七年级数学解一元一次方程3

合集下载

七年级下册数学解一元一次方程

七年级下册数学解一元一次方程

在七年级下册数学中,解一元一次方程是一个重要的课题。

一元一次方程是只含有一个未知数,并且未知数的指数为1的方程。

下面是一些解一元一次方程的基本步骤和示例。

1.解一元一次方程的基本步骤
1)去分母:如果方程中有分数,首先去分母,使方程变为整数形式。

2)去括号:如果方程中有括号,应用分配律去掉括号。

3)移项:将所有包含未知数的项移到方程的一边,常数项移到另一边。

4)合并同类项:将方程两边的同类项合并。

5)系数化为1:通过除法或乘法,使未知数的系数为1。

2.示例
解方程:3x - 7 = 2x + 5
1)去分母:本方程没有分数,所以此步跳过。

2)去括号:本方程没有括号,所以此步跳过。

3)移项:将包含x的项移到方程的一边,常数项移到另一边。

3x - 2x = 5 + 7
4)合并同类项:合并x的系数。

x = 12
3.注意事项
1)确保在解方程时,每一步都正确无误。

2)在移项和合并同类项时,要特别注意符号的变化。

3)在解出未知数后,最好将解代入原方程检验是否正确。

解一元一次方程是数学基础的一部分,通过不断的练习,可以逐渐掌握这一技能。

七年级数学上册第3章一元一次方程3.3一元一次方程的解法第2课时用去分母解方程课件新版湘教版

七年级数学上册第3章一元一次方程3.3一元一次方程的解法第2课时用去分母解方程课件新版湘教版

知识点 解含分母的一元一次方程
1. 把方程 3x+2x-3 1=-x+2 1去分母,正确的是 (C)
A.3x+2(2x-1)=-3(x+1) B.18x+2(2x-1)=-3x+1 C.18x+2(2x-1)=-3(x+1) D.3x-2×2x-1=-3x+1
2. 下列方程去分母后,所得结果错误的有( B )
规律 .


10
个方程
【解析】根据题意得第 n 个方程为nx+n+x 1=2n+1,
解为 x=n(n+1),所以第 10 个方程为1x0+1x1=21,其解
为 x=10×11=110.
2. 某同学在解方程2x-3 1=x+3 a-2 去分母时,方程 右边的-2 没有乘 3,其他步骤正确,这时求得的方程的 解为 x=2,试求 a 的值,并求出原方程的正确的解.
解:设甲、乙两地的路程为 x km, 列方程为x5-x7=20, 解得 x=350. 答:略.
1. 有一系列方程:第 1 个方程是 x+2x=3,解为 x
=2;第 2 个方程是2x+3x=5,解为 x=6;第 3 个方程是3x
+ 是
4x1x=0+71,x1=解2为1 ,x其=解12为;
…根据 x=110
法.请用这种方法解方程: 5(2x+3)-34(x-2)=2(x-2)-12(2x+3).
解:移项、合并同类项得121(2x+3)=141(x-2), 约分、去分母得 2(2x+3)=x-2, 去括号,得 4x+6=x-2, 移项、合并同类项,得 3x=-8, 两边都除以 3,得 x=-83.
10. 从甲地到乙地,公共汽车原需行驶 7 h,开通高 速公路后,车速平均每小时增加了 20 km,只需 5 h 即可 到达,求甲、乙两地的路程.

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。

今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。

初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。

在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。

这为过渡到本节的学习起着铺垫作用。

合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。

因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。

其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。

教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

2022秋七年级数学上册第4章一元一次方程4.2解一元一次方程3用去括号法解方程授课课件新版苏科版

2022秋七年级数学上册第4章一元一次方程4.2解一元一次方程3用去括号法解方程授课课件新版苏科版
根据题中的新定义,得4-4(1+2x)=x+9. 去括号,得4-4-8x=x+9. 解得x=-1.
14 某超市为了回馈客户,决定实行优惠活动. 方案一:非会员购买所有商品可获九折优惠; 方案二:交纳200元会费成为该超市的会员,购买所 有商品可获八折优惠. (1)若用x(元)表示商品价格,请你用含x的式子分别表 示两种购物方案所花的钱数; 解:由题意,可得方案一:付费为0.9x元, 方案二:付费为(200+0.8x)元.
3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月12日星期六3时47分18秒15:47:1812 March 2022
谢谢观赏
You made my day!
错解:去括号,得 12-y=-6y-1.移项,得 6y-y =-1-12.合并同类项,得 5y=-13.系数化为 1, 得 y=-153.
诊断:用去括号法解一元一次方程,去括号时
易漏乘某些项而出错.
10 解下列方程: (1)3(7x-5)-13(5-7x)+17(7x-5)=7(5-7x); 解:把 7x-5 看成一个整体,将原方程变形为 3(7x -5)+13(7x-5)+17(7x-5)=-7(7x-5), 整体移项、合并同类项,得10+1201(7x-5)=0, 即 7x-5=0.移项,得 7x=5.系数化为 1,得 x=57.
(6)x-2[x-3(x-1)]=8.
解:去中括号,得 x-2x+6(x-1)=8. 去小括号,得 x-2x+6x-6=8. 移项、合并同类项,得 5x=14. 系数化为 1,得 x=154.
9 解方程:2(6-0.5y)=-3(2y-1).
正解:去括号,得 12-y=-6y+3.移项,得-y+ 6y=3-12.合并同类项,得 5y=-9.系数化为 1,得 y=-95.

人教版七年级数学上册3.解一元一次方程(合并同类项)课件

人教版七年级数学上册3.解一元一次方程(合并同类项)课件

(D )
2.如果2x与x-3的值互为相反数,那么x等于( )
A.-1 B.1
C.-3
D.3 B
3.某中学七年级(5)班共有学生44人,该班男生的 人数是女生人数的2倍少1人.设该班有女生有x人, 可列方程为__2_x_-1_+_x_=_4_4____.
4. 解方程: (1)-3x+0.5x=10.
解:合并同类项得 -2.5x=10,
系数化为1,得 x=-4.
(2)3y-4y=-25-20.
解:合并同类项得 -y=-45,
系数化为1,得 y=45.
课堂小结:
3x+x+5x=180 合并同类项
等式的性质2
9x=140 系数化为1
理论根据?
x=20
课堂小结:
1. 解形如“ax + bx + ···+ mx = p”的一元一次方程 的步骤.
解:(1)合并同类项,得
1 x 15. 4
系数化为1,得
x 60.
(2) x 2 x 1 x 4 2 32. 32
(2)合并同类项,得
1 x 1. 6
去绝对值,得 1 x 1. 6
系数化为1,得
x 6.
解下列方程: (1) 9x-3x =12;
(2)
1 2
x
3 2
x
7
(2)合并同类项,得
2x=7,
系数化为1,得
x 7. 2
列方程解决实际问题:
有一列数,按一定规律排列成1,-3,9,-27, 81,-243 ,···. 其中某三个相邻数的和是-1701, 这三个数各是多少?
分析:从符号和绝对值两方面视察,可发现这列数的排列规 律:后面的数是它前面的数与-3的乘积.如果三个相邻数中 的第1个数记为x,则后两个数分别是-3x,9x.

