2-0引言 《信号与系统》课件
信号与系统课件
y(t) x2 (0 )
t
f ( )d
0
。
【解】根据线性系统定义,
(1) 该系统满足分解性,但不满足零态线性和零输入线性。
(2) 该系统满足分解性和零输入线性,但不满足零态线性。
(3) 该系统满足分解性和零态线性,但不满足零输入线性。
需要说明得就是,若用数学语言表述,线性系统就就是服从
线性方程得系统。这里得线性方程既可以就是线性代数方程、
由于激励信号得作用,系统状态有可能在t=t0时刻发生跳变, 为区分前后得数值,以t0-表示激励接入之前得瞬时,以t0+表示激励 接入以后得瞬时。系统得起始状态指得就是, 激励接入前一刹 那系统得状态,记为x1(t0-), x2(t0-), …,xn(t0-)。 显然,这组数据记录 了系统过去历史所有得相关信息。系统得初始状态指得就是, 激励接入后一刹那系统得状态,记为x1(t0+), x2(t0+), …, xn(t0+) 。
t= 0
S 激励 E
系统 R
C
响应 uC(t)
(a) 系 统 结 构
uC(t) E
0 t
(b) 没 有 起 始 状 态 的 响 应
图 2-2 没有起始状态得RC充电电路及其响应
在图2-3中,电路处于稳定状态,即uC(0-)=E1。t=0时刻把开
关S扳到2位,根据电路理论中得换路定律可知,电容得端电压不
输入信号 f (t)
系统
输出信号 y (t)
(a) 简 单 系 统
… …
… …
输入信号 f1(t) f2(t)
fn(t)
输出信号 y1(t)
系统
y2(t)
ym(t)
(b) 多 输 入 /多 输 出 系 统
信号与系统ppt课件
02
时不变:系统的特性不随时间变 化。
系统的数学模型为非线性微分方 程或差分方程。
03
频域分析方法不适用,需采用其 他方法如几何法、状态空间法等
。
04
时变系统
系统的特性随时间变 化,即系统在不同时 刻的响应具有不同的 特性。
时域分析方法:积分 方程、微分方程等。
系统的数学模型为时 变微分方程或差分方 程。
信号与系统PPT课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本特性 • 系统分析方法 • 系统分类与特性 • 系统应用实例
01
CHAPTER
信号与系统概述
信号的定义与分类
总结词
信号是传输信息的一种媒介,具有时间和幅度的变化特性。
详细描述
信号是表示数据、文字、图像、声音等的电脉冲或电磁波,它可以被传输、处理和记录。根据不同的特性,信号 可以分为模拟信号和数字信号。模拟信号是连续变化的物理量,如声音、光线等;数字信号则是离散的二进制数 据,如计算机中的数据传输。
04
CHAPTER
系统分类与特性
线性时不变系统
线性
系统的响应与输入信号的 线性组合成正比,即输出 =K*输入+常数。
时不变
系统的特性不随时间变化 ,即系统在不同时刻的响 应具有相同的特性。
频域分析方法
傅里叶变换、拉普拉斯变 换等。
非线性时不变系统
01
系统的响应与输入信号的非线性 关系,即输出不等于K*输入+常 数。
系统的定义与分类
总结词
系统是由相互关联的元素组成的整体,具有输入、输出和转 换功能。
详细描述
系统可以是一个物理装置、生物体、组织或抽象的概念,它 能够接收输入、进行转换并产生输出。根据不同的分类标准 ,系统可以分为线性系统和非线性系统、时不变系统和时变 系统等频域分析方法将信号和系统从时间域转换到频率域,通过分析系统的频率响应 来了解系统的性能,如系统的幅频特性和相频特性,这种方法特别适用于分析 周期信号和非周期信号。
《信号和系统》课件
系统建模:MATL AB可以建立系统的数学模型,并进行仿真和优化
控制系统设计:MATL AB可以进行控制系统的设计、分析和优化 信号和系统分析:MATL AB可以进行信号和系统的分析,包括频谱分析、 时域分析等
MATL AB在系统设计中的应用
互动性强:设置问 答、讨论等环节, 增强学生的学习兴 趣和参与度
信号基础知识
信号定义
信号是信息的载体, 是信息的表现形式
信号可以分为模拟 信号和数字信号
