PKC诱导的细胞凋亡相关蛋白研究进展

PKC诱导的细胞凋亡相关蛋白研究进展
PKC诱导的细胞凋亡相关蛋白研究进展

?综述?

PKCδ诱导的细胞凋亡相关蛋白研究进展3

张炜,叶华,叶菜英△,张德昌

【摘要】蛋白激酶C是一个庞大的家族,参与了细胞内多种信息传导通路,具有复杂的生理功能,目前认为其亚型之一PKCδ可诱导细胞的凋亡。该过程信号通路复杂,相关蛋白种类繁多,除常见的caspase家族以外,p53、PLS-3、拓扑异构酶、Mcl-1等蛋白也参与了PKCδ对凋亡的调节过程。

【关键词】PKCδ;凋亡;p53;PLS-3

【中图分类号】R364 【文献标识码】 A 【文章编号】1606-8106(2007)02-0128-03

蛋白激酶C(PKC)是一类由多种同工酶组成的丝/苏氨酸蛋白激酶家族,处于磷脂酰肌醇代谢应答细胞所受到刺激的中心环节,与神经传导、肿瘤生长及细胞的生长、分化和凋亡等生理病理过程有着密切的联系。其中,PKCδ,一种不依赖于Ca2+的nPKC亚型,现认为可促进细胞凋亡过程[1]。在各种刺激因素的作用下,PKCδ可移位至线粒体[2]或细胞膜,促使caspase3活化[3],将其切割并释放出活性片断[4],进而磷酸化多种底物蛋白,使之活化或失活,最终引起细胞凋亡。在这个过程中,有多种细胞因子如细胞色素c,c-Abl, AnnexinV[5]NGF/p75[6]DNA-PK等都参与了细胞凋亡的调节,本文只就其中一部分,p53、PLS-3、拓扑异构酶Ⅱα和Mcl-1在PKCδ依赖的细胞凋亡途径中所起作用做一个简单的阐述。

1DNA结合蛋白p53

p53,是一种DNA结合蛋白,由p53基因编码的细胞核磷蛋白,作为转录因子,可调节多种基因的表达,如p21、Bax、Bcl-2、Gadd等,并可以与多种蛋白如c-Abl等相互作用[7]。其正常功能为调控细胞分化,维持细胞基因的完整性,对DNA损伤的修复以及细胞周期的正常运转。白血病、骨肉瘤、肺癌、直肠结肠癌中,p53蛋白发生突变或缺失。

对于P53在细胞死亡信号过程中的作用,已经进行了很多的研究。活性氧或者活性氮处理细胞,可引起细胞死亡,其中细胞内p53蛋白水平升

3基金项目:“973”项目(3003CB515401)和国际科技合作重点项目(2005FA31110)

作者单位:100730北京,中国医学科学院基础医学研究所、中国协和医科大学基础医学院(△通讯作者)高,其N-端的9,15,20丝氨酸磷酸化水平升高[8]该过程可由各种激酶调节,这些酶调节的p53N端磷酸化可使p53从MDM2解离,达到稳定存在,细胞中p53累积,诱导或者加速细胞凋亡[9]。

在PKCδ诱发的细胞凋亡过程中,p53也是很重要的调节因子。细胞过量表达p53时,可调节细胞周期并引起细胞凋亡,但当利用siRNA技术使该蛋白缺失时PKCδ诱导的细胞凋亡率显著降低[10],但是在单独异位表达p53时,却并不能诱导细胞凋亡,只有与PKCδ共表达,才又再次恢复诱导凋亡能力。研究表明,p53有诸多的磷酸化位点,比如371、376和378等位的丝氨酸,不同位置氨基酸的磷酸化,可引发各不相同的反应。其中, p5315和46位丝氨酸的磷酸化是PKCδ引发细胞凋亡过程中重要的一环。在NO诱使的多巴胺能细胞凋亡过程中,PKCδ因酪氨酸硝化得以激活,进而磷酸化p5315位丝氨酸,磷酸化的p53与MDM2的结合能力减弱,蛋白酶基础降解水平降低,即稳定性增加,蛋白不断积累,进而诱导细胞凋亡[11]。同时PKCδ与p53DINP1结合,将p5346位丝氨酸磷酸化[12],促使形成细胞凋亡诱导蛋白p53AIP1,引起细胞凋亡。

除了与p53蛋白直接反应之外,PKCδ还能通过影响p53的表达来影响细胞的凋亡(同46Ser)。在PKCδ诱导的细胞凋亡中,p53的表达明显升高,而抑制其活性时,p53的基础表达量有了明显的降低[13]。

2磷脂转移酶

磷脂转移酶(PLS)是一种对于细胞线粒体形态、功能以及凋亡应答都具有重要作用的酶。该家族具有四名成员,分别为:位于细胞膜,可转移

到细胞核的PLS1(14),位于细胞核但目前了解并不清楚的PLS2以及存在于线粒体的PLS3,其中, PLS3与细胞凋亡的关系最为密切。当细胞内过量表达PLS3时,便可增加UV诱导的细胞凋亡,并且增加线粒体外膜心磷脂(双磷脂酰甘油cardiolip2in)的数量。如果抑制PLS3的表达,可以引起小鼠胰岛素耐受,葡萄糖耐受不良和血脂障碍,导致腹部脂肪的异常堆积[15]。研究表明,PLS3也有参与了PKCδ介导的细胞凋亡过程。例如,在UV照射后,PLS3可以以高亲和力状态直接与PKCδ结合[16]。另外,AD198处理后,PKCδ转位至线粒体,诱发细胞色素C的释放以及随后caspase的激活[17]。在此过程中,PKCδ可直接与PLS3结合,并将21位苏氨酸磷酸化,使其获得更高活性。PLS3磷酸化后,处于活化状态,加速了线粒体内膜合成的心磷脂外翻到外膜的过程,加强tBid对线粒体的定位,进而诱发caspase的活化以及细胞色素c的释放,进而诱导细胞凋亡。PKCδ与PLS的结合并将其磷酸化的过程发生于细胞凋亡早期,位于caspase级联反应上游,且不依赖于线粒体通透性的改变。

3拓扑异构酶Ⅱα

拓扑异构酶是一种调解DNA拓扑学状态的酶,其方式是一过性剪切和再连接双链DNA,催化DNA环的解环和解结,催化超螺旋化DNA的松弛,也是细胞核间质以及有丝分裂的染色体支架的组分。对间期染色质浓缩成间期染色体以及后期姐妹染色单体分离都具有重要作用[18]。该家族包括两个亚型:Ⅰ型酶在双链结构中使其中一条链暂时断裂,而拓扑异构酶Ⅱ型使双链结构均暂时断裂。拓扑异构酶Ⅱ参与细胞内多项进程,比如复制、转录、重组以及染色质的浓缩与解离等。

在DNA损伤诱发的PKCδ依赖性细胞凋亡过程中,拓扑异构酶作为其底物之一,也起到了重要作用。当DNA受到损伤时,PKCδ转位到细胞核,除与DNA-PK以及Rad9相互所用之外,还可以与拓扑异构酶Ⅱα发生反应[19]。PKCδ的催化活性片断可直接与拓扑异构酶Ⅱα的C端结合,增加拓扑异构酶的稳定性及催化活性,将它持续保持与DNA处于结合的状态,这种酶与DNA稳定结合的复合物引发DNA损伤,进而诱导细胞凋亡。