七年级数学下册解一元一次方程第3课时利用一元一次方程解决实际问题课件

七年级数学下册解一元一次方程第3课时利用一元一次方程解决实际问题课件

解:设哥哥追上弟弟和妈妈需要 x 小时,则此时弟弟和妈妈出发了(1+x) 小时, 1 1 3 根据题意,得 6x=2(1+x).解得 x= .∵ <1 -1,∴能追上. 2 2 4 1 答:哥哥追上弟弟和妈妈需要 小时,哥哥能在弟弟和妈妈到外婆家之前 2 追上他们.
【点悟】 利用方程解决实际问题的基本思路如下:首先审题,找出题中的 未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为 x, 然后用含 x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答, 即设、列、解、答.
解:(1) 36÷ 3=12(min),即王老师还要 12 min 才能到达道口,加上以后的 时间 7 min 为 19 min,而 19 min 大于 15 min,所以王老师应该选择绕道去学 校. 答:王老师应选择绕道去学校. (2)第一问里算出拥挤状态下需 12 min,节省了 6 min, 共用了 12-6=6(min). 设维持秩序用了 x min,则 3x+9(6-x)=36,54-6x=36, x=3. 答:维持秩序的时间是 3 min.
解:设城中有 x 户人家. 1 由题意,得 x+ x=100,解得 x=75. 3 答:城中有 75 户人家.
【点悟】 涉及和、差、倍、分问题,一般可直接列出方程,但需抓住 关键词:大、小、多、少、增加、减少、几倍、几分之几等.
类型之二
一元一次方程的应用
[2018 春 · 新泰市期中]“五一”长假里,弟弟和妈妈从家里出发一 同去外婆家,他们走了 1 小时后,哥哥发现带给外婆的礼品忘在家里了,便 立刻带上礼品以每小时 6 千米的速度去追.如果弟弟和妈妈每小时行 2 千米, 哥哥追上弟弟和妈妈需要多少时间?若弟弟和妈妈从家里到外婆家需要 1 小 时 45 分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?

人教版七年级上册数学解一元一次方程(三)去分母同步训练

人教版七年级上册数学解一元一次方程(三)去分母同步训练
解:根据题意,可得: =2,
去分母,可得:x﹣1=6,
移项,可得:x=6+1,
合并同类项,可得:x=7.
故答案为:7.
【点评】
此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
11.7
【分析】
利用互为相反数两数之和为0列出方程,求出方程的解即可得出a的值.
去括号,可得:x+1+2x﹣10=0,
移项,合并同类项,可得:3x=9,
系数化为1,可得:x=3,
∴当x=3时,整式 与x﹣5的值互为相反数.
故答案为:3.
【点睛】
本题考查的是互为相反数的定义,一元一次方程的解法,掌握去分母解一元一次方程是解题的关键.
16.分数的基本性质等式的基本性质2去括号法则或乘法分配律移项等式的基本性质1合并同类项法则系数化为1等式的基本性质2
11.已知 的倒数与 互为相反数,则 _______.
12.将方程 的两边同乘12,可得到 ,这种变形叫_______,其依据是___________________________________________________________.
13.方程 的解 ______.
14.若 是关于x的方程 的解,则 ______.
【详解】
去分母:
去括号:
移项:
合并同类项得:
是原方程的解
代表的数字是
【点睛】
本题考查了一元一次方程的解的定义,解一元一次方程,熟悉一元一次方程的解法是解题的关键.
【详解】
解:
去分母时,方程两边同时乘12,等式仍成立,
故答案为:去分母,等式的基本性质.

湘教版七年级上册数学第3章 一元一次方程 利用去分母解一元一次方程

湘教版七年级上册数学第3章 一元一次方程 利用去分母解一元一次方程

10.解下列方程: (1)2x-3 1=x+4 2;
解:去分母,得 4(2x-1)=3(x+2).去括号,得 8x-4=3x+6. 移项,得 8x-3x=4+6.合并同类项,得 5x=10.系数化为 1,得 x=2.
(2)2x-2 1=x+4 2-1;
解:去分母,得 2(2x-1)=x+2-4.去括号,得 4x-2=x+2-4.移项,得 4x-x=2+2-4. 合并同类项,得 3x=0.系数化为 1,得 x=0.
17.先阅读,后解题: |-3|=3 表示-3 的绝对值为 3,|+3|=3 表示+3 的绝对值 为 3,如果|x|=3,那么 x=3 或 x=-3.若解方程|x+1|=3, 可将绝对值符号内的 x+1 看成一个整体,则可得 x+1=3 或 x+1=-3,分别解方程可得 x=2 或 x=-4. 利用上面的知识,解答下列问题:
12.当 x=___-__2___时,代数式 6+x2与x-2 8的值互为相反数.
【点拨】根据题意可列方程 6+x2+x-2 8=0,去分母, 得 12+x+x-8=0,移项、合并同类项,得 2x=-4, 两边都除以 2,得 x=-2,即当 x=-2 时, 代数式 6+x2与x-2 8的值互为相反数.
去括号,得 2|2x-3y| +4-5|2x-3y|+5=5-2|2x-3y|,
移项,得 2|2x-3y|-5|2x-3y|+ 2|2x-3y|=5-4-5,
合并同类项,得-|2x-3y|=-4, 两边都除以-1,得 |2x-3y|=4, 所以 2x-3y=4 或 2x-3y=-4, 当 2x-3y=4 时,6x-9y+3=3(2x-3y)+3=3×4+3=15; 当 2x-3y=-4 时, 6x-9y+3=3(2x-3y)+3=3×(-4)+3=-9. 所以代数式 6x-9y+3 的值为 15 或-9.

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程

北师版七年级数学上册课件 第五章 一元一次方程 求解一元一次方程 第3课时 用去分母解一元一次方程

北师版七年级数学上册课件 第五章 一元一次方程 求解一元一次方程 第3课时 用去分母解一元一次方程

=52 的解是 x=__1__.
12.若关于 x 的方程
ax+2 4
-1=15
(2x-1)的解是正整数,则整数 a 的值为
__2__.
13.一列方程及其解如下排列:①x4 +x-2 1 =1 的解是 x=2;②x6 +x-2 2 =1 的解是 x=3;③x8 +x-2 3 的解是 x=4……根据观察得到的规律,写出 其解是 x=2 021 的方程:_4__0x_4_2__+__x_-__22_0_2_0__=__1_.
⑤系数化为 1,得 x=154 .
其中错误的步骤有( B ) A.①④ B.①⑤ C.②④
D.②③
6.(4 分)方程3(x- 2 1) =x-5 8 的解为_x_=__-__1_13___. 7.(4 分)若代数式x+2 1 与 2(2-x)的值互为相反数,则 x=__3__.
8.(7 分)当 k 为何值时,代数式k-3 1 的值比代数式32 (k+2)的值小 2?
16.(10 分)如果代数式x+3 1 -x+6 8 与 1-x-2 2 的值互为相反数,求方程 a -2-4ax =5a+ 3 x -1 中 a 的值.
解:由题意可知x+3 1 -x+6 8 +1-x-2 2 =0,解得 x=3,将 x=3 代入 a-2-4ax =5a+ 3 x -1,得 a-2-43a =53a ,解得 a=6
解:当k-3 1 +2=32 (k+2)时,解得 k=-87 ,所以当 k=-87 时,代数式k-3 1 的值比代数式32 (k+2)的值小 2
一、选择题(每小题 4 分,共 8 分)
9.某书中一道方程题2+3⊕x +1=x,⊕处印刷时被墨盖住了,查后面答案,
这道题的解为 x=-2.5,那么⊕处的数字为( B )

