 2.00.8060.80 6.0 2.40A.若探究水平射程与初速度的关系,可用表中序号为1、3、5的实验数据B.若探究水平射程与高度的关系,可用表中序号为1、3、5的实验数据C.若探究水平射程与高度的关系,可用表中序号为2、4、6的实验数据D.若探究水平射程与初速度的关系,可用表中序号为2、4、6的实验数据答案 B解析本题采用控制变量法分析,选B.9、将一小球从高处水平抛出,最初2 s内小球动能E k随时间t变化的图象如图21所示,不计空气阻力,取g=10 m/s2.根据图象信息,不能确定的物理量是()A.小球的质量薄B.小球的初速度C.最初2 s内重力对小球做功的平均功率D .小球抛出时的高度 答案 D解析 小球水平抛出,最初2 s 内下落的高度为h =12gt 2=20 m .由题图知在0时刻(开始抛时)的动能为5 J ,即12m v 20=5 J .2 s 内由动能定理得:mgh =E k2-E k0=(30-5) J =25 J ,求得m =18 kg ,进而求出v 0.因为P =W t =mght ,可求出P ;只有D 项不能求解,故选D.10、如图所示,P 是水平地面上的一点,A 、B 、C 、D 在一条竖直线上, 且AB =BC =CD .从A 、B 、C 三点分别水平抛出一个物体,这三个物 体都落在水平地面上的P 点.则三个物体抛出时速度大小之比v A ∶v B ∶v C 为( )A.2∶3∶ 6 B .1∶2∶ 3 C .1∶2∶3D .1∶1∶1答案 A解析 由题意及题图可知DP =v A t A =v B t B =v C t C ,所以v ∝1t ;又由h =12gt 2,得t ∝h ,因此有v ∝1h,由此得v A ∶v B ∶v C =2∶3∶ 6. 11、将一只苹果(可看成质点)水平抛出,苹果在空中依次飞过三个完全相同的窗户1、2、3,图中曲线为苹果在空中运行的轨迹.若不计空气阻力的影响,则( )A .苹果通过第1个窗户的竖直方向上的平均速度最大B .苹果通过第1个窗户克服重力做功的平均功率最小C .苹果通过第3个窗户所用的时间最短D .苹果通过第3个窗户重力所做的功最多 答案 BC解析 苹果在空中做平抛运动,在竖直方向经过相同的位移,用时越来越少,重力做功相同,由v =h t 及P =mgh t 知A 、D 错,B 、C 对12、(2011·广东·17)如图所示,在网球的网前截击练习中,若练习者在 球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球 刚好落在底线上.已知底线到网的距离为L ,重力加速度为g ,将 球的运动视作平抛运动,下列叙述正确的是( )A .球被击出时的速度v 等于L g2H B .球从击出至落地所用时间为2H gC .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关 答案 AB解析 由平抛运动规律知,H =12gt 2得,t =2Hg,B 正确.球在水平方向做匀速直线运动,由s =v t 得,v =st=L2H g=L g2H,A 正确.击球点到落地点的位移大于L ,且与球的质量无关,C 、D 错误.13、在水平路面上做匀速直线运动的小车上有一固定的竖直杆,其上的三个水平支架上有三个完全相同的小球A 、B 、C ,它们离地面的高度分别为3h 、2h 和h ,当小车遇到障碍物P 时,立即停下来,三个小球同时从支架上水平抛出,先后落到水平路面上,如图所示.则下列说法正确的是( )A .三个小球落地时间差与车速有关B .三个小球落地点的间隔距离L 1=L 2C .三个小球落地点的间隔距离L 1<L 2D .三个小球落地点的间隔距离L 1>L 2 答案 C解析 车停下后,A 、B 、C 均以初速度v 0做平抛运动,且运动时间t 1= 2hg,t 2= 2×2hg=2t 1,t 3= 2×3hg=3t 1 水平方向上有:L 1=v 0t 3-v 0t 2=(3-2)v 0t 1L2=v0t2-v0t1=(2-1)v0t1可知L1<L2,选项C正确.14、(2012·江苏·6)如图所示,相距l的两小球A、B位于同一高度h(l、h均为定值).将A向B水平抛出的同时,B自由下落.A、B与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则()A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰答案AD解析由题意知A做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B为自由落体运动,A、B竖直方向的运动相同,二者与地面碰撞前运动时间t1相同,且t1=2hg,若第一次落地前相碰,只要满足A运动时间t=l v<t1,即v>lt1,所以选项A正确;因为A、B在竖直方向的运动同步,始终处于同一高度,且A与地面相碰后水平速度不变,所以A一定会经过B所在的竖直线与B相碰.碰撞位置由A的初速度决定,故选项B、C错误,选项D正确.。
平抛物体的运动规律及其应用
3. 类平抛运动的求解方法
(1) 常规分解法:将类平抛运动分解为沿初速度方向 的匀速直线运动和垂直于初速度方向 ( 即沿合力的方 向)的匀加速直线运动,两分运动彼此独立、互不影 响、且与合运动具有等时性. (2) 特殊分解法:对于有些问题,可以过抛出点建立 适当的直角坐标系,将加速度分解为ax、ay,初速度 v0分解为vx、vy,然后分别在x、y方向列方程求解.