同时,PKCδ的活化还可以引起拓扑异构酶Ⅱα的过量表达,而此酶的过表达也可以诱使细胞转向凋亡。目前有多种抗癌药物的作用靶点便是拓扑异构酶Ⅱ。

4Bcl-2蛋白的同系物Mcl-1

Mcl-1是Bcl-2蛋白的同系物,由于在类单核细胞ML-1分化时上调而鉴定的一种蛋白质。Mcl-1是Bcl-2家族独特的一员,半衰期较短,对于环境改变以及刺激因子可快速产生应答,而且其表达受转录以及翻译水平等多种途径调节。例如可对佛波酯[20]或白介素3[21]产生应答,并且在小鼠造血干细胞的早期移植以及发育过程中起到重要作用[22],该蛋白与PKCδ依赖性细胞凋亡密切相关。Mcl-1敲除小鼠,可造成胚胎致死,利用siRNA下调Mcl-1水平时,可使得PKCδ诱导的HaCaT细胞凋亡显著增加。

Mcl-1可结合Bak、Bax等Bcl-2家族蛋白[23],在UV诱导的细胞凋亡过程早期,Mcl-1缺乏,Bak、Bax蛋白可自由形成寡聚体,调整线粒体微孔结构,促使细胞色素c和其他促凋亡蛋白因子由线粒体释放以及Bax转位。这些因子的释放,激活caspase-9,以及随后的caspase-3活化,最终导致细胞凋亡。

在PKCδ依赖性的细胞凋亡途径中,PKCδ被激活后,部分会转移至线粒体,易与同位于线粒体的Mcl-1蛋白发生反应。Mcl-1可被PKCδ直接磷酸化,磷酸化后的蛋白易被水解,造成水平降低,循环加速,促进细胞凋亡;异位表达PKCδ,也可增加Mcl-1的蛋白转换从而起到下调作用[24]。

在UV以及其他刺激物诱导的细胞凋亡过程中,PKCδ的剪切以及活化是caspase依赖性的,发生于caspase活化之后,而Mcl-1的缺失却是caspase活化所需条件。PKCδ催化活性片断调节最初的Mcl-1下调,引起Bax/Bak活化,细胞色素c释放,进而caspase激活。因此Mcl-1是强化细胞凋亡级联反应中正反馈回路的关键蛋白。

5结语

多种影响因素可以使PKCδ活化,磷酸化caspase3,随之caspase3切割PKCδ并释放出活性片断(CF)。PKCδCF可磷酸化多种蛋白,比如DNA-PK、laminB、p53等,将其激活,进而引起细胞DNA损伤。PKCδ的功能与所选的细胞种类,诱导物有密切的关系。随着其定位于线粒体、细

胞膜及细胞核等不同的位置,可通过激活不同的信号传导途径从而影响不同的蛋白活性以及表达,进而影响细胞的生长。由于PKCδ作用底物种类众多,信号传导通路复杂,因此虽不断有新的PKCδ作用途径提出,其最终的作用机制以及调解因子目前仍然没有得到确定,但随着研究的不断深入,PKCδ与细胞凋亡的联系终将会越来越清晰。

【参考文献】

1 Taketoshi Kajimoto1Ceramide-induced apopt osis by translocation,

phosphorylation,and activation of protein kinase Cδin the golgi com2plex J1Biol1Chem,2004,279:12668-126761

2 Michael J,Humphries,Kirsten H1Limesand,Schneider Suppression

of Apoptosis in the Protein Kinase C J1Biol1Chem,2006,281:9728 -97371

3 Voss O H,Kim S,Wewers M D,et al1Regulation of Monocyte Apop2

tosis by the Protein Kinase Cδ-dependent Phosphorylation of Caspase-3J1Biol1Chem,2005,280,17371-173791

4 Kamada S,Kikkawa U,Tsujimoto Y,et al1Nuclear Translocation of

Caspase-3Is Dependent on Its Proteolytic Activation and Recogni2tion of a Substrate-like Protein(s)J1Biol1Chem,2005,280,857-8601

5 Viktoria Kheifets,Rachel Bright,Protein Kinase Cδ(δPKC)-An2

nexin V Interaction:A R equired Step inδPKC Translocati on and Function J1Biol1Chem,2006,281,23218-232261

6 Chiung-Huei Peng,Chien-Ning Huang,Penta-Acetyl Genipo2

side Induce Apoptosis in C6Glioma Cells by Modulating the Activa2tion of Neutral Sphi ngomyel inase-Induced p75Nerve Growth Fact or Receptor and Protein Kinase CδPathway Mol1Pharm,2006,70:997 -10041

7 Yuan ZM,Shioya H,Ishiko T1p73is regulated by tyrosine kinase c

-Abl in the apoptot ic response to DNA damage Nature,1999,399: 814-8171

8 Kim S J,Hwang SG,Shin,DY,J1p38Kinase Regulat es Nitric Ox2

ide-induced Apoptosis of Arti cular Chondrocytes by Accumulat ing p53via NFκB-dependent Transcription and Stabi lization by Serine 15Phosphorylati on Biol1Chem,2002,277,33501-335081

9 Brooks CL,and Gu,W1Ubiquiti nation,Phosphorylation and Acety2

lati on:the Molecular Basis for p53R egulation Cell Biol,2003,15, 164-1711

10Evan J1Rver,Kenj i Sakaki bara,Protein Kinase C Delta Induces Ap2optosis of Vascular Smooth Muscle Cells through Induction of the Tumor Suppressor p53by Both p38-dependent and p38-inde2

pendent Mechanisms J1Biol1Chem,2005,280,35310-35317111 Sung-Jin Lee,Dong-Chan Kim,Regulation of p53by Activated

Protein Kinase C-during Nitric Oxide-induced Dopaminergic Cell Death J1Biol1Chem,2006,281,2215-22241

12Kiyotsugu Yoshidal,Hanshao Liu.Protein Kinase CδR egulates Ser46Phosphorylation of p53Tumor Suppressor in the Apoptotic Re2sponse to DNA Damage J1Bi ol1Chem,2006,281,5734-5740113Johnson C L,Lu D,Huang.R egulation of p53Stabilization by DNA Damage and Protei n Kinase C,Mol1Cancer Ther,2002,1,861-8671

14 Ben-Efraim I,Zhou Q,Wiedmer T1Phospholipid scramblase1is

imported into the nucl eus by a receptor-mediated pathway and in2teracts with DNA1Biochemistry,2004,43:3518-35261

15Wiedmer T,Zhao J,Li L,et al1Adiposity,dyslipidemia,and insu2lin resistance in mice with targeted deletion of phospholipid scram2bl ase3(PLSCR3)1Proc Natl Acad Sci USA,2004,101:13296-133011

16 Yongwen He,Jihua Liu,David Durrant1N-Benzyladriamycin-14

-Valerate(AD198)Induces Apoptosis through Prot ein Kinase C-δInduced Phosphorylation of P hospholipid Scramblase3CancerRes, 2005,65:10016-100231

17 Minotti G,Menna P,Salvatorelli E.Anthracyclines:molecular ad2

vances and pharmacologic developments i n antitumor activity and cardiotoxicit y1Pharmacol Rev Pharmacol Rev,2004,56:185-229118 Wang J C1Cel lular roles of DNA topoi somerases:a molecular per2

spective1Nat1Rev1Mol1Cell1Biol,2002,3:430-4401

19 Kiyotsugu Yoshida,Tomoko Yamaguchi.Prot ein Kinase CδActi2

vates Topoisomerase II To Induce Apoptotic Cell Death in Response to DNA Damage Mol1Cell Bi ol,2006,3414-34311