初中数学人教七年级上册第三章一元一次方程-解一元一次方程

初中数学人教七年级上册第三章一元一次方程-解一元一次方程

均速度。
因为船往返的路程是一个定值,
分析:
表示它的两个式子应相等
(1)设船在静水中的平均速度为x km/h.
(2)顺流时行驶的路程为 2(x+3 米; (3)逆流时行驶的路程为 ) 2.5(x-3米);
(4)根据题意可列方程为__2__(___x__+_3__)___=__2_._5__(___x_-_3)
解方程
(1)3-(4x-3)=7
解:去括号,得 3 4x 3 7 移项,得 4x 7 33
合并同类项,得 4x 1
系数化成1,得 x 1 4
解方程
(2)2x-(x+10)=5x+2(x-1)
解:去括号,得 2x-x-10=5x+2x-2
移项,得 2x-x-5x-2x=-2+10
合并同类项,得
-6x=8
系数化成1,得
解方程
(3)3x-7(x-1)=3-2(x+3)
解:去括号,得 3x-7x+7=3-2x-6
移项,得 合并同类项,得
系数化成1,得
3x-7x+2x=3-6-7 -2x=-10 x=5
情景思考
一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头到甲码头
逆流而行,用了2.5h。已知水流的速度是3km/h,求船在静水中的平
每月平均用电多少度?
已知去年全年的用电合计为
分析:
15万度
(1)设去年上半年每月平均用电x度.
(2)去年上半年用电合计为 6x 度;
(3)去年下半年用电合计为 6(x-2000)度;
(4)根据题意可列方程为__6__x_+__6_(_x__-2__0_0__0_)_=__1_5__0_000

苏教版七年级数学:解一元一次方程40题(三)含答案

苏教版七年级数学:解一元一次方程40题(三)含答案

解一元一次方程40题(三)含答案一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.若代数式33x +比344x -的值大4,求x 的值.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x x x +----=-7.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+8.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-9.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=10.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷(3)解方程:3221211245x x x +++-=-12.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-13.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=14.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.15.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.16.解方程:211236x x -+-=17.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-18.解方程:126125y y--=-.19.311(54)1535x-+=22531277714x+-=20.解方程:(1)132xx--=(2)0.6310.20.4x x--=21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=22.解方程21911 36x x++-=23.已知52x+-与445x+互为相反数,求x的值.24.(1)计算:4321(2)4[5(3)]-+-÷⨯-- (2)解方程4372153x x ---=25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+-(3)解方程:211134x x +--=26.解方程(1)43(2)52(12)y y y -+=-- (2)11136x xx ---=-27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.28.解方程:52(1)x x +=-29.解方程:221134x x +-=+.30.解下列方程:(1)22x -=-; (2)355(2)x x x -=-+; (3)2532168x x +--=; (4)312[2()]6223x x -+=.31.解方程:3252x x -=-32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.33.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=34.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-.37.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=38.解方程:123173x x -+-=.39.解方程:104(3)22x x --=-.40.已知关于x 的方程2(1)31x m -=-与324x +=-的解互为相反数,求m 的值.解一元一次方程40题(三)含答案参考答案与试题解析一.解答题(共40小题) 1.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值. 【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m---=得:1112423mm ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+-2122m =--21522=--1272=-.【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m --- 20202019113(2)()222=-⨯-- 1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义.3.若代数式33x +比344x -的值大4,求x 的值. 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:334434x x +--=, 去分母得:41291248x x +-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.4.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.5.解方程:(1)37322x x +=-;(2)43(20)40x x --+=;(3)352123x x +-=; (4)5415323412y y y +--+=-; 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x +=-,32327x x +=-,525x =,5x =;(2)43(20)40x x --+=,460340x x -++=,43604x x +=-,756x =,8x =;(3)去分母得:3(35)2(21)x x +=-,91542x x +=-,94215x x -=--,517x =-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.解方程:(1)2557x x+=-(2)3(2)25(2)x x-=-+(3)142 23x x+-+=(4)12311463 x x x-++-=+【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x --=+++,525x -=,5x =-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.解下列方程:(1)5379x x +=-+(2)43(20)40x x --+=(3)3157146y y ---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.某同学在解方程21233x x a -+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-.解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-.解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ (3)解方程:3221211245x x x +++-=- 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; (3)10(32)205(21)4(21)x x x +-=+-+30202010584x x x +-=+--3010854x x x -+=-281x =128x=【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x -=-,去括号得:661x x -=-,移项合并得:55x =,解得:1x =;(3)去括号得:8552x x +-=,移项合并得:33x =-,解得:1x =-;(4)方程整理得:520262x x +-+=,移项合并得:324x =-,解得:8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.解方程:(1)34(25)4x x x -+=+;(2)12226x x x -+-=-. 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x --=+,移项合并得:624x -=,解得:4x =-;(2)去分母得:633122x x x -+=--,移项合并得:47x =, 解得:74x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-,解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.解方程:211236x x -+-= 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母得:42112x x ---=,移项合并得:315x =,解得:5x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解下列方程或方程组(1)219x x -=+(2)52(1)x x +=-(3)43135x x --=- (4)3717245x x -+-=- 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)移项合并得:10x =;(2)去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =;(3)去分母得:2053915x x -=--,移项合并得:844x -=-,解得: 5.5x =;(4)去分母得:401535468x x -+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程:126125y y--=-.【分析】方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:去分母得:5510412y y-=-+,移项合并得:927y=,解得:3y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.解方程(1)2(4)3(1)x x x--=-(2)313142x x-+ -=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2833x x x-+=-,移项合并得:25x=-,解得: 2.5x=-;(2)去分母得:43162x x-+=+,移项合并得:51x-=,解得:0.2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.23.已知52x+-与445x+互为相反数,求x的值.【分析】利用相反数的性质列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:544025x x +-++=, 去分母得:5258400x x --++=,移项合并得:315x =-,解得:5x =-.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.24.(1)计算:4321(2)4[5(3)]-+-÷⨯--(2)解方程4372153x x ---= 【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式184(4)187=--÷⨯-=-+=;(2)去分母得:129153510x x --=-,移项合并得:2314x =-, 解得:1423x =-. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.计算下列各题:(1)计算:315()7|0.75|4---+-- (2)计算:2312(3)4()(2)2⨯--÷-+- (3)解方程:211134x x +--= 【分析】(1)原式利用减法法则,以及绝对值的代数意义计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式150.7570.758=-++-=-;(2)原式188818=+-=;(3)去分母得:843312x x +-+=,移项合并得:55x =,解得:1x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程(1)43(2)52(12)y y y -+=--(2)11136x x x ---=- 【分析】(1)根据一元一次方程的解法即可求出答案;(2)根据一元一次方程的解法即可求出答案.【解答】解:(1)43(2)52(12)y y y -+=--,463524y y y ∴--=-+,634y y ∴-=+,3y ∴=-;(2)11136x x x ---=-, 62(1)16x x x ∴--=--,6225x x x ∴-+=--,825x x ∴-=--,13x ∴=-; 【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.27.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数, (1)求m 的值.(2)若当y m =时,代数式31ay by ++的值为5,求当y m =-时,代数式31ay by ++的值.【分析】(1)先求出方程21622x x +=-的解,这个解的倒数也是方程123x m x -=+的解,根据方程的解的定义,把这个解的倒数代入就可以求出m 的值;(2)把y m =代入31ay by ++得到m 和n 的式子,然后把y m =-代入31ay by ++,利用前边的式子即可代入求解.【解答】解:解方程21622x x +=-得:12x =. 因为方程的解互为倒数,所以把12x =的倒数2代入方程123x m x -=+,得:21223m -=+, 解得:83m =-. 故所求m 的值为83-;(2)把y m =代入31ay by ++得315am bm ++=,则34am bm +=,当y m =-时,331()1413ay by am bm ++=-++=-+=-.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.28.解方程:52(1)x x +=-【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:522x x +=-,移项合并得:7x -=-,解得:7x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:221134x x +-=+. 【分析】去分母、去括号、移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得4(2)123(21)x x +=+-,去括号,得481263x x +=+-,移项,得461238x x -=--,合并同类项,得21x -=,系数化成1得12x =-. 【点评】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.30.解下列方程:(1)22x -=-;(2)355(2)x x x -=-+;(3)2532168x x +--=; (4)312[2()]6223x x -+=. 【分析】(1)依次移项、合并同类项即可得;(2)依次去括号、移项、合并同类项、系数化为1可得;(3)依次去分母、去括号、移项、合并同类项、系数化为1可得;(4)依次去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)22x =-+,0x =;(2)3552x x x -=--,3525x x x -+=-+,3x -=,3x =-;(3)4(25)3(32)24x x +--=,8209624x x +-+=,8924206x x -=--,2x -=-,2x =;(4)13()162x x -+= 33162x x -+=, 33612x x -=-, 132x -=, 16x =-. 【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x a =形式转化.31.解方程:3252x x -=-【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3522x x-=-+,合并得:20x-=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.33.解方程(1)321x x-=-+(2)18(1)32(21)x x x-+=--(3)31571104 y y---=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x=,解得:43x=;(2)去括号得:1818342x x x-+=-+,移项合并得:2520x=,解得:45x =; (3)去分母得:62202535y y --=-,移项合并得:1913y -=-, 解得:1319y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程:(1)2(100.5)(1.52)x x -=-+;(2)5415523412y y y +--+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x -=--,移项合并得:0.522x =-,解得:44x =-;(2)去分母得:2016332455y y y ++-=-+,移项合并得:2816y =, 解得:47y =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -…时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -…时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-. (2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -…时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-. 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x --+=-,移项得:2129943x x x -+=+-,合并同类项得:10x -=,系数化为1得:10x =-,(2)去分母得:2(21)(52)3(12)12x x x --+=--,去括号得:42523612x x x ---=--,移项得:45631222x x x -+=-++,合并同类项得:55x =-,系数化为1得:1x =-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:123173x x -+-=. 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母,得3(12)217(3)x x --=+,去括号,得3621721x x --=+,移项,得6721321x x --=-+,合并,得1339x -=,系数化1,得3x =-,则原方程的解是3x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.39.解方程:104(3)22x x --=-.【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去括号得:1041222x x -+=-,移项合并得:624x -=-,解得:4x =.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.40.已知关于x的方程2(1)31x m-=-与324x+=-的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m 的值.【解答】解:方程324x+=-,解得:2x=-,把2x=-代入第一个方程得:631m-=-,解得:53m=-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.。