转台边缘的小物块随转台加速转动,
当转速达到某一数值时,物块恰好滑
离转台开始做平抛运动.现测得转台半径R=0.5 m,离 水平地面的高度H=0.8 m,物块平抛落地过程水平位移 的大小s=0.4 m.设物块所受的最大静摩擦力等于滑动 摩擦力,取重力加速度g=10 m/s2 求: (1)物块做平抛运动的初速度大小v0;
g 轨迹方程:y= 2·x2 2v0
三、平抛运动中的几个推论 1.水平射程和飞行时间 2h (1)飞行时间:t= ,只与 h、g 有关,与 v0 无关. g 2h (2)水平射程:x=v0t=v0 ,由 v0、h、g 共同决定. g 2.做平抛(或类平抛)运动的物体在任一时刻任一位置 处,设其末速度方向与水平方向的夹角为 α,位移与水平 方面的夹角为 θ,则 tan α=2tan θ.
【解析】(1)质点在 x 轴正方向上无外力作用做匀速 直线运动, y 轴正方向受恒力 F 作用做匀加速直线运动. F 15 由牛顿第二定律得:a= = m/s2=15 m/s2. m 1 设质点从 O 点到 P 点经历的时间为 t,P 点坐标为 1 2 (xP,yP),则 xP=v0t,yP= at , 2 yP 又 tan α= ,联立解得:t=1 s,xP=10 m,yP xP =7.5 m. (2)质点经过 P 点时沿 y 方向的速度 vy=at=15 m/s
高三物理08_平抛运动_知识点解析、解题方法、考点突破、例题分析、达标测试
【本讲主要内容】平抛运动平抛运动及类平抛运动的特征及解法【知识掌握】 【知识点精析】1、平抛定义:水平方向抛出的物体只在重力作用下的运动。
广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。
2、平抛特点:(1)初速度:水平。
(2)运动性质:加速度为g 的匀变速曲线运动。
(3)运动轨迹:抛物线,轨迹方程:22x v g y =,抛物线顶点为抛出点。
问题:人站在平台上平抛一小球,球离开手的速度为v 1,落地时速度为v 2,不计空气阻力,下图中能表示出速度矢量的演变过程的是xCAy解释:平抛运动中,任意两个时刻(或两个位置)间的速度变化量t g v ∆=∆,方向恒为竖直向下,正确答案是C 。
3、研究方法:复杂曲线运动可分解为两个互相垂直方向上的直线运动,一般以初速度或合外力的方向为坐标轴进行分解。
平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动这两个分运动。
练习:战争和自然灾害造成了大量难民。
一架飞机正在执行一次国际救援行动,空投救援物资。
设飞机做水平匀速直线飞行,从某时刻起,每隔一秒钟投下一只货箱,这样接连投下了4只相同的货箱,每只货箱在离开飞机后的4s 内,由于降落伞还没有打开,可以假设空气阻力不计,则从第一只货箱离开飞机后的4s 内,关于几只货箱在空中的位置关系的下列说法中正确的是A . 在空中总是排成抛物线,落地点是等间距的B . 在空中总是排成抛物线,落地点是不等间距的C . 在空中总是排成直线,位于飞机的正下方,落地点是等间距的D . 在空中总是排成直线,位于飞机的后方,落地点是等间距的E . 在空中总排成直线,位于飞机正下方,相邻货箱间在竖直方向上的距离保持不变 解释:平抛运动的水平分运动是匀速的,且不受竖直方向的运动的影响,所以应选C 。
4、解题思路:两个方向上分别计算最后再合成。
注意合运动、分运动间的同时性。
5、平抛运动的规律:如图,质点从O 处以v 0平抛,经时间t 后到达P 点。
平抛运动的性质与基本规律(公式)(含答案)
平抛运动的性质与基本规律(公式)一、基础知识 (一)平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2、性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3、基本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.(二)平抛运动基本规律的理解 1、飞行时间:由t = 2hg知,时间取决于下落高度h ,与初速度v 0无关. 2、水平射程:x =v 0t =v 0 2hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3、落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. 