《实数理论》课件

合集下载

实数完整版课件

实数完整版课件

实数完整版课件一、教学内容1. 实数的定义与分类:有理数和无理数。

2. 实数的性质:实数的加法、减法、乘法、除法运算规则。

3. 实数的运算律:交换律、结合律、分配律。

4. 实数与数的比较:实数的大小比较、实数的绝对值。

二、教学目标1. 让学生掌握实数的定义与分类,理解实数的概念。

2. 让学生掌握实数的性质和运算律,能够熟练进行实数的运算。

3. 培养学生运用实数解决实际问题的能力。

三、教学难点与重点1. 教学难点:实数的分类,特别是无理数的概念。

2. 教学重点:实数的性质,实数的运算律。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:教材、笔记本、文具。

五、教学过程1. 实践情景引入:通过生活实例,如购物时找零钱,引入实数的概念。

2. 知识讲解:讲解实数的定义与分类,重点讲解无理数的概念。

3. 例题讲解:举例子说明实数的性质和运算律的应用。

4. 随堂练习:让学生现场进行实数的运算,巩固所学知识。

5. 板书设计:列出实数的性质和运算律,方便学生记忆。

6. 作业设计:布置有关实数的运算题目,巩固所学知识。

六、作业设计(1)2 + 3 × (4) ÷ 2(2)( 3 )^2 × 3 ÷ ( 6 )(3)√9 √162. 答案:(1)2 + 3 × (4) ÷ 2 = 8(2)( 3 )^2 × 3 ÷ ( 6 ) = 3(3)√9 √16 = 3 4 = 1七、板书设计实数的性质与运算律:性质:1. 加法交换律2. 加法结合律3. 乘法交换律4. 乘法结合律5. 分配律运算律:1. 交换律2. 结合律3. 分配律八、课后反思及拓展延伸本节课通过生活实例引入实数的概念,让学生能够理解实数的重要性。

通过讲解实数的性质和运算律,让学生能够熟练进行实数的运算。

在作业设计中,布置了有关实数的运算题目,让学生能够巩固所学知识。

实数_PPT优秀课件10

实数_PPT优秀课件10
c d 0 b a
其中:
图 1- 1- 1 a+b
a b
d c
-d-c a-d
c b
b-c
ad
总结与回顾
这节课你有什么收获?
你对本节课的内容还有哪些疑问?
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
练习:求下列各数的相反数、倒数 和绝对值: 7 (1) 7 的相反数是 7; 倒数是 7 ; 绝对值是 7 。 1 3 (2) - 8 的相反数是 2 ; 倒数是 2 ;
绝对值是 2 . 1 (3) 49 的相反数是 -7 ; 倒数是 7 ; 绝对值是 7 .
练习:
1、a、b互为相反数,c与d互为倒数则a+1+b+cd= 2 。 2、实数a,b,c,d在数轴上的对应点如图1-1所示,则 它们从小到大的顺序是 c<d<b<a 。
..
.
0.101001,22/7,- √3/3,5.15.
. ..
3 解:有理数: √ -8, 0.27,0.101001, 22/7, 5.15;
无理数: √8, π, -5.151 151 115… - √3/3; 正数: √8, π, 0.27, 0.101001, 22/7, 5.15; 负数: √-8, -5.151 151 115… - √3/3.
1、你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 2、理想不是一只细磁碗,破碎了不有锔补;理想是朵花,谢落了可以重新开放。 3、人类的幸福和欢乐在于奋斗,而最有价值的是为理想而奋斗 4、世界上最快乐的事,莫过于为理想而奋斗 5、理想的实现只靠干,不靠空谈 6、天行健,君子以自强不息 7、心如明镜台,时时勤拂拭 8、理想即寻觅目标的思维。 9、理想是世界的主宰。 10、理想失去了,青春之花也便凋零了。因为理想是青春的光和热。 11、每个人都有一定的理想,这种理想决定着他的努力和判断的方向。 12、理想就在我们自身之中,同时,阴碍我们实现理想的各种障碍,也是在我们自身之中。 13、立志要如山,行道要如水。不如山,不能坚定,不如水,不能曲达。 14、理想是力量的泉源、智慧的摇篮、冲锋的战旗、斩棘的利剑。 15、人生的真正欢乐是致力于一个自己认为是伟大的目标。 16、人的理想志向往往和他的能力成正比。 17、大丈夫行事,论是非,不论利害;论顺逆,不论成败;论万世,不论一生。——(明)黄宗羲 18、生活的理想,就是为了理想的生活。 19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 23、把理想运用到真实的事物上,便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。