5.2解一元一次方程(第3课时 去括号)(教学课件)七年级数学上册

5.2解一元一次方程(第3课时 去括号)(教学课件)七年级数学上册

第三步
第四步
以上解方程步骤中,开始出现错误的是( B )
A.第一步
B.第二步
C.第三步
D.第四步
4.解下列方程:
(1)2(x+3)=5x;
(2)4x+3(2x-3)=12-(x+4)
1
1
(3)6( x-4)+2x=7-( x-1);
2
3
(4)2-3(x+1)=1-2(1+0.5x).
(1)解:去括号,得
A.-4x+1=-x
B.-4x+2=-x
C.-4x-1=x
D.-4x-2=x
1.将方程7 2x − 1 − 3 4x − 1 = 10去括号正确的是( B )
A.14x − 7 − 12x + 1 = 10
B.14x Βιβλιοθήκη 7 − 12x + 3 = 10
C.14x − 1 − 12x − 3 = 10
平均用电是多少?
(x-2000)
设上半年每月平均用电xkW·h,则下半年每月用电_________kW
·h;上半
3x
6x
6(x-2000)
年共用电____kW
·h,下半年共用电___________kW
·h.
根据全年用电15万kW·h,列得方程
6x+6(x-2000)=150000
问题二:解方程 6x+6(x-2000)=150000
针对练习
3.一架飞机在两个城市之间飞行,当顺风飞行时需2.9h,当逆风飞行时
则需3.2h.已知风速为30km/h,求无风时飞机的航速和这两个城市之间
的航程.
解:设无风时飞机的航速为xkm/h.

2024年秋人教版七年级数学上册 第五章 “一元一次方程”《解一元一次方程(3)去括号》精品课件

2024年秋人教版七年级数学上册 第五章 “一元一次方程”《解一元一次方程(3)去括号》精品课件
来列方程.
1.解方程3-(x+2)=1去括号正确的是(
A.3-x+2=1
B.3+x+2=1
C.3+x-2=1
D.3-x-2=1
2.解下列方程:
(1)25b-(b-5)=29;
(1)去括号,得25b-b+5=29.
移项及合并同类项,得24b=24.
系数化为1,得b=1.
D

2
(2)2x- (x+3)=-x+3.
3

(2)去括号,得2x- x-2=-x+3.


移项及合并同类项,得 x=5.


系数化为1,得x= .

3.当x取什么值时,式子5(x+2)比2(1-3x)的值小3?
解:由题意,得2(1-3x)-5(x+2)=3.
去括号,得2-6x-5x-10=3.
移项及合并同类项,得-11x=11.
系数化为1,得x=-1.
风从A机场飞到B机场要用2.8 h.它逆风飞行同样的航线要用3 h.求:
(2)两机场之间的航程.
解:(2)3(x-24) =3×(696-24) =2 016(km).
答两机场之间的航程为2 016 km.
1.解带括号的方程的步骤:
(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.
2.顺流、逆流问题要抓住两码头间距离不变(即去与回的路程相等)
4.(2023·英德市期中)规定一种新运算法则:x*y=x2-2xy.
(1)求(-3)*1的值;
解:(1)由题意,得(-3)*1=(-3)2-2×(-3)×1=9+6
=15.
(2)若2*(t+1)=8,求(1-t)*t的值.
解:(2)由题意,得22-2(t+1)×2=8,解得t=-2.

