水力学实验报告——沿程阻力系数实验
工程流体力学实验报告
福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验姓名:李威学号:051001509组别:________实验指导教师姓名:__________________________同组成员:____________________________________2011年月日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。
二、实验成果及要求实验装置台号No 表1 记录计算表校正系数c= ,k= cm0.5/s三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。
排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。
2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?答:这两个差值分别和动能及势能有关。
在势能转换为动能的过程中,由于粘性的存在而有能量损失,所以压头差较小。
3.所测的流速系数ϕ'说明了什么?实验二 管路沿程阻力系数测定实验一、实验目的要求:1. 掌握沿程阻力的测定方法;2. 测定流体流过直管时的摩擦阻力,确定摩擦系数λ与的关系; 3测定流体流过直管时的局部阻力,并求出阻力系数ξ; 4学会压差计和流量计的使用。
二、实验成果及要求1.有关常数。
实验装置台号圆管直径d= cm , 量测段长度L=85cm 。
及计算(见表1)。
水力学实验报告思考题答案全资料_水力学思考题答案
水力学实验报告思考题答案全资料_水力学思考题答案沿程只降不升,(E-E)测压管水头线(P-P)沿程可升可降,线坡J可正可负。
而总水头线P。
这是因为水在流动过程中,依据一定边界条件,动能和势能可相互J0线坡J恒为正,即P,。
部分势能转换成动能,测压管水头线降低,J0转换。
如图所示,测点5至测点7,管渐缩,P。
而据能量方0至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J 测点7P,)E,(E-E+hh为损失能量,是不可逆的,即恒有h0,故E恒小于程E=E12w1-21w1-22w1-2越大,表明单位流程上的水头损失越大,如(E-E)线下降的坡度越大,即J线不可能回升。
图上的渐扩段和阀门等处,表明有较大的局部水头损失存在。
2、流量增加,测压管水头线有何变化?为什么?)总降落趋势更显著。
这是因为测压管水头1)流量增加,测压管水头线(P-P2pQEH?Z?QA为定值时,,任一断面起始的总水头E及管道过流断面面积p2?gA22vp?Z必减小。
而且随流量的增加,阻力损失亦增大,管道任一过水增大,就增大,则?g2p?Z 相应减小,故的减小更加显著。
断面上的总水头E ?)的起落变化更为显著。
因为对于两个不同直径的相应过水断)测压管水头线(P-P__22vAQ?vAvQQA?p__ZH 面有P?2g22g2gg222AQA221 2g2A1接近于常数,又管道断面为定式中为两个断面之间的损失系数。
管中水流为紊流时,P?PH?线的起落变化更为显著。
值,故Q增大,亦增大,3、测点2、3和测点10、11的测压管读数分别说明了什么问题?pHZ均为37.1cm0.7cm,(偶有毛细影、测点23位于均匀流断面,测点高差P?响相差0.1mm),表明均匀流各断面上,其动水压强按静水压强规律分布。
测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。
由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。
水力学实验报告
水力学实验报告水力学实验报告引言:水力学是研究水在运动过程中的力学规律的学科,广泛应用于水利工程、环境工程和海洋工程等领域。
为了深入了解水力学的基本原理和应用,我们进行了一系列水力学实验。
实验一:流量测量流量是水力学中最基本的参数之一,准确测量流量对于水利工程的设计和运行至关重要。
本实验使用流量计和流速计两种方法进行流量测量,比较了两种方法的准确性和适用性。
实验二:水头测量水头是指水的能量高度,也是水力学中的重要参数。
本实验使用水银压力计和水头计两种方法进行水头测量,探讨了两种方法的原理和误差来源。
通过实验数据的分析,我们得出了水头测量的准确性与仪器精度之间的关系。
实验三:水流速度分布水流速度分布是指水流在截面上的速度分布情况,对于水流的稳定性和流态的判断有着重要意义。
本实验使用激光多普勒测速仪测量了水流在不同截面上的速度分布,并分析了不同因素对水流速度分布的影响。
实验结果表明,水流速度分布与流量、管道形状和摩擦阻力等因素密切相关。