4、速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以 做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图所示. 5、两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.二、练习1、关于平抛运动,下列说法不正确的是( )A .平抛运动是一种在恒力作用下的曲线运动B .平抛运动的速度方向与恒力方向的夹角保持不变C .平抛运动的速度大小是时刻变化的D .平抛运动的速度方向与加速度方向的夹角一定越来越小 答案 B解析 平抛运动物体只受重力作用,故A 正确;平抛运动是曲线运动,速度时刻变化,由v =v 20+(gt )2知合速度v 在增大,故C 正确;对平抛物体的速度方向与加速度方向的夹角,有tan θ=v 0v y =v 0gt ,因t 一直增大,所以tan θ变小,θ变小.故D 正确,B 错误.本题应选B.2、对平抛运动,下列说法正确的是( )A .平抛运动是加速度大小、方向不变的曲线运动B .做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关 答案 AC解析 平抛运动的物体只受重力作用,其加速度为重力加速度,故A 项正确;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy =gt 2,水平方向位移不变,故B 项错误.平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t =2hg,落地速度为v =v 2x +v 2y =v 20+2gh ,所以C 项正确,D 项错误.3、质点从同一高度水平抛出,不计空气阻力,下列说法正确的是 ( )A .质量越大,水平位移越大B .初速度越大,落地时竖直方向速度越大C .初速度越大,空中运动时间越长D .初速度越大,落地速度越大 答案 D解析 物体做平抛运动时,h =12gt 2,x =v 0t ,则t =2hg,所以x =v 0 2hg,故A 、C 错误.由v y =gt =2gh ,故B 错误. 由v =v 20+v 2y =v 20+2gh ,则v 0越大,落地速度越大,故D 正确. 4、关于做平抛运动的物体,说法正确的是( )A .速度始终不变B .加速度始终不变C .受力始终与运动方向垂直D .受力始终与运动方向平行 答案 B解析 物体做平抛运动的条件是物体只受重力作用,且初速度沿水平方向,故物体的加速度始终不变,大小为g ,B 正确;物体的平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,其合运动是曲线运动,速度的大小和方向时刻变化,A 错误;运动过程中,物体所受的力与运动方向既不垂直也不平行,C 、D 错误. 5、某人用细线系一个小球在竖直面内做圆周运动,不计空气阻力,若在小球运动到最高点时刻,细线突然断了,则小球随后将做( )A .自由落体运动B .竖直下抛运动C .竖直上抛运动D .平抛运动答案 D6、(2012·课标全国·15)如图,x 轴在水平地面内,y 轴沿竖直方向. 图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动 轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( ) A .a 的飞行时间比b 的长 B .b 和c 的飞行时间相同C .a 的水平初速度比b 的小D .b 的水平初速度比c 的大 答案 BD解析 根据平抛运动的规律h =12gt 2,得t =2hg,因此平抛运动的时间只由高度决定,因为h b =h c >h a ,所以b 与c 的飞行时间相同,大于a 的飞行时间,因此选项A 错误,选项B 正确;又因为x a >x b ,而t a <t b ,所以a 的水平初速度比b 的大,选项C 错误;做平抛运动的物体在水平方向上做匀速直线运动,b 的水平位移大于c ,而t b =t c ,所以v b >v c ,即b 的水平初速度比c的大,选项D正确7、如图所示,一战斗机由东向西沿水平方向匀速飞行,发现地面目标P后开始瞄准并投掷炸弹,若炸弹恰好击中目标P,则(假设投弹后,飞机仍以原速度水平匀速飞行且不计空气阻力) ()A.此时飞机正在P点正上方B.此时飞机是否处在P点正上方取决于飞机飞行速度的大小C.飞行员听到爆炸声时,飞机正处在P点正上方D.飞行员听到爆炸声时,飞机正处在P点偏西一些的位置答案AD8、为了探究影响平抛运动水平射程的因素,某同学通过改变抛出点的高度及初速度的方法做了6次实验,实验数据记录如下表所示.