北师大版(2024)七年级数学上册 第五章 习题课件 第5课 解一元一次方程(3)——去分母

北师大版(2024)七年级数学上册 第五章 习题课件 第5课 解一元一次方程(3)——去分母
7
4.当x为何值时,x
3
2

x8 12
大2?
解:依题意,得 x 2 x 8 =2.
3 12
去分母,得4(x-2)-(x-8)=24.
去括号,得4x-8-x+8=24. 合并同类项,得3xHale Waihona Puke 24.系数化为1,得x=8.
5.(BS七上P161T15改编)把96拆成4个数的和,使得第
一个数加3,第二个数减3,第三个数乘3,第四个数
方程
2x a 3
2x 1 6
1
,去分母时,-1没有乘6,得到
方程的解为x=1.
(1)求a的值;
解:(1)依题意,得
x=1是方程2(2x-a)=2x+1-1的解.
将x=1代入方程2(2x-a)=2x+1-1,解得a=1.
(2)求方程正确的解.
解:(2)将a=1代入原方程,

2x 1 3
2
x 6
1
1
第五章 一元一次方程 第5课 解一元一次方程(3)——去分母
1.
解方程 x 1 2 x,去分母时方程两边应同乘
43
( D)
A.3
B.4
C.6
D.12
2.解下列方程: 解 (1):2x去=分3x母+,5;得x=2(3x+5). 去括号,得x=6x+10. 移项,得x-6x=10. 合并同类项,得-5x =10. 系数化为1,得x=-2.
除以3,得到的结果都相等,求拆成的这四个数中最
大的数是多少. 解:设相等的数为x,则其余数为(x-3),(x+3), x ,3x.
依题意,得
x
3
(则x-x-3)3+=(x1+5,3)x++33=+231x,=x96=,6解,得3xx==5148,.

七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件

七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件

移项,得4x-3x=6+2+1,
合并同类项,得x=9.
错因分析 去分母时,各项都应乘各分母的最小公倍数,本题忽略了不
含分母的项.
2021/12/11
第二十二页,共九十五页。
知识点一 解一元一次方程——去括号(kuòhào)
1.将方程-3(2x-1)+2(1-x)=2去括号,得 ( ) A.-3x+3-1-x=2 B.-6x-3+2-x=2 C.-6x+3+1-2x=2 D.-6x+3+2-2x=2
≠0,a,b为常数)
等式的 性质2
(1)系数相加; (2)字母及其指数不变
(1)除数不为0;(2)不要把分子、分 母颠倒
化分母中的小数为整数不同于去分母,不是将方程两边同时乘同一个数,而是将分子、分母同时乘同一个 数
第六页,共九十五页。
例3 解方程:(1)4-3(10-y)=5y;
(2) 2 x =1 2-1x . 1
点拨 这是一道典型的追及问题,做题时要注意挖掘题中的隐含条件: 小明用的时间比小亮用的时间多0.5 h.
2021/12/11
第二十页,共九十五页。
易错点一 去括号时漏乘项或出现符号(fúhào)错误
例1 解方程:4x-3(2-x)=5x-2(9+x).
错解 错解一:去括号,得4x-6+x=5x-18-x, 移项、合并同类项,得x=-12. 错解二:去括号,得4x-6-3x=5x-18+2x, 移项、合并同类项,得-6x=-12, 系数化为1,得x=2. 正解 去括号,得4x-6+3x=5x-18-2x, 移项、合并同类项,得4x=-12,系数化为1,得x=-3. 错因分析 错解一中运用分配律时,括号前的系数只乘了第一项,漏乘 了第二项;错解二中出现了符号错误.本题括号前面是“-”,去括号时, 2只021改/12/变11 了第一项的符号,而忽视了第二改十一页变,共九括十五号页。 内其他项的符号.