第3章第1节关于实数基本理论ppt课件

第3章第1节关于实数基本理论ppt课件

定理4: 单调有界数列必有极限.
(就单调增加的有界数列予以证明)
证明:
设yn有界,则必有 supyn.
又 yn 单增, 证明 就是 yn 的极限.
(1).yn (n 1, 2, );
由上确界定义有:
(2) 0,至少有yN ,但yn单增,
故当n N,有yn yN,
从而yn .即当n N时,有0 yn ,
13
§3.1关于实数基本定理
数集分为有限数集和无限数集.通常也说数列是一个数集 .
任何有限数集都有一个最大和最小数, 但对于无限数集来说就未必了.
例如:
1x : x 1是一个无限数集它没有最小数;
(2)数列
n
n
1
也是一个无限数集它没有最大数,
但有最小数
1 2
;
(3)数列
n
n1也是一个无限数集它没有最小数,
如.对于正整数数列n显然不存在上确界. 对于负整数数列n 显然也不存在下确界 .
10/30/2024
19
§3.1关于实数基本定理
2.一个无限数集E即使它有上确界 (或下确界 ) , 这个 (或 )可属于 E也可以不属于 E.
如.数列
1 n
,由定义
0,
1.但
E而
E.
3. 若 (或) E,则称上确界(或下确界)可达到;
在第二章曾经讨论了函数极限和数列极限的关系(海涅定理):
lim (f x)
x x0
A
xn : xn
有(f xn)
x(0 n ),xn A(n ).
x0,
现在进一步有以下推论:
推论: 若xn : xn x(0 n ),xn x0,都有 (f xn)收敛,

实数 课件

实数    课件
OO´的长是这个圆的周长 ,所以点O´的坐标是 无理数 可以用数轴上的点来表示出来
(1)如下图,以单位长度为边长画一个正方形,以原点 为圆心,正方形对角线为半径画弧,与正、负半轴的交点 分别为点A和点B,数轴上A点和B点对应的数是什么?
(2)如果将所有有理数都标到数轴上,那么数轴 填满吗?
数轴上的点有些
绝对值为 a ;
1
(2)如果a 0,那么它的倒数为 a 。
( 3 ) 正实数的绝对值是 它本身 ,0的绝对值是 0 , 负实数的绝对值是 它的相反数.
练习:填空
(1) 2 1的相反数是___1____2___
(2) 1
2
的倒数是___2_
(3)|3.14 |=______3_._1_4__
(4)绝对值等于 6 的23,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
••
有理数是: 1.23 ,
无理数是: 6 ,
22
7 ,
2,
36
1.232232223 (两个3之间依次多一个 2)
有理数 实 数
无理数
实数的分类
整数 分数
有限小数或 无限循环小数
无限不循环小数
你还有其它分类方法吗?
3.14159265
无限不循环小数 无限不循环小数叫无理数
无理数的特征:
1.圆周率 及一些含有 的数
2.开方开不尽数
2
注意:带根号
3.有一定的规律,但 的数不一定是
不循环的无限小数 无理数
0.1010010001 (每两个1之间依次增加一个0)
练习:判断下列数哪些是有理数? 哪些是无理数?
4 9

实数(共16张PPT)优秀

实数(共16张PPT)优秀
§1.6实数域
第一页,共16页。
第二页,共16页。
§1.6实数域
• 一、无理数的引入 • 二、实数的无限小数定义 • 三、闭区间套定义实数的方法
• 四、实数的运算 • 五、实数集的性质
第三页,共16页。