以下探究方案符合控制变量法的是() 序号抛出点的高度(m)水平初速度(m/s)水平射程(m)10.20 2.00.4020.20 3.00.6030.45 2.00.6040.45 4.0 1.2050.80 2.00.8060.80 6.0 2.40A.若探究水平射程与初速度的关系,可用表中序号为1、3、5的实验数据B.若探究水平射程与高度的关系,可用表中序号为1、3、5的实验数据C.若探究水平射程与高度的关系,可用表中序号为2、4、6的实验数据D.若探究水平射程与初速度的关系,可用表中序号为2、4、6的实验数据答案 B解析本题采用控制变量法分析,选B.9、将一小球从高处水平抛出,最初2 s内小球动能E k随时间t变化的图象如图21所示,不计空气阻力,取g=10 m/s2.根据图象信息,不能确定的物理量是()A.小球的质量薄B.小球的初速度C.最初2 s内重力对小球做功的平均功率D .小球抛出时的高度 答案 D解析 小球水平抛出,最初2 s 内下落的高度为h =12gt 2=20 m .由题图知在0时刻(开始抛时)的动能为5 J ,即12m v 20=5 J .2 s 内由动能定理得:mgh =E k2-E k0=(30-5) J =25 J ,求得m =18 kg ,进而求出v 0.因为P =W t =mght ,可求出P ;只有D 项不能求解,故选D.10、如图所示,P 是水平地面上的一点,A 、B 、C 、D 在一条竖直线上, 且AB =BC =CD .从A 、B 、C 三点分别水平抛出一个物体,这三个物 体都落在水平地面上的P 点.则三个物体抛出时速度大小之比v A ∶v B ∶v C 为( )A.2∶3∶ 6 B .1∶2∶ 3 C .1∶2∶3D .1∶1∶1答案 A解析 由题意及题图可知DP =v A t A =v B t B =v C t C ,所以v ∝1t ;又由h =12gt 2,得t ∝h ,因此有v ∝1h,由此得v A ∶v B ∶v C =2∶3∶ 6. 11、将一只苹果(可看成质点)水平抛出,苹果在空中依次飞过三个完全相同的窗户1、2、3,图中曲线为苹果在空中运行的轨迹.若不计空气阻力的影响,则( )A .苹果通过第1个窗户的竖直方向上的平均速度最大B .苹果通过第1个窗户克服重力做功的平均功率最小C .苹果通过第3个窗户所用的时间最短D .苹果通过第3个窗户重力所做的功最多 答案 BC解析 苹果在空中做平抛运动,在竖直方向经过相同的位移,用时越来越少,重力做功相同,由v =h t 及P =mgh t 知A 、D 错,B 、C 对12、(2011·广东·17)如图所示,在网球的网前截击练习中,若练习者在 球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球 刚好落在底线上.已知底线到网的距离为L ,重力加速度为g ,将 球的运动视作平抛运动,下列叙述正确的是( )A .球被击出时的速度v 等于L g2H B .球从击出至落地所用时间为2H gC .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关 答案 AB解析 由平抛运动规律知,H =12gt 2得,t =2Hg,B 正确.球在水平方向做匀速直线运动,由s =v t 得,v =st=L2H g=L g2H,A 正确.击球点到落地点的位移大于L ,且与球的质量无关,C 、D 错误.13、在水平路面上做匀速直线运动的小车上有一固定的竖直杆,其上的三个水平支架上有三个完全相同的小球A 、B 、C ,它们离地面的高度分别为3h 、2h 和h ,当小车遇到障碍物P 时,立即停下来,三个小球同时从支架上水平抛出,先后落到水平路面上,如图所示.则下列说法正确的是( )A .三个小球落地时间差与车速有关B .三个小球落地点的间隔距离L 1=L 2C .三个小球落地点的间隔距离L 1<L 2D .三个小球落地点的间隔距离L 1>L 2 答案 C解析 车停下后,A 、B 、C 均以初速度v 0做平抛运动,且运动时间t 1= 2hg,t 2= 2×2hg=2t 1,t 3= 2×3hg=3t 1 水平方向上有:L 1=v 0t 3-v 0t 2=(3-2)v 0t 1L2=v0t2-v0t1=(2-1)v0t1可知L1<L2,选项C正确.14、(2012·江苏·6)如图所示,相距l的两小球A、B位于同一高度h(l、h均为定值).将A向B水平抛出的同时,B自由下落.A、B与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则()A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰答案AD解析由题意知A做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B为自由落体运动,A、B竖直方向的运动相同,二者与地面碰撞前运动时间t1相同,且t1=2hg,若第一次落地前相碰,只要满足A运动时间t=l v<t1,即v>lt1,所以选项A正确;因为A、B在竖直方向的运动同步,始终处于同一高度,且A与地面相碰后水平速度不变,所以A一定会经过B所在的竖直线与B相碰.碰撞位置由A的初速度决定,故选项B、C错误,选项D正确.。