龙岗区第三中学七年级数学上册 第3章 一元一次方程3.3 一元一次方程的解法第3课时 解含有分母的一

龙岗区第三中学七年级数学上册 第3章 一元一次方程3.3 一元一次方程的解法第3课时 解含有分母的一

第3课时解含有分母的一元一次方程【知识与技能】1.掌握解一元一次方程中“去分母”的方法,并能解此类型的方程.2.了解一元一次方程解法的一般步骤.【过程与方法】经历把实际问题抽象为方程的过程,发展用方程方法分析问题、解决问题的能力.【情感态度】通过具体情境引入新问题(如何去分母),激发学生的探究欲望.【教学重点】通过“去分母”的方法解一元一次方程.【教学难点】探究通过“去分母”的方法解一元一次方程.一、情景导入,初步认知1.判断.(1)若a=b,则ac=bc()(2)若a=b则a÷2=b÷2( )2.求下列几组数的最小公倍数.(1)2,3;(2)2,3,6解:(1)最小公倍数是6.(2)最小公倍数是6.3.解方程:2x=3(x-1)解:2x=3x-33=x即x=3【教学说明】通过复习以前学过的知识,为本节课做好铺垫.二、思考探究,获取新知1.刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成,现在甲先单独绣1天,接着乙又绣4天,剩下的工作由甲、乙两人合绣,问再绣多少天可以完成这件作品?师生互动:学生审题后,教师提问:(1)题中涉及哪些相等关系?(2)应怎样设未知数?如何根据相等关系列出方程?教师展示问题,让学生思考,独立完成.分析并列方程解:设再绣x天可以完成.1 15(x+1)+112(x+4)=1【教学说明】由实际问题引出带有分数系数的一元一次方程,进而讨论用去分母解这类方程.同时利用方程思想解决实际问题,能再一次让学生感受方程的实用价值.2.这个方程与前面学过的一元一次方程有什么不同?怎么解这个方程呢?3.教师出示问题,学生思考、回答,学生代表将不同的解法在黑板上展示交流(用通分合并同类项,用去分母方法解).【教学说明】学生在已有经验基础上,努力尝试新的方法.4.不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?【教学说明】通过对同一方程不同解法的探索过程,使学生感受去分母方法的简便,同时理解去分母的目的和依据,进而得出去分母的一般方法.5.学生讨论之后,教师通过以下问题明确去分母的方法和依据:(1)怎样去分母呢?(2)去分母的依据是什么?【归纳结论】去分母的方法:在方程两边同乘各分母的最小公倍数可以去分母.6.结合上两节课所学的内容,你能归纳解一元一次方程的步骤吗?【归纳结论】解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.【教学说明】学生再次认识去分母解一元一次方程的方法,归纳解一元一次方程的一般步骤,进一步体会化归的数学思想.三、运用新知,深化理解1.教材P94例3.2.将方程x2-24x-=1去分母,得( A )A.2x-(x-2)=4B.2x-x-2=4C.2x-x+2=1D.2x-(x-2)=13.方程213x+-12x-=1去分母正确的是( D )A.2(2x+1)-3(x-1)=1B.6(2x+1)-6(x-1)=1C.2x+1-(x-1)=6D.2(2x+1)-3(x-1)=64.当3x-2与13互为倒数时,x 的值为( B ) A.13B.53 C.3 D.355.下面的方程变形中:①2x+6=-3变形为2x=-3+6; ②33x +-12x +=1变形为2x+6-3x+3=6; ③25x-23x=13变形为6x-10x=5; ④35x=2(x-1)+1变形为3x=10(x-1)+1. 正确的是 ③ (只填代号). 6.已知2是关于x 的方程32x-2a =0的一个解,则2a-1的值是 2 . 7.一队学生从学校出发去部队军训,以每小时5km 的速度行进4.5km 时,一名通讯员以每小时14km 的速度从学校出发追赶队伍,他在离部队6km 处追上了队伍,设学校到部队的距离是x km ,则可列方程6 4.55x --=614x -求x. 8.解方程:(1)3(m+3)=22.52m -10(m-7), (2)6x +30004x -=10×60. 解:(1)去分母,得6(m+3)=22.5m-20(m-7),去括号,得6m+18=22.5m-20m+140,移项,得6m-22.5m+20m =140-18,合并同类项,得3.5m =122,系数化1,得m=-2447. (2)去分母,得2x+3(3000-x)=10×60×12.去括号,得2x+9000-3x=7200,移项,得2x-3x=7200-9000,合并同类项,得-x=-1800,化系数为1,得x=1800.9.解方程:19112468753x ⎧⎫⎡+⎤⎛⎫+++⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭=1. 解:方程两边同乘以9,得112468753x ⎡+⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=9, 移项合并,得11246753x ⎡+⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=1, 方程两边同乘以7,得12453x +⎛⎫+⎪⎝⎭+6=7, 移项合并,得12453x +⎛⎫+ ⎪⎝⎭=1, 方程两边同乘以5,得243x ++=5, 移项合并,得23x +=1, 去分母,得x+2=3,即x=1.10.小明沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答说:“10分钟前我超过一辆自行车”小明又问:“你的车速是多少?”司机回答:“75km/h ”小明又继续走了20分钟就遇到了这辆自行车,小明估计自己步行的速度是3km/h ,这样小明就算出了这辆自行车的速度.自行车的速度是多少?解:设自行车的速度是x千米/小时,由题意得12x+13×3=75×16,解之得x=23.答:自行车的速度是23千米/小时.【教学说明】及时巩固所学知识.让学生理解解方程的步骤不是固定不变的,而是可以根据一元一次方程的不同形式灵活改变解题顺序的.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第3、4、8题.通过本节课的教学我认识到一定要把更多的学习、探究机会给学生,学生能解决的老师绝不代办,充分体现学生的主体地位,还有课堂上必须给学生安排足够的练习巩固的时间,一方面:学生可以查漏补缺,另一方面:老师可以有效地把握学生的学习效果,以便进行因材施教.有理数的加法法则1.计算-2+3的结果是( )A .-5B .1C .-1D .52.比-12大12的数是( ) A .2 B .1 C .0 D .-23.[2017·十堰]气温由-2℃上升3℃后是( )A .1℃ B.3℃ C.5℃ D.-5℃4.计算-(-1)+|-1|,其结果为( )A .-2B .2C .0D .-15.若a +b =a ,则b 一定是____.6.计算:(1)-215+(-0.8); (2)-114+⎝ ⎛⎭⎪⎫-56; (3)6112+⎝ ⎛⎭⎪⎫-3518; (4)-50523+50523. 7.列式并计算:(1)求+1.2的相反数与-3.1的绝对值的和;(2)423与-212的和的相反数是多少? 8.如图,数轴上的点A.B 分别对应实数A.b ,下列结论正确的是( )A .a>bB .||a >||bC .-a<bD .a +b<09.如果a 与1互为相反数,则|a +1|等于( )A .2B .-2C .0D .-110.某市某天的最高气温为7 ℃,最低气温为0 ℃.根据天气预报,两天后有一股强冷空气将影响该市,届时将降温5 ℃.问:两天后该市最高气温、最低气温分别为多少摄氏度?11.已知|x|=5,|y|=12,且x<y,求x+y的值.参考答案BCAB6. 解:(1)原式=-215-1215=-1415;(2)原式=-1312-1012=-2112;(3)原式=6336-31036=22936;(4)原式=0.7. 解:(1)-(+1.2)+|-3.1|=-1.2+3.1=1.9;(2)-⎣⎢⎡⎦⎥⎤423+⎝ ⎛⎭⎪⎫-212=-423+212=-216.8.C9.C10. 解:气温下降5 ℃, 记为-5 ℃,则7+(-5)=2(℃),0+(-5)=-5(℃).答:两天后该市的最高气温为2 ℃,最低气温为-5 ℃.11. 解:因为|x|=5,|y|=12,所以x =±5,y =±12.因为x <y ,所以x =±5,y =12.当x =5,y =12时,x +y =17;当x =-5,y =12时,x +y =7.故x +y 的值是7或17.数学活动——构建一元一次方程模型解决实际问题一、新课导入1.活动导入:本节课通过以下两个数学活动,学会关注实际生活中隐含的数学问题,并经历建立一元一次方程模型解决问题的过程,提高分析问题、解决问题的能力,增强应用数学的意识. 2.三维目标:(1)知识与技能确定等量关系,构建一元一次方程模型解决实际问题.(2)过程与方法经历建立一元一次方程模型并应用它解决实际问题的过程,提高分析问题和解决问题的能力.(3)情感态度通过动手实验与动脑分析相结合发现规律,增强创新精神和应用数学的意识.3.活动重、难点:分析问题中的数量关系建立一元一次方程模型.4.活动材料:一根质地均匀的木杆,一段细绳,一些质量相等的砝码、刻度尺.二、活动过程活动1探究增长率问题1.活动指导:(1)活动内容:教材第109页活动1.(2)活动时间:6分钟.(3)活动方法:弄清楚资料中相关数据的含义,思考如何建立出一元一次方程.(4)活动参考提纲:①去年相较于前年的人均收入增长率是如何计算得来的?其数学表达式是:增长率=(去年人均收入-前年人均收入)÷前年人均收入,变形为:去年人均收入=前年人均收入×(1+增长率)②设山水市前年人均收入为x元,依据上面①中关系式和已知条件可列出方程:x(1+8%)=11664.③由已知条件可知去年价格上涨率为1.5%,那么,如何设未知数列出方程求得去年售价为1000元的商品在前年的售价是多少呢?设去年售价为1000的商品在前年的售价是x元.则x·(1+1.5%)=1000.解得x≈985.22.④解方程求得原问题答案.2.自学:同学们可结合自学指导自主学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,关注学生是否弄清相关数据的含义,尤其是增长率的表达式.②差异指导:对学习有困难的学生,教师要结合生活实际从他们熟悉的事例中启发诱导他们弄清楚相关数据之间的关系,进而设未知数列出方程.(2)生助生:小组内相互交流研讨,互帮互学.4.强化:(1)小组选派代表展示活动成果.(2)教师强调:增长率=变化量/原有量×100%,变化量=现有量-原有量.活动2探究杠杆平衡问题1.活动指导:(1)活动内容:教材第109页活动2.(2)活动时间:10分钟.(3)活动方法:按要求动手实验,动脑思考,总结规律.(4)活动参考提纲:①按要求动手实验,测量并记录下相关数据:②分析上表记录下的实验数据,你能发现什么规律?支点左端悬挂重物数×平衡时左端重物到支点的距离=支点右端悬挂重物数×平衡时右端重物到支点的距离.③按照你所发现的规律,列出本活动中最后面问题中的一元一次方程,并求出它的解.2.自学:同学们可结合自学指导,小组内相互合作,交流解决相关问题.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生实验时是否态度端正、严谨,能否从实验数据中发现蕴藏的规律.②差异指导:根据学情有针对性地进行指导、点拨.(2)生助生:小组内相互合作、交流、探讨,共同解决问题.4.强化:(1)杠杆平衡条件:动力×动力臂=阻力×阻力臂.(2)如何解字母系数的方程.三、评价1.学生的自我评价:反思活动过程,自评活动中的表现,自查问题,总结取得的收获.2.教师对学生的评价:(1)表现性评价:根据活动表现,学习态度和完成情况对学生进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时为数学活动课,教学时以学生自学为主,教师引导为辅,让学生真正参与到活动中并能有所收获.对于活动一,部分学生在对两个增长率的认识上有一定困难,可通过同学间的交流研讨或教师提醒予以帮助.活动二如果放在物理学中,很容易解决,但对七年级的学生来说,杠杆平衡问题涉及的一元一次方程模型还是有一定难度,两个活动的核心都体现在了模型建立上,所以在教学过程中引导学生不要以解决问题为目的,要以从活动中建立数学模型并掌握建立模型的思考方法为目的,这样活动课才有意义.一、基础巩固1.(20分)某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为(C)A.26元B.27元C.28元D.29元2.(20分)为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品的价格为(B)A.25a元 B.53a元C.40%·a元D.60%·a元3.(20分)某学校在对口援助边远山区学校活动中,原计划赠书3000册,由于学生的积极响应,实际赠书3780册,其中初中部比原计划多赠了20%,高中部比原计划多赠了30%,问该校初、高中部原计划各赠书多少册?解:设初中计划赠书x册,则高中部计划赠书(3000-x)册.由题意列出方程:x(1+20%)+(3000-x)(1+30%)=3780解得x=1200 ,3000-x=1800(册).答:初中部原计划赠书1200册,高中部原计划赠书1800册.二、综合应用4.(20分)用一根长60 cm的铁丝围成一个长方形.(1)若长方形的宽是长的23,此时长方形的面积是多少?(2)若长方形的宽比长少4 cm,此时长方形面积是多少?(3)若围成的是一个正方形,此时正方形面积是多少?(4)比较(1)、(2)、(3)中的面积关系,你能归纳出什么规律?解:(1)设长为x cm,则宽为23x cm.由题意(x+23x)×2=60.解得x=18, 23x=12.长方形的面积为18×12=216(cm2).(2)设长为y cm,则宽为(y-4) cm.由题意(y+y-4)×2=60.解得y=17,y-4=13.长方形的面积为17×13=221(cm2).(3)设正方形边长为z cm.由题意4z=60.解得z=15.正方形的面积为15×15=225(cm2).(4)周长一定时,长方形的长与宽相差越小,面积越大,当长与宽相等即为正方形时,面积最大.三、拓展延伸5.(20分)“丰收1号”油菜籽平均每公顷产量为2400 kg,含油率为40%,“丰收2号”油菜籽比“丰收1号”平均每公顷产量提高了300 kg,含油率提高了10个百分点,某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3公顷,但是所产油菜籽的总产油量比去年提高3750 kg,这个村去年和今年种植油菜的面积各是多少公顷?解:设这个村今年种植油菜的面积是x hm2,去年种植油菜的面积是(x+3) hm2,则去年种植“丰收1号”油菜的产油量为2400×40%×(x+3).今年种植“丰收2号”油菜的产油量为(2400+300)×(40%+10%)x.根据题意得2400×40%×(x+3)=(2400+300)×(40%+10%)x-3750.化简得960(x+3)=2700×0.5x-3750.去括号得960x+2880=1350x-3750.移项、合并同类项,得-390x=-6630.系数化为1,得x=17.x+3=17+3=20.答:这个村去年种植油菜的面积是20 hm2,今年种植油菜的面积是17 hm2.。