实验四:水流压力分布水流压力分布是指水流在管道中的压力分布情况,对于水力输送和水力机械的设计和运行有着重要影响。
本实验使用压力传感器测量了水流在不同截面上的压力分布,并探讨了不同因素对水流压力分布的影响。
实验结果表明,水流压力分布与流速、管道形状和摩擦阻力等因素密切相关。
实验五:水力波浪水力波浪是指水面上的波浪运动,是水力学中的重要研究对象。
本实验通过模拟水面上的波浪运动,测量了波浪的高度、周期和传播速度,并分析了波浪的形成和传播机制。
实验结果表明,波浪的形成与风力、水深和水面粗糙度等因素密切相关。
结论:通过以上实验,我们深入了解了水力学的基本原理和应用。
流量测量、水头测量、水流速度分布、水流压力分布和水力波浪等实验内容,使我们对水力学的各个方面有了更加全面和深入的认识。
水力学的研究和应用将为水利工程、环境工程和海洋工程等领域的发展提供重要的理论基础和技术支持。
水力学实验报告思考题答案(全)
水力学实验报告思考题答案(一)伯诺里方程实验(不可压缩流体恒定能量方程实验)1、 测压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线(P-P)沿程可升可降,线坡J P 可正可负。
而总水头线(E-E)沿程只降不升,线坡J P 恒为正,即J>0。
这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。
如图所示,测点5至测点7,管渐缩,部分势能转换成动能,测压管水头线降低,J P >0。
,测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P <0。
而据能量方程E 1=E 2+h w1-2,h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E 2恒小于E 1,(E-E )线不可能回升。
(E-E )线下降的坡度越大,即J 越大,表明单位流程上的水头损失越大,如图上的渐扩段和阀门等处,表明有较大的局部水头损失存在。
2、 流量增加,测压管水头线有何变化?为什么?1)流量增加,测压管水头线(P-P )总降落趋势更显著。
这是因为测压管水头222gAQ E pZ H p -=+=γ,任一断面起始的总水头E 及管道过流断面面积A 为定值时,Q 增大,g v 22就增大,则γpZ +必减小。
而且随流量的增加,阻力损失亦增大,管道任一过水断面上的总水头E 相应减小,故γpZ +的减小更加显著。
2)测压管水头线(P-P )的起落变化更为显著。
因为对于两个不同直径的相应过水断面有g A Q g A Q A Q g v g v v p Z H P 2222222212222222122ζζγ+-=+-=⎪⎪⎭⎫ ⎝⎛+∆=∆ g A Q A A 212222122⎪⎪⎭⎫ ⎝⎛-+=ζ式中ζ为两个断面之间的损失系数。
管中水流为紊流时,ζ接近于常数,又管道断面为定值,故Q 增大,H ∆亦增大,()P P -线的起落变化更为显著。
3、 测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面,测点高差0.7cm ,γpZ H P +=均为37.1cm (偶有毛细影响相差0.1mm ),表明均匀流各断面上,其动水压强按静水压强规律分布。
沿程阻力系数测定-实验报告
沿程水头损失实验实验人 XXX 合作者 XXX XX 年XX 月XX 日一、实验目的1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制lgh f ~-lg v 曲线; 2.掌握管道沿程阻力系数的量测技术和应用压差计的方法;3.将测得的R e -λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。
二、实验设备本装置有下水箱、自循环水泵、[供水阀、稳压筒、实验管道、流量调节阀]三组,计量水箱、回水管、压差计等组成。
实验时接通电源水泵启动,全开供水阀,逐次开大流量调节阀,每次调节流量时,均需稳定2-3分钟,流量越小,稳定时间越长;测流量时间不小于8-10秒;测流量的同时,需测记压差计、温度计[自备,应挂在水箱中]读数。
三根实验管道管径不同,应分别作实验。
三、实验原理由达西公式g v d L h r 22⋅⋅=λ 得222422⎪⎭⎫⎝⎛==d Q L gdh Lv gdh f f πλ=K ×h f /Q 2 另有能量方程对水平等直径圆管可得γ21P P h f -=对于多管式水银压差有下列关系h f =(P 1-P 2)/γw =(γm /γw -1)(h 2-h 1+h 4-h 3)=12.6△h m Δh m = h 2-h 1+h 4-h 3 h f —mmH 2O四、实验结果与分析实验中,我们测量了三根管的沿程阻力系数,三根管的直径分别为10mm ,14mm ,20mm 。