20Michels J,Johnson PW.Mcl-1Int1J1Bi ochem1Cell Biol,2005, 37,267-2711

21 Maurer U,Charvet C,Wagman AS.Glycogen synthase kinase-3

regulates mitochondrial outer membrane permeabilization and apopto2sis by destabilization of MCL-11Mol1Cell,2006,21,749-760122 Opferman JT,Iwasaki H,Ong C C.Obligate Role of Anti-Apop2

totic MCL-1in the Survival of Hematopoietic Stem Cells Science, 2005,307,1101-11041

23 Willis SN,Chen L,Dewson G,et al.Proapoptotic Bak is seques2

tered by Mcl-1and Bcl-xL,but not Bcl-2,until displaced by BH3-only proteins Genes&Dev,2005,19,1294-13051

24Leonid A,Sitailo,Shalini S1Tibudan,The Protein Kinase CδCat2alytic Fragment Targets Mcl-1for Degradation to Trigger Apoptosis J1Biol1Chem,2006,281,29703-297101

(编辑:悦铭)

细胞周期和细胞凋亡类基因

细胞周期和细胞凋亡类基因 G0 G1 转变(G0 to G1 transition) 1: mdm4 G1/S 特异转录,有丝分裂细胞周 期(G1/S-specific transcription in mitotic cell cycl e) 1: gfi1 G1/S 转变, 有丝分裂细胞周 期(G1/S transition of mitotic cell cycle) 19: bca t1 ccnd1 ccne1 cdc34 cdc7 cdca5 cdk4 cdkn3 cul1 c ul2 cul3 cul4a cul5 gspt1 lats2 pml ppp6c rcc1 sk p2 G1/S 转变检控 点(G1/S transition checkpoint) 4: dlg1 hus1 nbn p ura G1 期(G1 phase) 2: cdc42 rb1 G1 期, 有丝分裂细胞周 期(G1 phase of mitotic cell cycle) 10: anapc2 cd c23 cdk6 cdkn1c dnaja2 e2f1 map3k11 taf1 taf1l tbr g4

G1 特异转录,有丝分裂细胞周 期(G1-specific transcription in mitotic cell cycle) 1: gfi1b G2/M转变, 有丝分裂细胞周 期(G2/M transition of mitotic cell cycle) 10: ana pc10 anapc4 anapc5 birc5 ccnb1 cdk2 dnm2 khdrbs1 l ats1 tpd52l1 G2/M转变DNA 损伤检控 点(G2/M transition DNA damage check-point) 1: brsk 1 G2 期, 有丝分裂细胞周 期(G2 phase of mitotic cell cycle) 4: cenpf ches 1 gtse1 kpna2 M期(M phase) 2: ilf3 rb1 M期, 有丝分裂细胞周 期(M phase of mitotic cell cycle) 4: cdc25b dlg7 mphosph6 mphosph9 M期特异微管过 程(M phase specific microtubule process) 1: kpna2

细胞凋亡及相关因素的研究进展

细胞凋亡及相关因素的研究进展 论文摘要:细胞凋亡(Apoptosis)是一种生理性死亡Physiogicalcell death,PCD),是细胞对内外信息刺激的 应答反应,[1]它与细胞的生长、分化一样.属于最基本的 细胞学事件或过程.它决定着生物体的基本特征和转归.是胚胎发生和个体发育中清除细胞以维持细胞数目正常的调 节机制。 [2]当组织细胞发生异常调亡时,即可引起疾病的发生。一般来讲.凋亡过多会引起退行性变或早衰,调亡过少.易诱发肿瘤。[3] 因此,细胞凋亡近年来引起生命科学研究领域的广泛关注。本文仅就细胞调亡的概念及相关因素作一简要的概述。 【Summary】 Apoptosis is a kind of Physiogicalcell death and a reaction of cells to around informations stimulate .[1] It is same as cells’ growth and differentiation which belong to the basic cell subject’s incident or process.it decide living things’essential character- Istics ,and used to clear away cells to keep it rgular number’s regulation mechanism in the procees of embryo occur and individual growth.[2]there will couse ill- Ness when the organization cells come into being particularly apoptosis .Generally speaking ,more cell

细胞凋亡实验报告

实验七、Hela细胞凋亡诱导及检测 一、实验目的 学习细胞凋亡诱导及检测。 二、实验原理 1.细胞凋亡是多细胞有机体为调控机体发育,维护内环境稳定,由基因控制的细 胞主动死亡过程,是细胞衰老自然死亡的主要方式之一,是一种自然的生理学 过程。与细胞坏死不同,不会引起炎症反应,不释放细胞内容物。 2.DAPI是一种荧光染料,它可以与DNA双螺旋的凹槽部分发生相互作用,从而与 DNA紧密结合,可在紫外下激发蓝光。 三、实验材料 8.8mol/L的H2O2溶液,甲醇,PBS溶液,10μg/mL的DAPI染液 四、实验步骤 1.细胞传代(上一次实验完成) 2.凋亡诱导 1)取做H.E染色的小皿,加H2O2溶液150μL使终浓度为0.8mol/L 2)24小时后收集细胞进行染色和形态学观察。 3. 染色 1)收集细胞,观察,贴壁细胞较多,直接用PBS溶液洗 2)吸出洗液,加入500μL甲醇,室温固定10min 3)倒掉甲醇,PBS洗净,加500μLPBS溶液和50μLDAPI母液,于37℃染色10min 4)倒掉染液,用PBS洗净(注意避光),加入500μLPBS溶液,倒置荧光显微镜 下观察并拍照。 五、实验结果与分析 1.观察: 实验开始前镜检: 细胞贴壁较多,细胞有的仍呈不规则状,有的细胞已皱缩,还有一些细胞呈圆形浮在培养基中,核质分界不明显。可以看到有的细胞处于裂解状态。 染色后: 由于DAPI染料只对核进行染色,所以在紫外下只可见核的结构。 视野里最多的是正常细胞,其特点是染色质均一且核表面光滑,说明凋亡是不同步的。 凋亡各时期的细胞也都可见,其主要特点是染色不均一。凋亡前期和中期的细胞较多。很少看到凋亡末期的细胞,除了这个时期细胞较少外,还可能因 为在前期操作中很多凋亡小体被洗掉了。而且有的细胞在正常光下观察是明显 的裂解状态,但是到紫外光路下就变得很不明显了。 另外,可以看到很多分裂期的细胞,其特点为染色深,细胞核染色质浓缩,但是看起来较均一,往往有对称性,特别是分裂末期的细胞两个子细胞会靠在 一起。 2.照片及分析:

细胞凋亡试验常用的方法

细胞凋亡试验常用的方法(MTT法、荧光法、DNA琼脂糖凝胶电泳法与流式细胞仪检测法) (一)药物对肿瘤细胞的抑制效应的MTT法: 用培养基将肿瘤细胞调整至2 X108个/L,在96孔板中每孔加入100ul细胞悬液于37℃、5% CO2下培养过夜。 次日每孔加入不同浓度的药物100mg/L作为试验组,设加完全培养基不加药物的阴性对照,并用功能明确的药物为阳性对照和0.5%的乙醇溶剂对照,每组均设4-6个复孔(平行孔)、37℃、5% CO2继续培养。 培养至12h、24h、48h、实验终止前4-6h加入10ulMTT(5g/L),培养4-6h后,阴性对照孔中已形成明显的蓝紫色颗粒结晶时加100ul/孔SDS-HCl终止反应,于37℃存放过夜。 用酶标仪在A570波长下测吸光度值,按下式计算抑制率 抑制率(%)=(1-试验组平均吸光度值/阴性对照组平均吸光度值)x 100%。 (二)荧光法: 选用上述最佳浓度作用于肿瘤细胞,培养细胞48h后,收货细胞用PBS洗2-3次后用0.4%多聚甲醛室温下固定30min。 弃去固定液,并用PBS洗2次后,用1%Triton X-100作用4min加入适量的0.5mg/L DAPI 荧光染色60min,用PBS冲洗3次,取10ul滴片,干燥后于荧光显微镜下检测断裂的颗粒和片状荧光。 (三)DNA琼脂糖凝胶电泳法: 1、DNA提取: 用大方瓶培养肿瘤细胞,每瓶10ml,细胞浓度为3 x 108个/ml,每隔药物浓度、作用时间均设2瓶,共分3个时间段,4个药物浓度。共培养26瓶细胞。 分别于细胞中加入不同浓度的药物,于37℃、5% CO2中分别培养12h、24h、48h,收货细胞,用PBS洗2-3次。 于-20℃将细胞冷却处理10min后将细胞收集至离心管中,加1ml细胞裂解液,再加蛋白酶K,轻轻振摇使悬液混匀,成黏糊状,50℃过夜。 冷却后加入等体积的饱和酚溶液,混合后10000r/min离心10min,吸出上层水相,移至另一离心管中,再加入等体积饱和酚溶液重复抽提一次,直到无蛋白为止。 吸上清加入氯仿/异戊醇(24:1)按上述方法再抽提一次。 吸取水相层加入1/10体积的3mol/L的醋酸钠溶液,混匀。 再加入2.5倍体积冷无水乙醇,混合置-20℃处理30min后,10000r/min离心10min,沉淀部分为提供的DNA,弃去无水乙醇后用70%乙醇漂洗2次,将离心管倒扣在吸水纸上,吸干乙醇。 加入200ulTE缓冲液融解DNA,再加入25ul的RNA酶,置37℃作用30min,置4℃冰箱保存。 2、琼脂糖凝胶电泳: TBE缓冲液配制1.8%琼脂糖凝胶。在微波炉内煮沸至琼脂糖融解,待冷却至60℃时,加入溴化乙锭,使其终浓度为0.5mg/ml,混匀后灌胶。 待凝胶固定后放入含TBE电泳液的电泳槽内,使TBE电泳液盖过凝胶。 取10-15ul提取的各组DNA样品液与上样缓冲液按4:1比例混匀后点样。 60V电泳1h,用紫外透射仪观察梯形条带。

实验14-细胞凋亡的诱导和检测

实验14 细胞凋亡的诱导和检测 20世纪60年代人们注意到细胞存在着两种不同形式的死亡方式:凋亡(apoptosis)和坏死(necrosis)。细胞坏死指病理情况下细胞的意外死亡,坏死过程细胞膜通透性增高,细胞肿胀,核碎裂,继而溶酶体、细胞膜破坏,细胞容物溢出,细胞坏死常引起炎症反应。 细胞凋亡apoptosis一词来源于古希腊语,意思是花瓣或树叶凋落,意味着生命走到了尽头,细胞到了一定时期会像树叶那样自然死亡。凋亡是细胞在一定生理或病理条件下遵守自身程序的主动死亡过程。凋亡时细胞皱缩,表面微绒毛消失,染色质凝集并呈新月形或块状靠近核膜边缘,继而核裂解,由细胞膜包裹着核碎片或其他细胞器形成小球状凋亡小体凸出于细胞表面,最后凋亡小体脱落被吞噬细胞或邻周细胞吞噬。凋亡过程中溶酶体及细胞膜保持完整,不引起炎症反应。细胞凋亡时的生化变化特征是核酸切酶被激活,染色体DNA被降解,断裂为50~300 kb长的DNA片段,再进一步断裂成180~200bp整倍数的寡核苷酸片断,在琼脂糖凝胶电泳上呈现“梯状”电泳图谱(DNA Ladder)。细胞凋亡在个体正常发育、紫稳态维持、免疫耐受形成、肿瘤监控和抵御各种外界因素干扰等方面都起着关键性的作用。 1.细胞凋亡的检测方法 凋亡细胞具有一些列不同于坏死细胞的形态特征和生化特征,据此可以鉴别细胞的死亡形式。细胞凋亡的机制十分复杂,一般采用多种方法综合加以判断,同时不同类型细胞的凋亡分析方法有所不同,方法选择依赖于具体的研究体系和研究目的(表?)。

形态学观察方法:利用各种染色法可观察到凋亡细胞的各种形态学特征: (1)DAPI时常用的一种与DNA结合的荧光染料。借助于DAPI染色,可以观察细胞核的形态变化。 (2)Giemsa染色法可以观察到染色质固缩、趋边、凋亡小体形成等形态。 (3)吖啶橙(AO)染色,荧光显微镜观察,活细胞核呈黄绿色荧光,胞质呈红色荧光。凋亡细胞核染色质呈黄绿色浓聚在核膜侧,可见细胞膜呈泡状膨出及凋亡小体。 (4)吖啶橙(A())/溴化乙啶(EB)复染可以更可靠地确定凋亡细胞的变化,AO只进入活细胞,正常细胞及处于凋亡早期的细胞核呈现绿色;EB只进入死细胞,将死细胞及凋亡晚期的细胞的核染成橙红色。 (5)台盼蓝染色对反映细胞膜的完整性,区别坏死细胞有一定的帮助,如果细胞膜不完整、破裂,台盼蓝染料进入细胞,细胞变蓝,即为坏死。如果细胞膜完整,细胞不为台盼蓝染色,则为正常细胞或凋亡细胞。使用透射电镜观察,可见凋亡细胞表面微绒毛消失,核染色质固缩、边集,常呈新月形,核膜皱褶,胞质紧实,细胞器集中,胞膜起泡或出“芽”及凋亡小体和凋亡小体被临近巨噬细胞吞噬现象。 (6)木精-伊红(HE)染色是经典的显示细胞核、细胞质的染色方法,染色结果清晰。发生凋亡的细胞经HE染色后,其细胞大小的变化及特征性细胞核的变化:染色质凝集、呈新月形或块状靠近核膜边缘,晚期核裂解、细胞膜包裹着核碎片“出芽”凸出于细胞表面形成凋亡小体等均可明显显示出来。 DNA凝胶电泳:细胞发生凋亡或坏死,其细胞DNA均发生断裂,细胞小分子 质量DNA片段增加,高分子DNA减少,胞质出现DNA片段。但凋亡细胞DNA断裂点均有规律的发生在核小体之间,出现180~200 bp DNA片段,而坏死细胞的DNA断裂点为无特征的杂乱片段,利用此特征可以确定群体细胞的死亡,并可与坏死细胞区别。