第四页,共16页。
二、实数的无限小数定义
• 阿基米德公理 • 度量线段长度 • 实数的概念 • 实数的顺序 • 实数集的稠密性
第十六页,共16页。
第六页,共16页。
第七页,共16页。
第八页,共16页。
第九页,共16页。
第十页,共16页。
第十一页,共16页。
实数 (无限小数)
有理数(无限循 环小数)
无理数(无限不 循环小数)
正有理数

负有理数
正无理数
负无理数
第十二页,共16页。
第十三页,共16页。
第十四页,共16页。
第十五页,共16页。
第五页,共16页。
阿基米德公理
三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 二、实数的无限小数定义 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 三、闭区间套定义实数的方法 二、实数的无限小数定义

《实数》课件完整版PPT初中数学5

《实数》课件完整版PPT初中数学5

问题思考 3
2.开方开不尽的数
总结性质
1 无理数的概念
定义:无限不循环的小数叫做无理数.
无理数的特征:
1.圆周率π及一些含有π的数
2.开方开不尽的数,如: 3、5、7 等
注意:带根号 的数不一定 都是无理数
3.有一定的规律,但不循环的无限小数,如:
▪… …
基础小练
1.判断下列数哪些是有理数?哪些是无理数?
一对应的,即每一个实数都可以用数轴上的一个点来表示;反过 来,数轴上的每一个点都表示一个实数.
与规定有理数的大小一样,对于数轴上的任意两个点,右边 的点表示的实数总比左边的点表示的实数大.
有理数关于相反数和绝对值的意义同样适合于实数.
基础小练
6.① 2 的相反数是____, π 的相反数是____,0的相反数是____.
反过来,数轴上的每一个点都表示一个实数.
数 两种分类: ①根据实数的定义; 3.有一定的规律,但不循环的无限小数,如:
变式:课本P56 T2 Enter the text content directly here, the text format will not change.
(2)看它是不是不循环小
无限循环小数 3.有一定的规律,但不循环的无限小数,如:
数 实 正无理数 无理数: 无限不循环小数.
边长为1个单位长度的正方形,对角线长为多少
数 0 直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O' ,点O' 对应的数是多少?
数轴上A,B两点表示的数是-1和 ,有一点C满足A,B,C三点中总有一点是另外两点所在线段的中点,求点C所表示的数.
正无理数 负有理数 如图,数轴上A,B两点表示的数分别为 和5.

实数ppt课件

实数ppt课件

化学
在化学中,实数可以用来 描述化学反应中的反应物 和生成物的比例关系。
在日常生活中的应用
金融与经济
在金融和经济活动中,实 数被广泛应用于财务计算 、成本分析、市场预测等 方面。
计算机科学
在计算机科学中,实数被 用于各种算法和数据结构 的实现,如浮点数运算、 排序算法等。
统计学
在统计学中,实数被用于 描述各种数据的分布特征 和规律,如平均数、中位 数、方差等。
数轴的表示
在数轴上,正实数表示为向右的箭头,负实数表示为向左的箭头,零表示为原点。实数的 序关系可以通过数轴上的位置关系来表示,例如a>b表示a在b的右侧。
数轴的应用
数轴是学习数学的重要工具之一,可以用于比较大小、计算距离、表示不等式等。通过数 轴可以直观地理解实数的性质和运算规则,帮助我们更好地掌握实数的知识。
实数的性质
01 02
实数的四则运算
实数可以进行加、减、乘、除四则运算,运算结果仍然属于实数集合。 实数的加法、减法和乘法满足交换律、结合律和分配律,除法满足除法 的可交换性、可结合性和除法的倒数关系。
实数的序关系
实数集合是有序的,可以比较大小。实数的序关系满足传递性、反对称 性和可比较性,使得实数可以进行大小比较和排序。
实数ppt课件
• 实数简介 • 实数的运算 • 实数的分类 • 实数的应用 • 实数的扩展知识
目录
Part
01
实数简介
实数的定义
实数定义
实数是包括有理数和无理数的所有数的集合,具有连续性和完备性。实数包括有理数和 无理数,有理数包括整数和分数,无理数则无法表示为两个整数的比值。
实数集合
实数集合在数学中常用字母R表示,是一个无限大的集合,包含了所有的有理数和无理数 。实数在数轴上表示为连续的点,具有稠密性。