对每根管进行测量时,我们通过改变水的流速,在相距80cm 的两点处分别测量对应的压强。
得到表1至表3中的实验结果。
相关数据说明:水温29.4℃,对应的动力学粘度系数为20.01/cm s ν=流量通过水从管中流入盛水箱的体积和时间确定。
水箱底面积为22020S cm =⨯,记录水箱液面升高12h cm =(从5cm 到17cm 或者从6cm 到18cm )的时间t ,从而计算出流量34800(/)()Sh Q cm s t t s ==; 若管道直径为D ,则水流速度为24Qv Dπ=; 对三根管进行测量时,测量的两点之间距离均为80L cm =; 雷诺数Re vDν=;计算沿程阻力系数:层流164Reλ=;紊流0.2520.316R e λ-= 测量沿程阻力系数:2/f Kh Q λ=,其中25K /8gD L π=,29.8/g m s =第一根管表-1(521110,15.113/D mm K cm s ==)第二根管表-2(522214,81.280/D mm K cm s ==)第三根管表-3(523320,483.610/D mm K cm s ==)通过对三根管的相关计算,我们发现实验测出的沿程阻力系数远远比层流情况下的计算值大,将近大一个数量级。
水力学实验报告
水力学实验报告实验组别: A1 实验组员:实验日期: 5月5日;5月7日;5月10日土木系2019年5月1 流体静力学综合型实验一、实验目的和要求1. 掌握用测压管测量流体静压强的技能;2. 验证不可压缩流体静力学基本方程;3. 通过对诸多流体静力学现象的实验观察分析,加深流体静力学基本概念理解,提高解决静力学实际问题的能力。
二、实验原理1.在重力作用下不可压缩流体静力学基本方程pz C gρ+= 或 gh p p ρ+=0 式中:z —— 被测点相对基准面的位置高度;p —— 被测点的静水压强(用相对压强表示, 以下同); p 0 —— 水箱中液面的表面压强;ρ —— 液体密度; h —— 被测点的液体深度。
三、实验内容与方法1. 定性分析实验(1) 测压管和连通管判定。
(2) 测压管高度、压强水头、位置水头和测压管水头判定。
(3) 观察测压管水头线。
(4)判别等压面。
(5) 观察真空现象。
(6) 观察负压下管6中液位变化 2. 定量分析实验 (1) 测点静压强测量。
根据基本操作方法,分别在p 0 = 0、p 0 > 0、p 0 < 0与p B < 0条件下测量水箱液面标高∇0和测压管2液面标高∇H ,分别确定测点A 、B 、C 、D 的压强p A 、p B 、p C 、p D 。
实验数据处理与分析参考四。
四、 数据处理及成果要求1. 记录有关信息及实验常数实验设备名称: 静力学实验仪 实验台号:__No.1___ 实 验 者:____________A1组7人_______实验日期:_5月7号_各测点高程为:∇B = 2.1 ⨯10-2m 、∇C = -2.9 ⨯10-2m 、∇D = -5.9 ⨯10-2m 基准面选在 2号管标尺零点上 z C = -2.9 ⨯10-2m 、z D = -5.9 ⨯10-2m 2. 实验数据记录及计算结果(参表1,表2) 3. 成果要求(1) 回答定性分析实验中的有关问题。
理工大学给排水水力学实验
一 静水压强测定实验一、实验目的要求1. 掌握用测压管测量流体静压强的技能; 2. 验证不可压缩流体静力学基本方程;3. 通过对诸多流体静力学现象的实验分析研讨,进一步提高解决静力学实际问题的能力。
二、实验原理1.在重力作用下不可压缩流体静力学基本方程const rpz =+或h p p γ+=0 (1.1)式中: z —— 被测点在基准面的相对位置高度;P —— 被测点的静水压强,用相对压强表示,以下同; p 0 —— 水箱中液面的表面压强;γ—— 液体容重;H —— 被测点的液体深度。
三、实验方法与步骤1.搞清仪器组成及其用法。
实验装置如图,包括: 1)各阀门的开关;2)加压方法 关闭所有阀门(包括截止阀),然后用打气球充气; 3)减压方法 开启筒底阀放水;2、记录仪器编号及各常数(记入表1)。
3、量测点静压强(各点压强用厘米水柱高表示)。
1)打开通气阀6(此时p 0=0),记录水箱液面标高0 ∇ 和测管2 液面标高H ∇ (此时0 ∇ = H ∇ ); 2)关闭通气阀6 及截止阀8,加压使形成p 0>0,测记0 ∇ 及H ∇ ;3)打开放水阀11,使形成p 0<0(要求其中一次g B p <0,即H ∇ < B ∇ ),测记0 ∇ 及H ∇ 。
四、实验思考题:1)同一静止液体内的测管水头线是一根什么线?2)当p B<0 时,试根据记录数据,确定真空度大小及所在区域。
表1 流体静压强测量记录及计算表单位:cm二流线的演示实验流谱及流线演示实验构示意图。