细胞凋亡蛋白的研究进展

【摘要】细胞凋亡是当前生物学领域中研究的最新课题之一。细胞凋亡是个体发育过程中由一系列蛋白调控的细胞主动死亡过程,在保证多细胞生物健康生存的过程中扮演着关键角色,对个体的正常发育具有重要作用。它在多细胞生物的组织分化、器官发育、机体稳态的维持中有着重要意义。其中bcl-2家族、caspase 家族、p53蛋白、survivin蛋白都是重要的凋亡调节因子,在细胞凋亡中相互联系,相互作用,从而调控细胞凋亡.本文探讨了bcl-2家族、caspase家族、p53蛋白、survivin蛋白对细胞凋亡的调控机制。 【关键词】细胞凋亡、 bcl一2家族、caspase家族、p53 蛋白、survivin 蛋白 引言 细胞凋亡是细胞的一种基本生物学现象,在多细胞生物去除不需要的或异常的细胞中起着必要的作用。它在生物体的进化、内环境的稳定以及多个系统的发育中起着重要的作用。细胞凋亡是多蛋白严格控制的过程,随着分子生物学技术的发展对多种细胞凋亡的过程有了较为深入的认识,但是迄今为止凋亡过程确切机制尚不完全清楚。而凋亡过程的紊乱可能与许多疾病的发生有直接或间接的关系。细胞凋亡是一个主动过程,它涉及一系列蛋白的激活、表达以及调控等的作用。其中caspase家族蛋白、Bcl-2家族蛋白和p53蛋白、survivin等在凋亡的信号转导中扮演着重要角色。 一、caspase家族蛋白 1.1 caspase家族蛋白介绍 caspase是半胱氨酸基天冬氨酸一特异性蛋白酶(cystei-nyl aspartate specific proteinase)即半胱氨酸天冬氨酸酶的缩写。Caspase半胱氨酸天冬氨酸特异性蛋白酶(Cysteinyl aspartate specific proteinase,Caspase)家族,也称为ICE/CED-3家族,是美丽线虫(Caenorhabditis elegans)死亡基因CED-3的同源物。这类蛋白酶与细胞凋亡形态学特征变化(如细胞膜空泡形成、核膜破裂、染色质聚集和边聚及DNA断裂等)以及一些生化改变关系密切。它们是一组存在于胞浆中的半胱氨酸蛋白酶,其共同特点是特异性断开天冬氨酸残基后的肽键。到目前为止,在小鼠和人类中,已经发现caspase家族至少有14个成员。细胞中合成的caspase以无活性的酶原状态存在,经活化后方能执行其功能。 1.2 Caspase分类 Caspase分为三大类:凋亡启动因子(apoptotic initiators)、凋亡执行因子(apoptotic executioners)和炎症介导因子(inflammatory mediators),构成了级联放大效应。凋亡启动因子在级联反应的上游,包括Caspase-2、Caspase-8、Caspase-9、Caspase-10等,能在其它蛋白辅助下发生自我活化并识别和激活下游的Caspase。如Caspase-8几乎能激活所有凋亡级联反应下游的Caspase而诱发凋亡。凋亡执行因子在级联反应的下游,包括Caspase-3、Caspase-6和Caspase-7等,作用于其特异性底物并导致细胞凋亡。如Caspase-3,是Caspase家族中的最重要的凋亡执行者之一,是细胞凋亡过程中的主要效应因子。它的活化是凋亡进入不可逆阶段的标志。炎症介导因子包括

细胞凋亡实验步骤及注意事项

细胞凋亡实验步骤及注意事项 一、实验目的 1、掌屋凋亡细胞的形态特征 2、学会用荧光探针对细胞进行双标记来检测正常活细胞、凋亡细胞与坏死 细胞的方法 二、实验原理 细胞死亡根据其性质、起源及生物学意义区分为凋亡与坏死两种不同类型。凋亡普遍存在于生命界,在生物个体与生存中起着非常重要的作用。它就是细胞在一 定生理条件下一系列顺序发生事件的组合,就是细胞遵循一定规律自己结束生命 的自主控制过程。细胞凋亡具有可鉴别的形态学与生物化学特征。 在形态上可见凋亡细胞与周围细胞脱离接触,细胞变园,细胞膜向内皱缩、胞浆浓缩、内质网扩张、细胞核固缩破裂呈团块状或新月状分布、内质网与细胞膜进一步融合将细胞分成多个完整包裹的凋亡小体,凋亡小体最后被吞噬细胞吞噬消化。在凋亡过程中细胞内容物并不释放到细胞外,不会影响其它细胞,因而不引起炎症反应。 在生物化学上,多数细胞凋亡的过程中,内源性核酸内切酶活化,活性增加。核DNA 随机地在核小体的连接部位被酶切断,降解为180-200bp或它的整倍数的各种片断。如果对核DNA进行琼脂糖电泳,可显示以180-200bp为基数的DNA ladder(梯状带纹)的特征。 相比之下,坏死就是细胞处于剧烈损伤条件下发生的细胞死亡。细胞在坏死早期 即丧失质膜完整性,各种细胞器膨胀,进而质膜崩解释放出其中的内容物,引起炎症反应,坏死过程中细胞核DNA虽也降解,但由于存在各种长度不等的DNA片断,不能形成梯状带纹,而呈弥散状。 一些温与的损伤刺激及一些抗肿瘤药物可诱导细胞凋亡,通常这些因素在诱导凋亡的同时,也可产生细胞坏死,这取决于损伤的剧烈程度与细胞本身对刺激的敏感 程度。 三尖杉酯碱(HT)就是我国自行研制的一种对急性粒细胞白血病,急性单核白血病等有良好疗效的抗肿瘤药物。研究表明HT在0、02~5μg/ml范围内作用2小时,即可诱导HL-60细胞凋亡,并表现出典型的凋亡特征。本实验用1μg/ml HT在体外诱导培养的HL-60细胞发生凋亡,同时也有少数细胞发生坏死。用 Hoechst33342与碘化丙啶(propidium iodide,PI)对细胞进行双重染色,可以区别凋亡、坏死及正常细胞。 细胞膜就是一选择性的生物膜,一般的生物染料如PI等不能穿过质膜。当细胞坏死时,质膜不完整,PI就进入细胞内部,它可嵌入到DNA或RNA中,使坏死细胞着

(整理)凋亡相关的基因和蛋白

细胞凋亡和细胞增殖都是生命的基本现象,是维持体内细胞数量动态平衡的基本措施。在胚胎发育阶段通过细胞凋亡清除多余的和已完成使命的细胞,保证了胚胎的正常发育;在成年阶段通过细胞凋亡清除衰老和病变的细胞,保证了机体的健康。和细胞增殖一样细胞凋亡也是受基因调控的精确过程,在这一节我们就细胞凋亡的分子机理作简要的介绍。 细胞凋亡的途径主要有两条,一条是通过胞外信号激活细胞内的凋亡酶caspase、一条是通过线粒体释放凋亡酶激活因子激活caspase。这些活化的可将细胞内的重要蛋白降解,引起细胞凋亡。 一、凋亡相关的基因和蛋白 细胞凋亡的调控涉及许多基因,包括一些与细胞增殖有关的原癌基因和抑癌基因。其中研究较多的有ICE、Apaf-1、Bcl-2、Fas/APO-1、c-myc、p53、ATM等。 1.Caspase家族 Caspase属于半胱氨酸蛋白酶,相当于线虫中的ced-3,这些蛋白酶是引起细胞凋亡的关键酶,一旦被信号途径激活,能将细胞内的蛋白质降解,使细胞不可逆的走向死亡。它们均有以下特点:①酶活性依赖于半胱氨酸残基的亲核性;②总是在天冬氨酸之后切断底物,所以命名为caspase(cysteine aspartate-specific protease),方便起见本文称之为凋亡酶; ③都是由两大、两小亚基组成的异四聚体,大、小亚基由同一基因编码,前体被切割后产生两个活性亚基。 最早发现人类中与线虫ced-3同源的基因[1]是ICE,即:白介素-1 β转换酶(Interleukin-1 β-converting enzyme)基因,因该酶能将白介素前体切割为活性分子,故名。通过cDNA杂交和查找基因组数据库,在人类细胞中已发现11个ICE同源物[2],分为2个亚族(subgroup):ICE亚族和CED-3家族(图15-6),前者参与炎症反应,后者参与细胞凋亡,又分为两类:一类为执行者(executioner或effector),如caspase-3、6、7,