模拟信号是连续变 化的物理量,如声 音、图像等
数字信号是离散变 化的物理量,如二 进制数据等
信号分类
连续信号:在时 间上和数值上都
是连续的信号
结构图描述法:通过结构 图来描述系统的结构关系
系统分析的基本概念
系统:由相互关联的 组件组成的整体,具 有特定的功能和目标
信号:信息的载体, 可以是数字、模拟或
其他形式
输入:系统的输入信 号,决定了系统的行
为和输出
输出:系统的输出信 号,是系统对输入信
号的处理结果
反馈:系统对输出信 号的监测和调整,以 实现更好的性能和稳
适用人群
电子信息工程、 通信工程、自 动化等专业的
学生
信号处理、通 信系统、控制 系统等领域的
工程师
对信号和系统 感兴趣的科研
人员
信号和系统课 程的教师和助
教
课件特点
内容全面:涵盖信 号与系统的基本概 念、理论、应用等
逻辑清晰:按照信 号与系统的发展脉 络进行讲解,易于 理解
实例丰富:结合实 际案例,便于学生 理解抽象概念
定常系统:系统参数不随时间变化的系统
奥本海姆《信号与系统》课件3
例2 :
⎧1 x(t ) = ⎨ ⎩0
0<t <T otherwise
∞ −∞
⎧t h(t ) = ⎨ ⎩0
0 < t < 2T otherwise
y (t ) = x(t ) ∗ h(t ) = ∫ x(τ )h(t − τ ) dτ
2.0 引言 ( Introduction )
主 讲 教 师: 赵 仕 良
信号与系统
由于LTI系统满足齐次性和可加性,并且具 有时不变性的特点,因而为建立信号与系统分析 的理论与方法奠定了基础。 如果能把任意输入信号分解成基本信号 基本思想: 基本思想:如果能把任意输入信号分解成基本信号 的线性组合,那么只要得到了 LTI系统对基本信号 的响应,就可以利用系统的线性特性,将系统对任 意输入信号产生的响应表示成系统对基本信号的响 应的线性组合。
n +1 1 − α k = ∑α = u (n ) 1−α k =0
x ( k ) = α k u (k )
1
h (n − k ) = u (n − k )
1
k
0
...
0
k
n
信号与系统
主 讲 教 师: 赵 仕 良
⎧1 例2: x( n) = ⎨ ⎩0 ⎧α h (n ) = ⎨ ⎩0
x(k )
1
信号与系统
主 讲 教 师: 赵 仕 良
四、卷积和常用公式
−ν ν 1 u(n) *ν u (n) = u (n) ν 1 −ν 2 n n n ν u ( n ) *ν u ( n) = ( n + 1)ν u ( n)
n n 2
ν
n +1 1
n +1 2
信号与系统全套课件
滤波器设计和应用
滤波器的概念和分类
根据滤波器的频率响应特性,可分为低通、高通、带通和带阻滤 波器等。
滤波器设计方法
包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等设计方法, 以及数字滤波器的设计等。
滤波器的应用
在通信、音频处理、图像处理等领域广泛应用,如信号去噪、平 滑处理、频率选择性传输等。
04 信号与系统复频域分析
状态变量分析法概述
1
状态变量分析法是一种基于系统内部状态变量描 述系统动态行为的方法。
2
它适用于线性时不变系统,可以方便地分析系统 的稳定性、能控性、能观性等重要特性。
3
状态变量分析法通过引入状态变量的概念,将高 阶微分方程转化为一阶微分方程组,从而简化系 统分析和设计的复杂性。
状态方程和输出方程建立
系统函数的性质
系统函数具有因果性、稳定性、频率 响应等性质,这些性质决定了系统的 基本特性和性能指标。
稳定性判据和稳态误差分析
稳定性判据
通过系统函数的极点分布来判断系统的 稳定性,常用的稳定性判据有劳斯判据 、奈奎斯特判据等。
VS
稳态误差分析
稳态误差是指系统对输入信号响应的稳态 分量与期望输出之间的差值,通过分析系 统函数和输入信号的特性,可以对系统的 稳态误差进行定量评估。
信号与系统全套课件
目 录
• 信号与系统基本概念 • 信号与系统时域分析 • 信号与系统频域分析 • 信号与系统复频域分析 • 离散时间信号与系统分析 • 状态变量分析法在信号与系统中的应用