该仪器用有机玻璃制成,通过在水流中掺入气泡的方法,演示出不同边界条件下的多种水流现象,并显示相应的流线。
整个仪器由四个单元组成,每个单元都是一套独立的装置,可以单独使用,也可以同时使用。
三、实验步骤1.打开进水阀门,给流动演示仪通水。
2.用调节进气量旋纽调节气泡量的多少,使仪器能够清楚地观察到流线。
3.演示内容如下:Ⅰ型:显示管道突然扩大和突然收缩时的管道纵剖面上的流动状况。
水力学实验报告思考题答案(全)
水力学实验报告思考题答案(一)伯诺里方程实验(不可压缩流体恒定能量方程实验)1、 测压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线(P-P)沿程可升可降,线坡J P 可正可负。
而总水头线(E-E)沿程只降不升,线坡J P 恒为正,即J>0。
这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。
如图所示,测点5至测点7,管渐缩,部分势能转换成动能,测压管水头线降低,J P >0。
,测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P <0。
而据能量方程E 1=E 2+h w1-2,h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E 2恒小于E 1,(E-E )线不可能回升。
(E-E )线下降的坡度越大,即J 越大,表明单位流程上的水头损失越大,如图上的渐扩段和阀门等处,表明有较大的局部水头损失存在。
2、 流量增加,测压管水头线有何变化?为什么?1)流量增加,测压管水头线(P-P )总降落趋势更显著。
这是因为测压管水头222gA Q E pZ H p -=+=γ,任一断面起始的总水头E 及管道过流断面面积A 为定值时,Q 增大,g v 22就增大,则γp Z +必减小。
而且随流量的增加,阻力损失亦增大,管道任一过水断面上的总水头E 相应减小,故γpZ +的减小更加显著。
2)测压管水头线(P-P )的起落变化更为显著。
因为对于两个不同直径的相应过水断面有g A Q g A Q A Q g v g v v p Z H P 2222222212222222122ζζγ+-=+-=⎪⎪⎭⎫ ⎝⎛+∆=∆ g A Q A A 212222122⎪⎪⎭⎫ ⎝⎛-+=ζ式中ζ为两个断面之间的损失系数。
管中水流为紊流时,ζ接近于常数,又管道断面为定值,故Q 增大,H ∆亦增大,()P P -线的起落变化更为显著。
3、 测点2、3和测点10、11的测压管读数分别说明了什么问题?测点2、3位于均匀流断面,测点高差0.7cm ,γpZ H P +=均为37.1cm (偶有毛细影响相差0.1mm ),表明均匀流各断面上,其动水压强按静水压强规律分布。
基于CFD的沿程阻力系数的计算
山西科技SHANXI SCIENCE AND TECHNOLOGY 2019年第34卷第2期长距离输水是实现水资源优化配置和水量合理调配的重要工程措施,输水管道水力计算的首要任务就是正确计算沿程水头损失,合理配置升压泵。
沿程水头损失的合理计算直接影响工程投资和运行费用[1],传统的确定沿程水头损失的方法是基于尼古拉兹方法的管壁贴砂试验[2],这种方法建立在反复实验的基础上,需要耗费大量的人力、财力和时间,而且研究范围有限,不能满足飞速发展的工程建设的需要。
近年来,随着计算机的发展与普及,数值模拟成为研究流体流动、开展流体力学实验的重要辅助手段[3-4]。
本文将采用基于C FD 原理的数值模拟方法,研究沿程水头损失变化规律。
1研究方法1.1沿程水头损失的定义沿程水头损失是指在固体边界平直的流体流动中,单位质量的流体自一断面流到另一断面所损失的机械能。
图1为有压管道流动示意图,其中沿程水头损失采用h f 表示。
依据重力场中不可压缩黏性流体恒定流的伯努利方程,写出图1中1-1到2-2断面的方程为:z 1+p 1ρg +v 122g =z 2+p 2ρg +v 222g+h f(1)式中:z 1和z 2为管轴线距离基准面的位置,如取基准面为管轴线位置,则z 1=z 2=0;p 1和p 2为管轴线处动水压强;v 1和v 2为断面平均流速,其中流速v 1=v 2=4Qπd 2,沿程不变;ρ为流体密度,g 为重力加速度。
将式(1)变形并简化得:h f =p 1-p 2ρg=Δpρg (2)另据达西—魏斯巴赫公式:h f =λl d v 22g(3)式中:l 为管长,λ为沿程阻力系数。
比较式(2)和(3)可得:λ=(Δpρg )/(l d v 22g)(4)────────────────*基金项目:山西大学第十六期本科生科研训练项目“沿程阻力系数的数值模拟”(项目编号:2018016506)。