细胞凋亡实验技术总结

细胞凋亡实验技术总结 一形态学检测 1、光学显微镜和倒置显微镜观察法 未染色细胞:凋亡细胞体积变小、变形,膜完整但出现发泡现象,晚期出现凋亡小体。贴壁细胞出现皱缩,变圆,脱落。染色细胞:姬姆萨染色,瑞氏染色等。凋亡细胞染色质浓缩,边缘化,核膜裂解,染色质分割成块状,形成凋亡小体。 2、荧光显微镜检测法-荧光染料 例如,碘化丙啶(PI)是一种核酸染料,它不能透过完整的细胞膜,但在凋亡中晚期的细胞和死细胞,PI 能够透过细胞膜而使细胞核红染。选用536nm 激发光,细胞核呈红色荧光。 3、电子显微镜 收集细胞,2.5%戊二醛4°C 固定24h,1%四氧化锇后固定,丙酮梯度脱水,经包埋剂浸透后环氧树脂包埋,超薄切片,醋酸铀和枸橼酸铅双重染色,透射电镜观察。凋亡Ⅰ期的细胞核内染色质高度盘绕,出现许多称为气穴现象的空泡结构。Ⅱa 期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。 4、激光扫描共焦显微镜技术 FITC-AnnexinV+PI双染,观察凋亡过程中细胞膜PS表面的变化,并区分正常细胞(An-PI-),早期凋亡细胞(An+PI-),晚期凋亡细胞及坏死细胞(An+PI+),细胞收集过程中出现的损伤细胞(An-PI+)。 二、细胞凋亡的生化及分子生物学检测 1、DNA 断裂检测法 如使用琼脂糖凝胶电泳检测,细胞凋亡时,核染色质凝聚,染色质DNA 在核小体单位之间的连接处断裂。凋亡早期可形成50~300kbp 的DNA 大片段,晚期核酸内切酶在核小体之间剪切核DNA,产生大量长度在180~200bp 整数倍的寡核苷酸片段。 2、膜联蛋白V 法 磷脂酰丝氨酸(PS)位于正常细胞膜的内侧,但在细胞凋亡的早期,PS 可从细胞膜的内侧翻转到细胞膜表面。Annexin-Ⅴ(膜联蛋白-V)是一种分子量为35-36KD 的Ca2+ 依赖性磷脂结合蛋白,与PS高亲和力。将Annexin-Ⅴ进行荧光素或生物素标记,以标记了的Annexin-Ⅴ作为探针,利用流式细胞仪、荧光显微镜以及共聚焦激光扫描显微镜检测细胞凋亡的发生。 3、细胞凋亡的酶Caspase检测 检测Caspase活力可用免疫杂交技术分析酶原的加工和底物水解的产物,或用人工底物检测酶活力,也可对活化的Caspase做亲和标记。例如分析底物的水解产物,PARP(多聚ADP-核糖聚合酶)第一个被认识的caspase-3底物,它的相对分子质量为116000,水解后形成相对分子质量为85000 及相对分子质量为25000 的两个片段,用抗相对分子质量为85000 片段的抗体检测细胞是否发生凋亡。 4、线粒体膜势能变化的检测 线粒体跨膜电位的存在,使一些亲脂性阳离子荧光染料可结合到线粒体基质,其荧光的增强或减弱反映了线粒体内膜电负性的增高或降低流式细胞仪检测细胞的荧光强度或荧光显微镜观察,拍照正常细胞中, Rh123 能够依赖线粒体跨膜电位进入线粒体基质,荧光强度减弱或消失。而凋亡时,线粒体膜完整性破坏,线粒体膜通透性转运孔开放,引起线粒体跨膜电位的崩溃, Rh123 重新释放出线粒体, 从而发出强黄绿色荧光。

细胞周期与细胞凋亡检测试剂盒(PI法)

细胞周期与细胞凋亡检测试剂盒(PI法) 产品简介: Leagene细胞周期与细胞凋亡检测试剂盒(Cell Cycle and Apoptosis Analysis Kit)是一种采用经典的碘化丙啶染色(PI staining)方法进行细胞周期与细胞凋亡分析的检测试剂盒。碘化丙啶(Propidium Iodide, PI)是一种可以嵌合到双链DNA和RNA的碱基对中与直接和的荧光染料,无碱基特异性。碘化丙啶与双链DNA结合后可以产生荧光,并且荧光强度和双链DNA的含量成正比。细胞内的DNA被Propidium Iodide染色后,可以用流式细胞仪对细胞进行DNA含量测定,然后根据DNA含量的分布情况,可以进行细胞周期和细胞凋亡分析。 碘化丙啶染色后,假设G0/G1期细胞的荧光强度为1,那么含有双份基因组DNA的G2/M期细胞的荧光强度的理论值为2,正在进行DNA复制的S期细胞的荧光强度为1-2之间。凋亡细胞由于细胞核发生浓缩以及发生DNA片段化(DNA fragmentation)导致部分基因组DNA片断在染色过程中丢失,因此凋亡细胞碘化丙啶染色后呈现明显的弱染,即荧光强度小于1,在流式检测的荧光图上出现所谓的sub-G1峰,即凋亡细胞峰。 细胞凋亡时,流式细胞检测可呈现亚二倍体核型的特征,根据光散射的特点,PI染色可以区分细胞凋亡和细胞坏死的细胞峰型。细胞凋亡时,出现凋亡细胞皱缩、染色质浓缩、核碎裂,产生凋亡小体,使细胞的前向光散射低于正常。在细胞凋亡的早期,细胞对前向角光散射的能力显著降低,对侧向光散射的能力增加或没有变化。在细胞凋亡的晚期,前向和侧向光散射的信号均降低。细胞坏死时细胞多表现为细胞肿胀,因此前向光散射高于正常,对侧向光散射高于正常。 Leagene Cell Cycle and Apoptosis Analysis Kit经常用于培养的贴壁或悬浮细胞的细胞周期与细胞凋亡检测,亦可用于区分细胞凋亡和细胞坏死。该试剂盒检测细胞含量范围一般为0.1~1×106之间。 主要成分:

常见的细胞凋亡诱导剂和抑制剂

表1 常见的细胞凋亡诱导剂和抑制剂 诱导剂与抑制剂靶细胞诱导剂 激素地塞米松T细胞 细胞因子IL—2 胸腺细胞 TGF—β肝细胞、上皮细胞、慢性B淋巴瘤细胞 IL—10 髓样白血病细胞 IFN—Υ前B细胞、T细胞抗体抗IgM抗体B细胞 抗IgD抗体B细胞 抗HLA—II抗体静止B细胞 超抗原SPE CD4+T细胞 胞内信号分子调节 剂 放线菌酮T细胞 PKC激活剂胸腺细胞 其他DNA拓扑异构酶抑制 剂 白血病细胞放射线淋巴样细胞 抑制剂 细胞因子IL—2 T H1细胞 IL—4 T H2细胞 IL—10 B、T细胞 IFN—ΥT细胞 IL—4 B细胞 黏附分子LFA—1、ICAM—1 B细胞 VLA—4、VCAM—1 B细胞 胞内信号分子调节 剂 PKC激活剂T、B细胞 细胞凋亡(apoptosis)是一种由基因控制的细胞自主死亡方式。1972年,英国教授Kerr首先提出凋亡的概念。近十余年来,细胞凋亡现象引起了广泛重视,有关的研究工作取得重要进展,并成为医学生物学各学科共同关注的极为活跃的研究领域。 细胞凋亡与组织器官的发育、肌体正常生理活动的维持、某些疾病的发生以及细胞恶变等过程均有密切的关系。