第2讲平抛运动的规律及应用讲义整理版
第2讲平抛运动的规律及应用板块一主干梳理夯实基础【知识点1】抛体运动n1.平抛运动(1)定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下(不考虑空气阻力)的运动。
(2)性质:平抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线。
(3)条件①v0工0,且沿水平方向。
②只受重力作用。
2.斜抛运动(1)定义:将物体以初速度 v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动。
(2)性质:斜抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线。
【知识点2] 抛体运动的基本规律1.平抛运动(1)研究方法:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。
(2)基本规律(如图所示)①速度关系②位移关系③轨迹方程:y= ^x2。
2.类平抛运动的分析所谓类平抛运动,就是受力特点和运动特点类似于平抛运动,即受到一个恒定的外力且外力与初速度方向垂直,物体做曲线运动。
(1)受力特点:物体所受合力为恒力,且与初速度的方向垂直。
(2)运动特点:沿初速度 v o方向做匀速直线运动,沿合力方向做初速度为零的匀加速直线运动。
板块二考点细研悟法培优考点1平抛运动的基本规律[深化理解][考点解读】1.关于平抛运动必须掌握的四个物理量2.(1)做平抛运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图甲中A点和B点所示。
其推导过程为tan 0=也=吐=y。
v X v o t x2(2)平抛的水平射程与初速度有关吗?提示:有,时间相同的情况下,初速度越大水平射程越大。
尝试解答选BD 。
根据平抛运动的规律 h = 2gt 2,得t = 2h,因此平抛运动的时间只由高度决定,因为 的飞行时间相同,大于 a 的飞行时间,因此 A 错误,B 正确;又因为X a >X b ,而t a < b 的大,C 错误;做平抛运动的物体在水平方向上做匀速直线运动, b 的水平位移大于即b 的水平初速度比c 的大,D 正确。
平抛运动规律及应用
5、类平抛问题
例4. 如图5,光滑斜面长为a,宽为b,倾角为θ 。一物块从斜面左上方顶点P水平入射,从右下 方顶点Q离开斜面,则入射的初速度为多大?
N Qθ
M G1mgsin
D
M
G1
a
G2
D G
a G1 m
m g sin m
g sin
M
N
a v0t
b1•gsin•t2
2
D
v0 a
gsin
速度
合速度v= vx2 vy2
速度方向角的正切值: tan
vy
gt
vx v0
位移规律:如图,以物体的出发点为原点,沿水 平和竖直方向建成立坐标。
水平分位移x= v 0 • t
竖直分位移y=
1 2
gt2
位移 合位移s= x2 y2
位移方向角的正切值:tan y gt
x 2v0
例1、如图,小球在斜面上A点以速度v0水平抛出 ,落在斜面上的C点,已知斜面倾角为θ,求:
平抛运动规律及应用
【知识回顾】 1.平抛运动及规律:1、运动性质:平抛运动 是 匀变速曲线 运动。
2、分解: 平抛运动可分解为水平方向的 匀速直线 运动 和竖直方向的 自由落体 运动。
速度规律:如图,以物体的出发点为原点,沿水 平和竖直方向建成立坐标。
v 水平分速度vx= 0
竖直分速度vy= g t
例3、如图,从倾角为θ的足够长斜面上的A点
,先后将一小球以不同的水平初速度抛出。第一
次初速度为v1,球落到斜面上瞬时速度方向与斜面
夹角为α1,,第二次初速度为v2,球落到斜面上瞬
时速度方向与斜面夹角为α2,,不计空气阻力,若
v1>v2,则α1
高中物理平抛运动的三个推论及其应用
高中物理平抛运动的三个推论及其应用《高中物理·平抛运动》一、抛物线的三个推论:1、抛物线上物体的切线和速度特性:物体沿着抛物线运动,随着时间的推移,它的切线和速度会发生变化,切线首先由负变正,反复两次(分别在过原点和反抛位置),而速度先增再减,最后趋于零。