实数完整版课件

实数完整版课件

实数完整版课件一、教学内容本节课我们将学习教材第十章“实数”部分,详细内容如下:1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 实数在数学中的应用。

二、教学目标1. 理解实数的定义,掌握实数的分类;2. 学会实数的性质和运算规则,并能熟练运用;3. 理解实数与数轴的关系,能将实数在数轴上表示出来。

三、教学难点与重点1. 教学难点:实数的性质及运算规则;2. 教学重点:实数的定义、分类及与数轴的关系。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:练习本、铅笔、直尺。

五、教学过程1. 导入:通过实际情景引入实数概念,如温度、长度等;2. 新课导入:讲解实数的定义、分类及性质;3. 例题讲解:讲解实数运算规则,如加减乘除、乘方等;4. 随堂练习:让学生进行实数运算的练习,巩固所学知识;5. 知识拓展:介绍实数与数轴的关系,引导学生将实数在数轴上表示出来;7. 课堂作业:布置实数相关的作业,巩固所学知识。

六、板书设计1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系。

七、作业设计1. 作业题目:(1)判断下列数哪些是实数,哪些不是:2、3/2、√2、π;(2)计算:2/3 + 5/6 1/2;答案:(1)实数:2、3/2、√2、π;(2)2/3 + 5/6 1/2 = 3/2;(3)见附图。

八、课后反思及拓展延伸1. 了解无理数的概念,探究无理数与有理数的关系;2. 探索实数在生活中的应用,如测量、计算等。

重点和难点解析1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 作业设计中实数在数轴上的表示;5. 课后拓展延伸的无理数概念及实数在生活中的应用。

一、实数的定义及分类实数是数学中一个重要的概念,包括有理数和无理数。

有理数是可以表示为两个整数之比的数,如分数、整数等;无理数则不能表示为两个整数之比,如π、√2等。

实数ppt课件

实数ppt课件

原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称

02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。

实数ppt课件

实数ppt课件

方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度

《实数》_PPT-优秀版

《实数》_PPT-优秀版
6.1 平方根 第1课时 算术平方根…………………………………………….2 第2课时 平方根…………………………………………………23
6.2 立方根…………………………………………………………43 6.3 实数
第1课时 实数…………………………………………………..65 第2课时 实数的性质及运算…………………………………..86 第六章 复习与提升………………………………………………..106
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载
【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载 【获奖课件ppt】《实数》_ppt-优秀 版1-课 件分析 下载

人教版《实数》_精美课件

人教版《实数》_精美课件

【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
七年级数学下册(RJ)
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载 【获奖课件ppt】人教版《实数》_精 美课件1 -课件 分析下 载

《实数》ppt课件

《实数》ppt课件

指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。

实数 经典课件(最新版)

实数  经典课件(最新版)

1
12 1
初中数学课件
2
-2 - 2 -1
0
12 2
每一个实数都可以用数轴上的一个点来表示; 反过来,数轴上的每一点都表示一个实数.
★实数和数轴上的点是一一对应的.
初中数学课件
三 实数的大小比较 与有理数一样,实数也可以比较大小:
与有理数规定的大小一样,数轴上右边的点表示 的实数比左边的点表示的实数大.
①根据实数的定义 ②根据实数的正负性
3.实数与数轴上的点成一一对应关系
初中数学课件
谢谢
为什么?
当堂练习
初中数学课件
1.下列说法正确的是( B ) A.a一定是正实数 B. 是有理数 C. 2 2 是有理数 D.数轴上任一点都对应一个有理数
初中数学课件
2.有一个数值转换器,原理如下,当输x=81时,输出 的y是 ( C )
输入x
取算术平方根 是有理数
是无理数 输出y
A.9 B.3 C. 3 D.±3
初中数学课件
3.判断快枪手——看谁最快最准!
(1)实数不是有理数就是无理数. ( )
(2)无理数都是无限不循环小数. (