1.形态学变化: 细胞凋亡的形态变化大致可分为三个阶段: 1)胞体缩小,与周围细胞失去联系,细胞器变致密,核体积缩小,核仁消失,染色质浓集于核膜内表面下,形成新月形致密小斑块。 2)染色体断裂,核膜与细胞膜均内陷,包裹胞内成分(胞浆、细胞器、碎裂的染色质及核膜)形成“泡”样结构,此为“凋亡小体”。最后,整个细胞均裂解成这种“小体”。 3)凋亡小体被邻近的巨噬细胞、上皮细胞等识别、吞噬、消化。 上述三个阶段维持时间很短,通常在几分钟、十几分钟内即可完成。 2.细胞凋亡的生化改变: 1)胞内Ca2+浓度增高 所有细胞凋亡过程中均出现胞内Ca2+浓度增高,这可能是Ca2+内流所致。 2)内源性核酸内切酶激活 细胞发生凋亡时,由于内源性核酸内切酶被激活,DNA被从核小体连接处水解,形成180—200bp 或其整倍数的片段。 3)生物大分子的合成 凋亡过程的发生一般依赖于新的RNA和蛋白质的合成,如在激素、射线作用下,或由于去除生长因子等所引起的细胞凋亡中,情况均为如此。 常用的检测方法: 1.形态学方法 借助普通光学显微镜、荧光显微镜或透射电镜可对组织切片、切片涂片或细胞悬液进行形态学观察,凋亡细胞在组织中散在分布,表现为核致密浓染、核碎裂等。该方法简便、经济,可定性、定位。但在组织成分及细胞死亡类型复杂的情况下,难以判断结果,也无法定量。 2.电泳法 对凋亡细胞的基因组DNA进行琼脂凝胶电泳,由于存在180—200bp或其整倍数的片段,故电泳结果可见“梯状”(ladder)DNA条带。该法简便,可定性及定量,但无法显示组织细胞形态结构,也不能反映凋亡细胞与周围组织的关系。

细胞凋亡诱导剂

细胞凋亡诱导剂 在凋亡研究中,成功的诱导细胞凋亡是最关键的前提条件。凋亡诱导试剂多种多样,每种诱导剂均有其敏感的细胞,而不同的细胞也有其最佳的诱导剂。因此,选择合适的、有效的、特异性的诱导剂也就成为至关重要的问题。Biovision公司作为世界主要的凋亡试剂供应商,提供各种不同的凋亡诱导剂供研究者选择。 放线菌素D(Actinomycin D) 放线菌素D是一种抗肿瘤的抗生素类药物。通过脱氧鸟苷残基与DNA形成复合物,从而抑制DNA依赖的RNA聚合酶的活性,阻断转录过程。是多种哺乳动物细胞强有力的凋亡诱导剂(1)。Camptothecin 可以结合并稳固拓普异构酶-DNA复合物,从而达到可逆性的抑制拓普异构酶I活性的目的,而诱导细胞凋亡。可抑制Tat介导的HIV-1的转录。常用于诱导Jurkat、骨肉瘤和肝细胞癌细胞的凋亡。Cycloheximide 是一种非常有效的抗多种酵母和真菌的抗生素,可抑制真核生物蛋白

质的合成,而多数原核生物则无效。在100ug/ml的浓度时可抑制多种霉菌,而对大部分的致病细菌则无抑制作用。通过作用于真核细胞60S核糖体而抑制蛋白质合成的起始和延长过程。常被作为抑制剂用于研究真核生物无细胞蛋白质合成,也被用于阻断体外核糖体依赖的多肽合成。可诱导多种细胞的凋亡。 Dexamethasone 是一种具有抗炎症作用的皮质类固醇,同时具有抗炎症和抗风湿的特性。可抑制血管内皮细胞表达诱导型一氧化氮合酶(iNOS),但对cNOS则无效。在主动脉平滑肌细胞通过刺激Na+-K+泵,可加速活化阳离子的转位。一般用于诱导人胸腺细胞凋亡(500-1000nM,37°C 6小时) Etoposide 是拓普异构酶II的抑制剂。是从鬼臼毒素来源的衍生物,主要可以抑制多种肿瘤,包括生殖细胞肿瘤、小细胞肺癌、恶性淋巴瘤。可用于诱导人T细胞、小鼠胸腺细胞、HL-60细胞凋亡。Staurosporine Staurosporine是蛋白激酶C和其他大部分激酶(包括酪氨酸蛋白激

细胞凋亡的研究进展

细胞凋亡的研究进展 姓名:郝先行 学号:10000821 学院:通达学院

摘要:细胞凋亡(apoptosis)是机体正常细胞在受到生理和病理性刺激后出现的一种自发的死亡过程,是一个主动、高度有序、基因控制及一系列酶参与的过程。细胞凋亡在保证多细胞生物健康生存过程中扮演着关键角色,对个体的正常发育具有重要作用。机体在产生新生细胞的同时,衰老和突变的细胞通过凋亡机制而被清除,使器官和组织得以正常地发育和代谢。细胞凋亡发生异常会导致疾病的发生,如肿瘤、自身免疫性疾病、病毒感染等。本文概述了细胞凋亡的特征、分子机理、2条主要信号途径、检测方法、生物学意义及与疾病的关系。 关键词:细胞凋亡;分子机理;信号通路;检测方法;疾病 参考文献: 1.潘耀谦高丰.细胞凋亡与细胞坏死比较的研究进展[J].动物医学进展,2000,21(4):5-8. 2.唐兆新高洪.细胞凋亡的生化特征和生物学意义[J].动物医学进展,1998,19(4):1- 3. 3.高利波高洪.细胞凋亡与疾病防治[J].动物医学进展,2001,22(2):37-38. 4.宋建领王金萍等.细胞凋亡的研究近况[J].云南畜牧兽医,2003(1):5-7. 5.Kerr J FR., Winterford CM, Harmon BV. Apoptosis Its significance in cancer and cancer therapy[J]. Cancer ,1994 ,73 :2013~202 6. 6.Vaux DL. . Apoptosis timeline[J]. Cell Death Differ ,2002 ,9 :349~354. 7.杨宇泽师如意谷传慧.细胞凋亡的特征、检测方法及生物学意义[J].上海畜牧兽医通讯,2008(5):67-67.