七年级一元一次方程解的三种情况

七年级一元一次方程解的三种情况

一元一次方程是初中阶段数学的基础知识之一,学习一元一次方程的解法对于学生来说非常重要。

在七年级阶段,学生开始接触到一元一次方程的解法,这篇文章将介绍七年级一元一次方程解的三种情况。

一、一元一次方程的概念和性质1. 一元一次方程的定义一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一的方程。

一般的一元一次方程形式为ax+b=0,其中a和b是已知数,x是未知数。

2. 一元一次方程的性质一元一次方程的性质包括唯一解、无解和无穷多解三种情况。

要根据方程中的系数和常数项的关系来判断方程的解情况。

二、一元一次方程的三种解法1. 直接开方直接开方是一种解一元一次方程的简单方法,适用于系数为1或-1的情况。

对于方程x+3=7,可以直接开方得到x=4。

2. 移项合并同类项移项合并同类项是一种常用的解一元一次方程的方法,适用于一般的一元一次方程。

通过将方程中的未知数项移至一个边,常数项移至另一个边,最终合并同类项并化简得到方程的解。

3. 两边乘除法两边乘除法同样是解一元一次方程的常用方法,适用于系数不为1或-1的情况。

通过对方程两边进行乘除法操作,将未知数的系数化为1,再通过移项合并同类项得到方程的解。

三、一元一次方程解的三种情况1. 唯一解当一元一次方程有且只有一个解时,称为唯一解。

一般情况下,通过移项合并同类项或两边乘除法方法得到的方程都会有唯一解。

2. 无解当一元一次方程无法通过任何方法得到解时,称为无解。

这种情况通常发生在系数矛盾或常数项矛盾的情况下。

3. 无穷多解当一元一次方程的解有无限多个时,称为无穷多解。

这种情况通常发生在方程系数相等或常数项都为0的情况下。

四、七年级一元一次方程解的练习1. 练习题一解方程2x+3=11。

2. 练习题二解方程3x-5=3x-5。

3. 练习题三解方程4x-2=2x+6。

五、总结通过本文的介绍,我们了解了七年级一元一次方程解的三种情况,即唯一解、无解和无穷多解。

华师版七年级数学下册作业课件(HS) 第6章 解一元一次方程 第3课时 一元一次方程的简单应用

华师版七年级数学下册作业课件(HS) 第6章 解一元一次方程 第3课时 一元一次方程的简单应用
A.54 盏 B.55 盏 C.56 盏 D.57 盏 15.学校到县城有 28 千米,坐公共汽车后,还需步行一段路程,已知公共汽车的速度 为 36 千米/小时,步行的速度为 4 千米/小时,全程共需 1 小时,则步行所用的时间是___14_____ 小时.
16.有一些相同的房间需要粉刷,一天 3 名师傅去粉刷 7 个房间,结果其中有 30 m2 墙 面未来得及粉刷;同样的时间内 5 名徒弟粉刷了 9 个房间之外,还多粉刷了另外的 10 m2 墙
面.已知每名师傅比徒弟一天多粉刷 20 m2 墙面,则每个房间需要粉刷的墙面面积为__6_0__m2. 17.某地为了打造风光带,将一段长为 360 m 的河道整治任务交由甲、乙两个工程队先
后接力完成,共用时 20 天,已知甲工程队每天整治 24 m,乙工程队每天整治 16 m,求甲、
乙两个工程队分别整治了多长的河道. 解:设甲工程队整治了 x m,则乙工程队整治了(360-x)m.由题意,得 x +360-x=20, 24 16
12.某小组有 m 人,计划做 n 个中国结,若每人做 5 个,则将比计划多做 9 个;若每
人做 4 个,则将比计划少做 15 个,现有下列四个方程:①5m+9=4m-15;②n-9=n+15;