2、抛物线受重力作用的极大值:抛物线一定会被引力影响,使物体在行进的过程中受到极大的重力作用,这是任何一个物体具有抛物运动特性的原因之一。
3、抛物线对能量消耗的二次拐点:抛物线上的物体在其运动过程中会消耗能量,但是由于不同的介质及环境因素,会使能量消耗的速度出现不同的拐点,从而出现二次拐点的特点。
二、抛物线的应用:1、宇宙射线学:抛物线被广泛应用于宇宙射线学研究中,尤其是宇宙射线源的观测与研究中。
抛物线可以帮助我们更好地了解宇宙射线的源的位置和特性,以便正确理解宇宙结构的细节。
2、气象学:抛物线也被广泛用于气象学的研究中,例如降水量上升和湿度变化等,它可以帮助我们更全面地了解气候状况。
3、交通工程:抛物线也可以用于交通工程中,尤其是交通道路设计,因为道路设计中弯曲和上升下降的形式都可以借助抛物线来考虑。
同时,抛物线也可以用于车辆运行时的路线规划,以期达到最佳的行驶速度以及其他的经济性目的。
4、爆炸力学:由于爆炸力学本身也涉及到物体的平抛和反抛,由此类推,抛物线也可以被用于爆炸力学中,特别是研究爆炸后物体被抛出所覆盖的距离等等。
5、太空探索:抛物线也被用于航天技术,利用抛物线可以使卫星以最短的时间到达行星的指定位置,从而更好地完成探索任务。
总而言之,抛物线在物理学中影响非常大,它可以帮助我们更好地研究宇宙中的物质、气候与宇宙射线的特性,以及交通工程与爆炸力学中的应用,因此在物理学方面被广泛运用。
高中物理必修二54抛体运动的规律(解析版)
5.4 抛体运动的规律【学习目标】1. 知道平抛运动的概念及条件,会用运动的合成与分解的方法分析平抛运动.2. 理解平抛运动可以看作是水平方向的匀速直线运动与竖直方向上的自由落体运动的合运动,且这两个分运动互不影响.3.知道平抛运动的规律,并能运用规律解答相关问题. 【知识要点】 一、平抛运动的特点1.平抛运动的定义:将物体以一定的初速度沿水平方向抛出,不考虑空气的阻力,物体只在重力作用下所做的运动,叫做平抛运动.2.平抛运动的特点:水平方向上为匀速直线运动,竖直方向上为自由落体运动. 二、平抛运动的规律1.研究方法:通常采用“化曲为直”的方法.即以抛出点为原点,取水平方向为x 轴,正方向与初速度v0方向相同;竖直方向为y 轴,正方向竖直向下.分别在x 方向和y 方向研究. 2.平抛运动的规律在水平方向,物体的位移和速度分别为:⎩⎪⎨⎪⎧x =v x tv x =v 0在竖直方向,物体的位移和速度分别为:⎩⎪⎨⎪⎧y =12gt 2v y =gt某时刻实际速度的大小和方向:v t =v 2x +v 2y ,合速度与水平方向成θ角,且满足tan θ=v y v x =gt v 0. t 时间内合位移的大小和方向:l =x 2+y 2,合位移与水平方向成α角,且满足tan α=y x =gt2v 0.三、平抛运动的两个推论1.推论一:某时刻速度、位移与初速度方向的夹角θ、α的关系为tan θ=2tan_α.2.推论二:平抛运动的物体在任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点. 【题型分类】题型一、平抛运动的理解例1 关于平抛物体的运动,以下说法正确的是( ) A .做平抛运动的物体,速度和加速度都随时间增大B .做平抛运动的物体仅受到重力的作用,所以加速度保持不变C .平抛物体的运动是匀变速运动D .平抛物体的运动是变加速运动解析 做平抛运动的物体,速度随时间不断增大,但由于只受恒定不变的重力作用,所以加速度是恒定不变的,选项A 、D 错误,B 、C 正确. 答案 BC 【同类练习】1.关于平抛运动,下列说法正确的是( ) A .平抛运动是非匀变速运动 B .平抛运动是匀速运动 C .平抛运动是匀变速曲线运动D .平抛运动的物体落地时的速度可能是竖直向下的 答案 C解析 做平抛运动的物体只受重力作用,产生恒定的加速度,是匀变速运动,其初速度与合外力垂直不共线,是曲线运动,故平抛运动是匀变速曲线运动,A 、B 错误,C 正确;平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,故落地时的速度是水平方向的分速度和竖直方向的分速度的合速度,其方向一定与竖直方向(或水平方向)有一定的夹角,D 错误. 题型二、平抛运动规律的应用例2 如图所示,排球运动员站在发球线上正对球网跳起从O 点向正前方先后水平击出两个速度不同的排球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动基本规律的理解及应用
一、平抛运动的几个基本规律
1.飞行时间:t= 2gh,大小取决
v0
于下落高度 h,与初速度 v0 无关.