**通信作者:张晓艳,1970生,山西大学动力工程系副教授,硕士,主要研究方向为水力学及河流动力学,邮箱:1015858702@ 。
沿程阻力系数测定-实验报告
沿程水头损失实验实验人 XXX 合作者 XXX XX 年XX 月XX 日一、实验目的1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制lgh f ~-lg v 曲线;2.掌握管道沿程阻力系数的量测技术和应用压差计的方法; 3.将测得的R e -λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。
二、实验设备本装置有下水箱、自循环水泵、[供水阀、稳压筒、实验管道、流量调节阀]三组,计量水箱、回水管、压差计等组成。
实验时接通电源水泵启动,全开供水阀,逐次开大流量调节阀,每次调节流量时,均需稳定2-3分钟,流量越小,稳定时间越长;测流量时间不小于8-10秒;测流量的同时,需测记压差计、温度计[自备,应挂在水箱中]读数。
三根实验管道管径不同,应分别作实验。
三、实验原理由达西公式g v d L h r 22⋅⋅=λ 得222422⎪⎭⎫⎝⎛==d Q L gdh Lv gdh f f πλ=K ×h f /Q 2另有能量方程对水平等直径圆管可得γ21P P h f -=对于多管式水银压差有下列关系h f =(P 1-P 2)/γw =(γm /γw -1)(h 2-h 1+h 4-h 3)=12.6△h m Δh m = h 2-h 1+h 4-h 3 h f —mmH 2O四、实验结果与分析实验中,我们测量了三根管的沿程阻力系数,三根管的直径分别为10mm ,14mm ,20mm 。
对每根管进行测量时,我们通过改变水的流速,在相距80cm 的两点处分别测量对应的压强。
得到表1至表3中的实验结果。
相关数据说明:水温29.4℃,对应的动力学粘度系数为2 0.01/cm s ν=流量通过水从管中流入盛水箱的体积和时间确定。
水箱底面积为2202 0S cm =⨯,记录水箱液面升高12h cm =(从5cm 到17cm 或者从6cm 到18cm )的时间t ,从而计算出流量34800(/)()Sh Q cm s t t s ==; 若管道直径为D ,则水流速度为24Qv Dπ=; 对三根管进行测量时,测量的两点之间距离均为80L cm =; 雷诺数Re vDν=;计算沿程阻力系数:层流164Reλ=;紊流0.2520.316R e λ-=测量沿程阻力系数:2/f Kh Q λ=,其中25K /8gD L π=,29.8/g m s = 第一根管表-1(521110,15.113/D mm K cm s ==)第二根管表-2(522214,81.280/D mm K cm s ==)第三根管表-3(523320,483.610/D mm K cm s ==)通过对三根管的相关计算,我们发现实验测出的沿程阻力系数远远比层流情况下的计算值大,将近大一个数量级。
水力学实验指导书(1)
本科教学实验指导书水力学实验易文敏编写李克锋四川大学水利水电学院水力学与山区河流开发保护国家重点实验室前言水力学实验课的基本任务是:观察分析水流现象,验证所学理论,学会和掌握科学实验的方法和操作技能,培养整理实验资料和编写实验报告的能力。
在进行实验的过程中,要注意培养自己的动手能力和独立工作的能力。
使每个实验者有观察现象,进行操作和组织实验的机会,并能独立进行整理分析实验成果,受到实验技能的基本训练。
各项实验分别介绍了每个实验的目的、原理、实验设备、步骤、注意事项,以及可供实验者编写实验报告时参考的表格。
要求做好实验后,实验者要独立认真完成一份实验报告,按时交指导教师批阅。
为了使实验者能深入地掌握和巩固有关实验内容,每个实验项目的结尾都列有一定数量的思考题,供实验者进一步深入思考,并要求在实验报告中作出书面回答,随实验报告交指导教师审阅批改。
实验一 静水压强一、实验目的:1. 实测容器中的静水压强;2. 测定X 液体的容重;3. 通过实验,掌握静水压强的基本方法和了解测压计的应用。
二、实验设备:如图所示,1管和2管、3管和4管、5管和6管组成三支U 型管,其中5管和6管组成的U 型管装X 液体,其余U 型管装水。
1管、3管和5管与大气连通,2管、4管和6管与水箱顶部连通。
3管和4管组成的U 型管的底部与水箱的A 点连通,1管和2管组成的U 型管的底部与水箱的B 点连通。
水箱底部与调压筒连通。
三、实验原理:利用调压筒的升降来调节水箱内液体表面压强和液体内各点的压强。
1. 根据静水压强基本公式:p=p 0+ρg h 可得p A =ρg 水(▽3-▽A ) p B =ρg 水(▽1-▽B )2. 由于2、4、6管与水箱顶部连通,所以2、4、6管液面压强与水箱液面压强相同,于是可得:p 0=ρg 水(▽1-▽2)= ρg 水(▽3-▽4)=ρg X (▽5-▽6)ρg X =6543∇-∇∇-∇ρg 水 或ρg X =6521∇-∇∇-∇ρg 水3. 若水箱内气体压强p 0≠p a ,则p 1≠p 2、p 3≠p 4、p 5≠p 6。