01 信号与系统基本概念
信号定义与分类
信号定义
信号是传递信息的函数,它可以是时间的函数,也可以是其 他独立变量的函数。在信号处理中,通常将信号表示为时间 的函数,即s(t)。
信号与系统ppt课件
结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。
信号与系统ppt
3t) 3 (t
3) dt
0
(6)(t 3 2t 2 3) (t 2) (23 2 22 3) (t 2) 19 (t 2)
(7)e4t (2 2t) e4t 1 (t 1) 1 e4(-1) (t 1) 1 e4 (t 1)
2
2
2
(8)e2t u(t) (t 1) e2(-1)u(1) (t 1) 0 (t 1) 0
表征作用时间极短,作用值很大的物理现象的数学模型。
④ 冲激信号的作用:A. 表示其他任意信号
B. 表示信号间断点的导数
二、奇异信号
2. 冲激信号
(4) 冲激信号的极限模型
f (t) 1
g (t) 1
2
t
t
h (t) 2
t
1/
(t) lim f (t) lim g (t) lim h (t)
(t
π )dt 4
(2)23e5t (t 1)dt
(3)46e2t (t 8)dt (4)et (2 2t)dt
(5)22(t 2
3t) ( t
3
1)dt
(6)(t 3 2t 2 3) (t 2)
(7)e4t (2 2t) (8)e2t u(t) (t 1)
1. 在冲激信号的抽样特性中,其积分区间不一定 都是(,+),但只要积分区间不包括冲
激信号(tt0)的t=t0时刻,则积分结果必为零。
2.对于(at+b)形式的冲激信号,要先利用冲激信 号的展缩特性将其化为(t+b/a) /|a|形式后,
方可利用冲激信号的抽样特性与筛选特性。
二、奇异信号
3. 斜坡信号
定义:
r(t
)
t 0
信号与系统ppt课件
a 0 呈单调指数上升。
精品课件
a 0 呈单调指数下降。 a 0 x(t) C 是常数。
2. 周期性复指数信号:
a j0,不失一般性取
C 1 x (t) ej 0 t c o s0 tjsin0 t
• 连续时间情况下:
E lT im T Tx(t)2d t x(t)2dt
•离散时间情况下:
N
E N l i m nNx(n)2n x(n)2
精品课件
在无限区间内的平均功率可定义为:
x(t) P
lim1 T2T
T T
2
dt
PN l i m 2N 11nN Nx(n)2
精品课件
1.2 自变量变换
究确知信号。
精品课件
连续时间信号的例子:
精品课件
离散时间信号的例子:
精品课件
连续时间信号在离散 时刻点上的样本可以构成一个 离散时间信号。
精品课件
二. 信号的能量与功率:
连续时间信号在 [ t1 , t 2 ] 区间的能量定义 为:
E t2 x(t) 2 dt t1
连续时间信号在 [ t1 , t 2 ]
率定义为:
区间的平均功
P 1 t2 x(t)2 dt
t2 t1 t1
精品课件
离散时间信号在 [ n1 , n 2 ]
的能量定义为n2
E
x(n) 2
n n1
区间
离散时间信号在 [ n1 , n 2 ] 平均功率为
P 1
n2 x(n)2
n2 n11nn1
精品课件
区间的
在无限区间上也可以定义信号的总 能量:
•给定信号和系统求变换后的 信号。
信号与系统PPT课件
-2 o
2 t t → 0.5t 扩展
f (2 t ) 1
-1 o 1
t
f (0.5 t )
1
-4
o
4t
对于离散信号,由于 f (a k) 仅在为a k 为整数时才有意义, 进行尺 度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。
平移与反转相结合举例
例 已知f (t)如图所示,画出 f (2 – t)。 解答 法一:①先平移f (t) → f (t +2)
结论
由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦序列不一定是 周期序列。 ②两连续周期信号之和不一定是周期信号,而两周期序 列之和一定是周期序列。