(3)带根号的数都是无理数.
(× )
(4)无理数都是无限小数.
()
(5)无理数一定都带根号.
(× )
初中数学课件
4.把下列各数填入相应的括号内:
9 35
64
π

0. 6
3 4
初中数学课件
实数 课件
初中数学课件
学习目标 1.了解实数的意义,并能将实数按要求进行准确的分类; 2.熟练掌握实数大小比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用数轴上的点 表示无理数.(难点)

第1课时 实数的有关概念(共27张PPT)

第1课时 实数的有关概念(共27张PPT)

≥ (1)绝对值的非负性:|a|________0 ;
≥ (2)平方数的非负性:b ________0( n为正整数);
(3)算术平方根的非负性: c________0( c≥0); ≥ (4)若几个非负数的和为0,则这几个非负数都为0.
2n
归 类 探 究 探究一 实数的概念及分类
命题角度: 1.有理数与无理数的概念; 2.实数的分类.
探究四 非负数的性质的运用 实数的有关概念
命题角度: 根据非负数的性质求值.
例4 (1)[2012· 长沙] 若实数a,b满足|3a-1|+b =0, 则a 的值为________ . 1
10 1 解 析 依题意a= ,b=0,∴ab=3 =1. 3 10 1 b 依题意a= ,b=0,∴a =3 =1. 3
实数的有关概念
【方法点析】 解决数列变化类的规律题,应先找出数列中哪些部分发 生了变化,是按照什么规律变化的,通过分析找到各部分的 变化规律后直接利用规律解题.
┃回 实数的有关概念 归 教 材
教材母题——湖南教育版七上P50T3
填空: 原数 原数的 相反数 原数的 倒数 原数的 绝对值 0.2 1 -1
3
解析
因为a =-8 ,所以a=-2.而 -2 =2,故选A.
3


实数的有计全国每年浪费食 物总量约为50000000000千克,这个数据用科学记数法 表示为( D ) A. 0.5×10 千克 C. 5×10 千克
9 11
B. 50×10 千克 D. 5×10 千克
考点聚焦 归类探究 回归教材
┃ 实数的有关概念
6. 近似数:一个近似数四舍五入到哪一位,那么就说这个近似 数精确到哪一位.对于带计数单位的近似数,其精确到的 数位由近似数的位数和后面的单位共同确定.如3.618万, 数字8实际上是十位上的数字,即精确到了十位.

《实数的概念》课件

《实数的概念》课件

实数在生活中的应用
温度计上的实数
温度计上的数字表示实际温 度
温度计在生活中的应用:测 量体温、监测天气等
温度计的种类:水银温度计、 电子温度计等
温度计的准确性和使用注意 事项
身高体重指数(BMI)中的实数
身高体重指数(BMI)的定义 BMI中的实数计算 BMI指数在健康生活中的应用 如何根据BMI指数调整生活方式
课堂互动环节设计
案例分析:通过分析具体案例,让 学生更好地理解实数的概念和应用
添加标题
添加标题
添加标题
添加标题
分组讨论:将学生分成小组,让他 们讨论相关问题,提高合作能力
课堂测验:通过小测验或练习题, 检验学生对实数概念的理解和掌握 情况
练习题与答案解析
● 题目1:什么是实数? 答案1:实数包括有理数和无理数,有理数包括整数、分数、小数等,无理数包括无限不循 环小数等。
添加标题 添加标题 添加标题 添加标题
地图上的经纬度
经纬度定义:经度和纬度是地图上的两个基本坐标系统,用于确定地球上 任何位置的坐标。
实数与经纬度的关系:经度和纬度都是实数,可以用小数或度数表示。
经纬度在地图上的应用:通过经纬度可以确定地球上任何位置的精确位置, 从而进行导航、定位和地理信息系统的应用。
添加标题
添加标题
实数与其他数学概念的关系
总结与回顾
本节课的重点与难点总结
重点:实数的概 念、分类和性质
难点:实数的运 算规则和实际应 用
解决方法:通过 例题讲解和练习 巩固,加深对实 数概念的理解和 掌握
总结:回顾本节 课所学内容,强 调容

无理数与有理 数的区别:定 义、性质、运 算规则等方面
的差异
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档