通过试验研究紊流流动过程中的沿程阻力系数
λ值与理论分析所得的值完全相符
• Ⅱ区.过渡区(不稳定区、临界区) ( 2320
<Red< 4000 ) λ = f(Re) 规律不明显,实用意义不大。
• Ⅲ区.水力光滑区λ = f(Re) 4-32,4-37
• Ⅳ区.紊流过渡区, λ = f(Re, Δ/d) 4-34
• Ⅴ区.粗糙区(平方区), λ = f(Δ/d) ,该
区的雷诺数和流速都很大,在工程上比较常见。 4-33
• Ⅴ区.粗糙区(平方区), λ = f(Δ/d) ,该
区的雷诺数和流速都很大,在工程上比较常见。
4-33
• 液流在该区流动时,对给定的管道, λ值为固 定常数
• 但工程上对该区的水流,习惯上用谢才公式,
• 为了探求紊流的沿程阻力系数λ的规律,水 力学者们进行了大量试验研究,目前,对 流速分布公式尚无纯理论解。
• 尼古拉兹采用管壁贴均匀砂的办法,进行 试验给出了结果,其中,尼古拉兹对人工 粗糙的管道的研究结果,被广泛用于工程 实践。下面介绍其试验结果。
• 水流边壁表面是粗糙不平的,可用粗糙度∆反映, 即壁面的凸起高度。
Ⅰ区.层流区(Re <2320)
• λ与∆/d无关,而与Re 成反比,此区沿程水 头损失与流速v成正比。
Ⅱ区.过渡区( 2320 <Re < 4000 )
紊流区 (Re >4000)
• R规e 律>4:000时,水流进入充分紊流状态,λ出现三种
• Ⅲ区.水力光滑区;该区各种不同相对粗糙度的
λ均沿图中直线段变化,这表明λ仍与∆ /d无关, 只与Re 相关
• 在尼古拉兹以后,很多学者对实际使用的 管道(粗糙度不是人为的)进行了大量实 验,证实了尼古拉兹图的正确性。
管流沿程阻力实验报告
管流沿程阻力实验报告管路沿程阻力测定(实验报告)实验一管路沿程阻力测定一实验目的1. 掌握流体流经管道时沿程阻力损失的测定方法。
2.测定流体流过直管时的摩擦阻力,确定摩擦系数?与Re的关系。
3.测定流体流过管件时的局部阻力,并求出阻力系数? 。
4.学会压差计和流量计的使用。
二实验原理流体在管内流动时,机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。
1.沿程阻力lu2hfd2?p称为直管摩擦系数,滞留时,??Re;湍流时,?与Re的关系受管壁粗糙度的影响,需由实验测得。
根据伯努利方程可知,流体流过的沿程阻力损失,可直接得出所测得的液柱压差计度数R(m)算出:?p?R??指-?水?g2.局部阻力lle1)当量长度法?hfd??u2?? ?2?u22)阻力系数法hp 2ξ-局部阻力系数,无因次;u-在小截面管中流体的平均流速(m/s)三实验装置与流程1.本实验装置及设备主要参数:被测元件:镀锌水管,管长2.0m,管径(公称直径)0.021m;闸阀D=3/4.1)测量仪表:U型压差计(水银指示液);LW—15型涡轮流量计(精度0.5级,量程0.4~4.0m /h, 仪器编号Ⅰ的仪表常数为599.41(次/升),仪器编号II的仪表常数为605.30(次/升),MMD 智能流量仪)。
2)循环水泵。
3)循环水箱。
4)DZ15-40型自动开关。
5)数显温度表2.流程:流体流动阻力损失实验流程图1)水箱6)放空阀11)取压孔2)控制阀7)排液阀12)U形压差计3)放空阀8)数显温度表13)闸阀4)U形压差计9)泵14)取压孔5)平衡阀10)涡轮流量计四实验操作步骤及注意事项1.水箱充水至80%2.仪表调整(涡轮流量计﹑MMD智能流量计仪按说明书调节)3.打开压差计上平衡阀,关闭各放气阀。
4.启动循环水泵(首先检查泵轴是否转动,开全阀13,全关阀2,后启动)。
5.排气:(1)管路排气;(2)测压管排气;(3)关闭平衡阀,缓慢旋动压差计上放气阀排除压差计中的气泡(注意:先排进压管后排出压管,以防压差计中水银冲走),排气完毕。
水力学实验报告
河海大学水利水电学院水利水电工程专业局部阻力实验报告局部阻力实验实验报告一、 实验概述有压管道恒定流遇到管道边界的局部突变 → 流动分离形成剪切层 → 剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡 → 平均流动能量转化成脉动能量,造成不可逆的能量耗散。
与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中损失在管道边界的突变处,每单位重量流体承担的这部分能量损失称为局部水头损失。
局部水头损失常用流速水头与一系数的乘积表示:22j v h gξ= 式中:ξ——局部水头损失系数,也叫做局部阻力系数。