4
③n+9=n-15;④5m-9=4m+15.其中正确的是( D )
5
4
A.①② B.②④ C.②③ D.③④
13.一个两位数,个位数字与十位数字的和是 9,如果将个位数字与十位数字对调后所
得的新数比原数大 9,则原来的两位数为( D )
A.54 B.27 C.72 D.45
14.某道路一侧原有路灯 106 盏,相邻两盏灯之间的距离为 36 米,现计划全部更换为 新型的节能灯,且相邻两盏灯之间的距离变为 70 米,则需更换的新型节能灯有( B )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手游平台https:///
炉渣泡沫化严重时,短时间可借助氧流压制泡沫和防止喷渣。A.降枪B.提枪C.枪位不变D.都不对 电化学探头法测定水中溶解氧,水样接触电极的膜时,应保持一定的流速,以防止与膜接触的瞬间将该部位样品中的溶解氧耗尽,显示错误的读数。A.正确B.错误 经侦部门进行冻结存款的过程中,按照冻结期限,一次性可以对犯罪嫌疑人的帐户冻结个月。 依据《期货交易管理条例》,我国期货经纪公司的注册资本金须万元人民币。A.高于5000B.高于3000C.不低于3000D.不低于5000 酸碱滴定中,有时二氧化碳的影响将是很大的,在这种情况下,通常应除去溶液中的二氧化碳。 关于急性肾衰竭下列哪项是不正确的A.肾功能短期内迅速减退B.肾小球滤过率下降C.既往均无慢性肾脏病史D.有水、电解质、酸碱平衡紊乱E.常伴有少尿 低碳钢的强度极限强度发生拉伸过程中的阶段。A.弹性B.屈服C.强化D.颈缩 管模正常维护的内容? 静态平衡 下列关于LayeredShader的描述中,正确的是。A、层材质之间不可作叠加处理B、Transparency属性控制当前选择层的透明度C、层之间位置不可互换D、Anisotropic材质不可用于层材质 关于老年伤寒的特点,叙述错误的是A.通常发热不高但易出现虚脱B.常可并发支气管肺炎和心力衰竭C.持续胃肠功能紊乱D.易并发支气管肺炎E.病程迁延,恢复慢 根据来更换损坏的塑料件。A.损坏的面积B.定损人员的决定C.价格的高低 下列哪项最常见于脑器质性精神障碍A.情绪高涨B.思维奔逸C.内感性不适D.情绪欣快E.被害妄想 不属于敌对进路。A.同一到发线上对向的列车进路B.同一到发线上对向的调车进路C.同一到发线上对向的列车进路与调车进D.同一咽喉区对向重迭的调车进路 小儿体格发育最快的时期是.A.新生儿期B.婴儿期C.幼儿期D.学龄前期E.学龄期 有关泌尿系梗阻,下列哪一项是错误的A.膀胱以上梗阻肾积水进展快B.膀胱以上梗阻一般仅累及一侧肾脏C.膀胱以下梗阻对肾影响更快D.膀胱以下梗阻可累及双侧肾E.泌尿系任何部位都可发生梗阻,梗阻持续加重,均可导致肾功能损害 矿井主要运输大巷工程质量检验验收评定合格的标准是。A.主控项目的质量经抽样检验合格B.一般项目的合格率应达到60%以上C.一般项目的质量经抽检合格,计算检验时的合格率应达到70%以上,且不得有严重缺陷D.一般项目的质量经抽检合格,计算检验时的合格率应达到80%以上,且不得有严 高速铁路的桥梁使用寿命设计为年.A.200B.150C.100D.50 芝加哥期货交易所引进了远期合同,其原因是。A.农产品价格不稳定B.铜价波动C.石油价格波动D.汇率价格波动 语音震颤减弱见于A.肺气肿B.肺炎实变期C.空洞型肺结核D.肺脓肿E.肺梗死 亚临床型血友病A时的FⅧ:C应为A.&le;1%B.2%~5%C.6%~25%D.26%~45%E.45%~70% 业务计算题:资料:某企业发生以下业务:(1)企业筹建期间发生下列费用:以支票支付注册登记费20000元;以支票购买办公用品80000元;应付职工工资180000元;以银行存款80000元支付借款利息,其中48000元为固定资产资产的借款利息。企业于当年正式投入运营,开办费分5年平均摊销, 脑疝种类较多,海马回向鞍上池或幕下移位者称为A.天幕孔疝B.扣带回疝C.小脑扁桃体疝D.大脑镰疝E.钩回疝 程控交换机各配线器应有装置。A、防火装置B、零线接地C、防雷接地 [配伍题,B1型题]“君主之官”指的脏是。</br>“相傅之官”指的脏是。A.肝B.心C.脾D.肺E.肾 某病房总人数是50人,一级护理10人,二级护理20人,三级护理20人。经测定,各级护理的病人在一日内需要的平均护理时数是一级护理5.5小时,二级护理3.5小时,三级护理2.5小时。每位病人一日内得到的间接护理时数是30分钟。若床位使用率按照100%计算,每位护士每个工作班次是8小时, DSA检查常用的药物准备不包括A.肝素多卡因C.葡萄糖水D.离子型或非离子型对比剂E.各类抢救药 年是国家普法宣传教育的第20年,年是“五五”普法的启动之年。 心肌梗死的"损伤型"心电图改变表现为A.病理性Q波B.R波电压降低C.ST段抬高D.T波直立高耸E.T波对称 分配阀大膜板鞲鞴与小膜板的面积比为2.7比1,缓解弹簧及时按2.5倍计算。 低渗性缺水时,体液的容量改变为。A.细胞外液正常,细胞内液减少B.细胞外液减少,细胞内液正常C.细胞外液显著减少,细胞内液轻度减少D.细胞外液轻度减少,细胞内液显著减少E.细胞内外液按比例减少 WHO针对女性骨质疏松症骨量测定的诊断标准A.骨密度低于正常年轻妇女骨量峰值均值在1个标准差以上B.骨密度低于正常年轻妇女骨量峰值均值在1个标准差以内C.骨密度低于正常年轻妇女骨量峰值均值在1至2.5个标准差之间D.骨密度低于正常年轻妇女骨量峰值均值超过了2.5个标准差E.骨密度低 求两个平行平面之间的距离。 路政目标管理的作用? 运输改变了物品的时间状态,更重要的是改变了物品的状态。A.品种B.批量C.风险D.空间 整机装配时应参照安装。A、印制线路板B、电原理图C、样机D、装配图 危险货物运输所适用的国家标准是,该标准是国家颁布的,规定了危险货物运输包装的分级,以及运输包装的基本要求、性能测试和测试的方法,同时也规定了运输包装容器的类型和标记代号的强制适用的技术标准。 医疗机构对本单位内被传染病病原体污染的场所、物品、医疗废物应依法A.封闭场所并销毁物品B.强制隔离治疗C.实施消毒和无害化处理D.报上级卫生行政部门处理E.报卫生防疫部门处理 特种设备安全管理机构和安全管理人员的配置原则是什么? 本地呼叫编号采用拨号制,长途编号采用拨号制。
相关文档
最新文档