(完整word版)细胞凋亡过程

细胞凋亡的过程大致可分为以下几个阶段:接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,比较清楚的通路主要有:1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例:Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。Fas分子胞内段带有特殊的死亡结构域(DD,death domain)。三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中另一种带有相同死亡结构域的蛋白FADD。FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD结构域)和N端(DED)部分。DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子遂由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。细胞发生凋亡。因而TNF诱导的细胞凋亡途径与此类似2)细胞色素C释放和Caspases激活的生物化学途径线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。促凋亡因子能诱导细胞色素C 释放和凋亡小体的形成。很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。多数凋亡刺激因子通过线粒体激活细胞凋亡途经。有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。Caspase家族一般具有以下特征:1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。3)末端具有一个小的或大的原结构域。参与诱导凋亡的Caspase分成两大类:启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。

细胞凋亡的研究方法实验

细胞凋亡 同学们好,这一讲开始我们来学习细胞凋亡的检测方法。 细胞死亡的方式有很多种,最常见的有坏死(necrosis),它是细胞受到物理或化学损伤的情况下,以及缺氧时会发生的现象,另一种常见的死亡方式是细胞凋亡(apoptosis),又称细胞程序性死亡,它是细胞主动的有序的死亡过程,用来去除多余的,不需要的或异常的细胞,保障生物体内环境的稳定,是一种基本的生物学现象。其他死亡方式还有自噬性细胞死亡(autophagic cell death)和细胞焦亡(Pyroptosis)。随着生命科学的发展,这些死亡方式逐渐进入我们的视野,被关注。 不同的死亡方式有着各自的特征。比如坏死,从形态学上观察,胞体肿胀、胞质空泡化,胞膜破损、最后崩解,所以坏死又称细胞胀亡(Oncosis)。而细胞凋亡,胞体缩小,膜表面出芽状形成凋亡小体,最终从细胞表面脱落,膜基本保持完整、。 细胞凋亡研究有着非常重要的生理和病理意义,2002年诺贝尔生理学或医学奖就授予了细胞程序性死亡方面的研究工作。细胞凋亡参与机体的正常发育与分化、内环境的稳定、免疫系统防御等重要的生理过程,一旦凋亡异常就会导致一些重大疾病的发生与发展,比如肿瘤的发生,肿瘤早期阶段细胞凋亡都是受到抑制的,诱导肿瘤细胞凋亡已成为抗肿瘤药物研发的一个重要方向。 近年来,许多细胞凋亡检测方法得到广泛的应用。下面介绍四种近年来细胞凋亡的主要检测方法: 一、形态学观察 细胞发生凋亡时会出现一系列独特的形态学特征,如细胞体积变小;核固缩,染色质高度凝聚,且堆积在核膜内侧缘或聚集于核中央部;接着凋亡小体的产生,细胞膜皱褶、细胞表面产生了许多泡状或芽状突起,形成单个的凋亡小体。借用光学显微镜、电子显微镜或荧光显微镜可不同程度、不同层次地观测到这些形态学特征。这种细胞凋亡形态学检测的方法简易、直观和有较好定位,但也有不足之处:缺乏特定标准,主观性大,因人而异;又不能定量,有较大的局限性,因而形态学观察多用于固定组织细胞检测,常作为其他技术的辅助。 二、流式细胞术 流式细胞仪(flow cytometry,FCM)是一种对液相中分散着的细胞进行定性、定量分析与分选的设备,具有分析速度快、敏感性好,和精确度高的特点,能够对于不同细胞发生凋亡进度不同的过程,进行准确检测。当待检测的细胞随着液流系统经过探测点,检测到的前向散射光强度代表了细胞的大小,而侧向散射光反应细胞内颗粒的复杂程度。细胞凋亡时,细胞固缩,体积变小,细胞内颗粒往往增多,故凋亡细胞的前向散射光降低,侧向散射光增高;而坏死细胞的前向散射光和侧向散射光同时增高。因此,可区分正常、坏死和凋亡细胞。FCM可以配合荧光染料进行多参数测定,凋亡检测中常用的是AnnexinV-FITC/PI双荧光标记,能够进行早、中期凋亡阶段凋亡率的测定。 三、细胞凋亡的DNA片段检测 DNA断裂是细胞凋亡最显著的生物化学特点,细胞凋亡时,核酸内切酶与相关蛋白水解酶被激活,将DNA降解,形成长度为180~200bp或其整倍数的

细胞凋亡的结构生物学研究进展

文章编号 :1004-0374(2010)03-0224-05 细胞凋亡的结构生物学研究进展 施一公 (清华大学生命科学学院,北京 100084) 摘 要:在多细胞生物体内,细胞会发生编程性死亡(即细胞凋亡),使得细胞数量得到精确调控。细胞凋亡调控的异常与癌症、自身免疫病、神经退行性疾病等疾病密切相关。在过去的二十年里,人们详细地研究了参与细胞凋亡调控的分子机制。该文综述了近年来利用结构生物学手段,对参与细胞凋亡调控的分子,主要是Ca spa se和与Ca spa se活性调控直接相关的蛋白功能的研究进展。 关键词:细胞凋亡;机制;结构生物学;Cas pas e 中图分类号:Q255; Q617 文献标识码:A Mechanisms of programmed cell death through structural biology SHI Yi-gong (College of Life Sciences, Tsinghua University, Beijing 100084, China) Ab stra c t: C e lls und e rg o p ro g ra m m e d c e ll d e a th (a p o p o sis) in a ll m ultic e llula r o rg a nism s. Alte rna tio ns in a p o p to tic p a thw a ys ha ve b e e n im p lic a te d in m a ny typ e s of d ise a se s in hum a n, inc lud ing c a nc e rs, a utoim m une d ise a se s, a nd ne urod e g e ne ra tive d isord e rs. I n the p a st tw o d e c a d e s, the m ole c ula r m e c ha nism s of a p op tosis ha ve b e e n e xte nsive ly stud ie d. I n this p a p e r, a utho r re vie w s the p ro g re ss in the stud ie s o f m ole c ula r func tions of p rote ins involve d in a p op tosis re g ula tions, m a inly C a sp a se s a nd C a sp a se-re g ula ting p rote ins, using struc tura l b iolog y a pproa c he s. K e y word s: apoptosis; mechanism; structural biology; Caspase 1 细胞凋亡调控机制研究背景 在动物体内,细胞数量需要被精确控制。如果细胞增殖过度,则造成癌症;如果细胞凋亡过度,则可引起神经退行性疾病诸如阿尔茨海默氏症。 细胞凋亡的有关知识,了解得最清楚的就是在秀丽隐杆线虫(C a e norha b d itis e le g a ns,C. e le g a ns)中。人们可以精确描述线虫中1 090个细胞的发育命运和其中的凋亡事件,其中有131个细胞在特定的位置和时间发生编程性死亡,留下成体线虫共959个细胞。在20世纪80~90年代,麻省理工的Ho rvitz研究组进行的遗传学研究表明,有4个基因共同严格控制了线虫中的细胞编程性死亡,它们是e g l-1、c e d-9、c e d-4和c e d-3[1]。c e d-3编码一个半胱氨酸蛋白酶C E D-3,特异性针对天冬氨酸残基,称为C a spa se。与所有的C a spa se一样,CE D-3的 这种活性必须受到调控,它被CE D-4激活,发生自身切割。C E D-4的功能又被C E D-9所抑制,而C E D-9又被E GL-1抑制,这样就形成了一个精确的调控系统。 在哺乳动物细胞中,凋亡的机制更为复杂。有两种被详细研究了的细胞凋亡途径:一条是外源性的途径,由胞外“死亡配体”(de a th l i g a nd)触发“死亡受体”(de a th re c e ptor),进而通过级联反应激活C a sp a se-8——外源性途径的起始C a sp a se;另一方面,许多细胞凋亡由细胞内部事件,如DNA 损伤等压力而触发(内源性途径),激活C a sp a se-9。在它们被激活后,Ca spa se-8、-9将激活下游效应C a sp a se,如C a sp a se-3、-7等。下游的这些C a sp a se 被激活,进而最终杀死细胞。 本文主要集中讨论另外一条途径——内源性途

相关文档
最新文档