系数ξ是流动形态与边界形状的函数,即ξ=f(Re ,边界形状)。
一般水流Re 数足够大时,可认为系数ξ不再随Re 数变化,而看作一常数。
管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。
其他情况则需要用实验方法确定ξ值。
二、 实验装置及实验方法(一)、实验设备及各部分名称如图所示:局部水头损失实验仪(二)、实验步骤1、对照实物了解仪器设备的使用方法和操作步骤,做好准备工作后,启动抽水机,打开进水开关,使水箱充水,并保持溢流状态,使水位恒定。
2、 检查下游阀门全关时,各个测压管水面是否处于同一水平面上。
如不平,则需排气调平。
3、 核对设备编号,确认数据记录表上列出的断面管径等数据。
4、 开启下游阀门,待水流恒定后,观察测管水头的变化,正确选择实验配件前后的量测断面,进行数据的量测,用体积法测量管道流量,并登录到数据记录表的相应位置。
5、 改变阀门开度,待水流恒定后,重复上述步骤,并按序登录数据。
本实验要求做三个流量。
三 、实验数据及分析实验数据见后面的列表excel 的计算实验分析:声明:由于在实验的过程中,我们小组的实验器材出现了问题,采取排气的措施后,部分测压管还存在问题。
由于本实验要求不画突然扩大的测压管水头线,所以,我们选取了测验管编号1、9、11、14、21、22、23、24、25、26的测压管作为计算标准。
环境工程实验
过滤实验一、实验目的1、了解滤料级配方法2、熟悉过滤实验设备的过滤、反冲洗过程3、验证清洁砂层水头损失与滤速成正比4、加深对过滤基本规律的理解二、实验原理及设备在水处理技术中,过滤是通过具有空隙的粒状滤料层(如石英砂等)截留水中的悬浮物和胶体,从而使水得到澄清的工艺工程。
滤池的形式有多种多样,以石英砂为滤料的普通快滤池使用历史最久,并在此基础上发展出现了双层滤池、多层滤池和上向流过滤等。
过滤的作用,不仅可以截留水中的悬浮物,而且通过滤层还可以把水中的有机物、细菌乃至病毒等随着浊度降低而被大量的去除,净水的原理如下:1、阻力截留当污水流过颗粒状滤料层时,粒径较大的悬浮物颗粒首先被截留在表层的滤料的空隙中,随着此层滤料间的空隙越来越小,截污能力也越来越大,逐渐形成一层主要由被截留的固体颗粒构成的滤膜,并由他起到重要的过滤作用。
这种作用属于阻力截留或筛滤作用。
悬浮物粒径越大,表层滤料和滤速越小,就越容易形成表层筛滤膜,滤膜的截污能力也越高。
2、重力沉降污水通过滤料层时,众多的滤料表面提供了巨大的沉降面积。
重力沉降强度主要与滤料的直径以及过滤速度有关。
滤料越小,沉降面积越大,滤速越小,水流越平稳,这些都有利于悬浮物的沉降。
3、接触絮凝由于滤料具有巨大的比表面积,它与悬浮物质间有明显的物理吸附作用。
此外,沙粒在水中常常带有表面负电荷,能吸附带正电荷的胶体,从而在滤料表面形成带正电荷的薄膜,并进而吸附带负电荷的粘土和多种有机物等胶体,在沙粒上发生接触絮凝。
在实际过滤过程当中,上述三种机理往往同时起作用,只是随着条件不同而有主次之分。
对粒径较大的悬浮物颗粒,以阻力截流为主,因为这一过程主要发生在滤料的表面,通称成为表面过滤。
对于细微的悬浮物,以发生在滤料深层的重力沉降和接触絮凝为主,称为深层过滤。
在过滤当中,滤料起着核心的作用,为了取得良好的过滤效果,滤料应具有一定级配。
滤料级配是指将不同粒径的滤料按一定的比例组合。
水力学试验指导书
实验一伯努利方程实验一、实验目的1.验证流体恒定总流的能量方程;2.通过对动水力学诸多水力现象的实验分析研讨,进一步掌握有压管流中动水力学的能量转换特征;3.掌握流速、流量、压强等动水力学水力要素的实验测量技能。
二、实验属性综合性试验。
本实验涉及的《工程流体力学》课程知识是综合性的。
内容有:流体力学相似性原理和因次分析、流体力学连续性方程、能量方程及动量方程等。
三、实验仪器设备及器材本实验装置如下图所示:伯努利方程实验装置图1、自循环供水器;2、实验台;3、可控硅无级调速器;4、溢流板;5、稳水孔板;6、恒压水箱;7、测压计;8、滑动测量尺;9、测压管;10、实验管道;11、测压点;12、毕托管;13、实验流量调节阀四、实验要求实验前应预习实验报告。
实验开始前,待一切实验准备工作就绪后,报告指导教师。
在启动设备之前,必须经指导教师检查认可。
实验结束时,实验数据要经指导教师审阅、签字,并整理好实验现场后,按要求在实验记录本上填写有关内容,方可离去,严禁将实验室的任何物品带走。
实验完成后应按学校对实验报告的格式、纸张要求写出实验报告。
实验报告描述应清楚、肯定,语言通顺,用语专业、准确;结构严谨、层次清晰。
实验报告数据观察细致,记录及时、准确、真实,外文、符号、公式准确,使用统一规定的名词和符号。
实验报告的内容要求:1.实验名称;2.实验目的;3.实验原理;4.实验装置;5.实验步骤;6.实验原始数据;7.实验数据处理及结果;8.思考题分析。