2.水平射程:x=v0t=v0 2gh,与初 h 速度 v0 和下落高度 h 有关.
3.落地速度:v= vx2+v2y= v20+2gh,
v 与 v0 的夹角 tan θ=vy /vx=
2gh,大 v0
小与初速度 v0 和下落高度 h 有关.
x=?
速度的 改变量△v
t=? vx=v0 θ
vy v=?
4.速度改变量:因为平抛运动的 加速度为恒定的重力加速度g,所 以做平抛运动的物体在任意相等 时间间隔Δt内的速度改变量Δv= gΔt相同,方向恒为竖直向下,如 图所示.
球员在球门中心正前方距离球门s处
高高跃起,将足球顶入球门的左下方
死角(图中P点)。球员顶球点的高度 h
为h,足球做平抛运动(足球可看成质
L/2
点,忽略空气阻力),则( )
s
A.足球位移的大小 x= L42+s2 B.足球初速度的大小 v0= 2gh(L42+s2)
注意分析足球的空间 位置及运动特征
C.足球末速度的大小 v= 2gh(L42+s2)+4gh
D.足球初速度的方向与球门线夹角的正切值 tan θ=2Ls
转解析
【备选】(多选)某物体做平抛运动时,
它的速度方向与水平方向的夹角为θ,
其正切值tan θ随时间t变化的图象如图
所示,(g取10 m/s2)则(
).
A.第1 s物体下落的高度为5 m
B.第1 s物体下落的高度为10 m
C.物体的初速度为5 m/s
平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑.
已知斜面顶端与平台的高度差h=0.8 m,重力加速度g取10 m/s2,
sin53°=0.8,cos53°=0.6,则: (1)小球水平抛出的初速度v0是多少? (2)斜面顶端与平台边缘的水平距离x是多少?
隐含了什么 运动信息?
(3)若斜面顶端高H=20.8 m,则小球离开平台后经多长时间t到达
斜面底端?
对于平抛运动物理量的临界值问 题,解答的关键是找出临界点.
v1=? v2=?
转 解析
D.物体的初速度是10 m/s
此点的坐标 值能提供什 么信息?
解图正析象确审析可,题疑得因C 错vgt0a=误2题1物n、、1;有体,θt求=a何v的n0gv第=启 θ0t竖==11发直0vgsvv0物xy?tm分=,体/s位对gv,0t下=应移D落. 2v的第h确答g0=h高,案1,12s度Bg此t内2错A即=推物D误是12导体×.求1公下0×第式落121对m的s内=解高5度m解:析,A显隐正
反思提升 “化曲为直”思想在平抛运动中的应用
(1)根据运动效果的等效性,利用运动分解的方法,将其转化 为我们所熟悉的两个方向上的直线运动:
①水平方向的匀速直线运动; ②竖直方向的自由落体运动。 (2)运用运动合成的方法求出平抛运动的速度、位移等。
【备选训练】 如图示,一小球自平台上水平抛出,恰好落在临近
5.平抛运动的三个推论
(以抛出点为起点)
1.角度关系:
Байду номын сангаас
O
任意时刻速度偏向角的正切值是
位移偏向角正切值的2倍.
tanθ=2tanα
2.中点关系:
任意时刻速度的反向延长线必通 y
过该段时间内发生的水平位移的
中点.如图中OP=x/2.
v0 P
α
θ
x θ v0 v
【例1】
如图
v0
所示为足球球门,球门宽为L。一个