五、实验原理在实验管路中沿管内水流方向取n个过水断面。
可以列出进口断面(1)至另一断面(i)的能量方程(i=1, 2, 3,……,n)“p av2r p av2,Z + 1 + -1-1 Z + i- + -i—― + h1丫 2 g i丫 2 g w(j)取a = a =……a =1选好基准面,从已设置的各断面的测压管中读出Z + p值,测出1 2 n yav2 八,一一,一一、一,一一通过管路的流量,即可计算出断面平均流速V及q―,从而即可得到各断面测管水头和总2g水头。
水力学实验报告思考题答案(全)
⽔⼒学实验报告思考题答案(全)⽔⼒学实验报告思考题答案(⼀)伯诺⾥⽅程实验(不可压缩流体恒定能量⽅程实验)1、测压管⽔头线和总⽔头线的变化趋势有何不同?为什么?测压管⽔头线(P-P)沿程可升可降,线坡J P 可正可负。
⽽总⽔头线(E-E)沿程只降不升,线坡J P 恒为正,即J>0。
这是因为⽔在流动过程中,依据⼀定边界条件,动能和势能可相互转换。
如图所⽰,测点5⾄测点7,管渐缩,部分势能转换成动能,测压管⽔头线降低,J P >0。
,测点7⾄测点9,管渐扩,部分动能⼜转换成势能,测压管⽔头线升⾼,J P <0。
⽽据能量⽅程E 1=E 2+h w1-2,h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E 2恒⼩于E 1,(E-E )线不可能回升。
(E-E )线下降的坡度越⼤,即J 越⼤,表明单位流程上的⽔头损失越⼤,如图上的渐扩段和阀门等处,表明有较⼤的局部⽔头损失存在。
2、流量增加,测压管⽔头线有何变化?为什么?1)流量增加,测压管⽔头线(P-P )总降落趋势更显著。
这是因为测压管⽔头222gAQ E pZ H p -=+=γ,任⼀断⾯起始的总⽔头E 及管道过流断⾯⾯积A 为定值时,Q 增⼤,g v 22就增⼤,则γpZ +必减⼩。
⽽且随流量的增加,阻⼒损失亦增⼤,管道任⼀过⽔断⾯上的总⽔头E 相应减⼩,故γpZ +的减⼩更加显著。
2)测压管⽔头线(P-P )的起落变化更为显著。
因为对于两个不同直径的相应过⽔断⾯有g A Q g A Q A Q g v g v v p Z H P 2222222212222222122ζζγ+-=+-=+= g A Q A A 212222122???? ?-+=ζ式中ζ为两个断⾯之间的损失系数。
管中⽔流为紊流时,ζ接近于常数,⼜管道断⾯为定值,故Q 增⼤,H ?亦增⼤,()P P -线的起落变化更为显著。
3、测点2、3和测点10、11的测压管读数分别说明了什么问题?测点2、3位于均匀流断⾯,测点⾼差0.7cm ,γpZ H P +=均为37.1cm (偶有⽑细影响相差0.1mm ),表明均匀流各断⾯上,其动⽔压强按静⽔压强规律分布。
水力学的实验报告
水力学的实验报告今天小编为大家收集资料整理回来了关于水力学实验报告,希望能够为大家带来帮助,希望大家会喜欢。
本学期我们进行了七周的水力学实验,从这些实验中我学到了很多。
例如,所有实验都是需要耐心地去测量一组一组的数据,还需要在实验后认真处理核对每一组数据。
这些实验加强了我的动手能力,并且培养了我的独立思考能力。
特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。
例如:数据处理时,遇到要进行数据获取,插入图表命令,这些就要求懂得excel软件一些基本操作。
通过这几次的实验,我不仅学会了如何正确使用实验仪器,还学习到了认真严肃的科研精神,并且激发了我学习新事物的兴趣,这些我个人觉得都是极为可贵的。
在实验开始之前,我认为最为重要的就是提前预习实验内容:包括实验仪器、实验原理、实验步骤以及实验分析总结。
我认为这里面需要我们花费很多心思去思考体会,想出自己对什么有疑问,以便上课时向老师提问寻求解答。
以我们的电拟实验为例:当时我们做这个实验时反复做了很多遍,也向老师提出了一些疑问。
在开始时,仪器需要校准。
因为上下游电势差不是10V,仅仅这一点我们就搞了很长时间。
最终我们得出的误差原因是因为电笔接触不好影响实验进行,所以我们更换了其他不可使用仪器的完好的电笔,实验才得以进行。
其次,实验分析阶段是培养我们自己独立思考、分析问题和解决问题的能力的阶段。
我认为培养这种能力的前题是你对每次实验的态度。
如果我们每次对待实验都是随随便便的态度,抱着等老师教你怎么做,拿同学的报告去抄,必然会导致我们对待实验过程的懈怠。
尽管可能也会的到好的成绩,但这对将来工作态度的养成是极为不利的。
最后,也是最为重要的就是关于实验的思考问题:哪些实验仪器能改进,哪些数据需要重新获取等都是我们要考虑的。
像堰流实验,以为我们分析的实验误差很大,所以我和同组的王琦玮同学就去做了3遍才最终确定的数据,局部水头损失也是如此。