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E (2)信号的功率P
def
E
f(t )2 d t
P
def
lim
T
1
T
T
2
T
f(t )2 d t
2
若信号f (t)的能量有界,即 E <∞ ,则称其为能量有限信号, 简称能量信号。此时 P = 0
若信号f (t)的功率有界,即 P <∞ ,则称其为功率有限信号, 简称功率信号。此时 E = ∞
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。
《信号与系统讲义》课件
信号与系统是理解和分析信号处理的基础。本课件将介绍信号与系统的基本 概念、时域信号与频域信号、连续信号与离散信号、线性时不变系统、卷积 运算、采样与重构,以及系统的频率响应和频率特性。
信号与系统的基本概念
了解信号与系统的基本概念是理解信号处理的关键。本节将介绍信号的定义、 分类以及常见的信号类型,以及系统的定义和特性。
卷积运算
卷积运算是信号处理中常用的操作。本节将介绍卷积运算的定义和性质,并 通过实例演示如何使用卷积运算来处理信号。
采样与重构
采样是将连续信号转换为离散信号的过程,而重构则是将离散信号还原为连续信号的过程。本节将介绍 采样和重构的原理和方法。
பைடு நூலகம்
系统的频率响应和频率特性
系统的频率响应和频率特性描述了系统对不同频率的信号的响应情况。本节 将介绍频率响应和频率特性的概念,以及它们在信号处理中的应用。
时域信号与频域信号
在信号处理中,时域信号和频域信号是两种常见的表示方式。本节将解释时 域和频域的概念,以及如何在两个域中相互转换。
连续信号与离散信号
信号可以是连续的,也可以是离散的。本节将讨论连续信号和离散信号的区别,以及在信号处理中如何 处理这两种类型的信号。
线性时不变系统
线性时不变系统是信号处理中常用的模型。本节将介绍线性时不变系统的基本概念和特性,以及如何利 用系统的响应来分析信号的处理过程。
《信号与系统》课件讲义
《信号与系统》课件讲义一、内容描述首先我们将从信号的基本概念开始,大家都知道,无论是听音乐、看电视还是打电话,背后都离不开信号的存在。
那么什么是信号呢?信号有哪些种类?我们又如何描述它们呢?这一部分我们会带领大家走进信号的世界,一起探索信号的奥秘。
接下来我们将探讨信号与系统之间的关系,信号在系统中是如何传输、处理和变换的?不同的系统对信号有何影响?我们将通过具体的例子和模型,帮助大家理解这个复杂的过程。
此外我们还会深入学习信号的数学描述方法,虽然这部分内容可能会有些难度,但我们会尽量使用通俗易懂的语言,帮助大家更好地理解。
通过这部分的学习,我们将学会如何对信号进行量化分析,从而更好地理解和应用信号。
我们将探讨信号处理的一些基本方法和技术,如何对信号进行滤波、调制、解调等处理?这些处理技术在实际中有哪些应用?我们将通过实例和实践,帮助大家掌握这些基本方法和技术。
1. 介绍信号与系统的基本概念及其重要性首先什么是信号?简单来说信号就像是我们生活中的各种信息传达方式,想象一下当你用手机给朋友发一条短信,这条信息就是一个信号,它传递了你的意图和情感。
在更广泛的层面上,信号可以是任何形式的波动或变化,比如声音、光线、电流等。
它们都有一个共同特点,那就是携带了某种信息。
这些信息可能是我们想要传达的话语,也可能是自然界中的物理变化。
而系统则是接收和处理这些信号的装置或过程,它像是一个加工厂,将接收到的信号进行加工处理,然后输出我们想要的结果。
比如收音机就是一个系统,它接收无线电信号并转换成声音让我们听到。
这样描述下来,你会发现信号和系统真的是无处不在。
无论是在学习还是在日常生活中都能见到他们的影子,他们对现代通信、计算机技术的发展都有着不可替代的作用。
因此我们也需要对这一概念进行透彻的了解与学习才能更好地服务于相关领域为社会贡献力量!2. 简述本课程的学习目标和主要内容《信号与系统》这门课程无论是对于通信工程、电子工程还是计算机领域的学生来说,都是一门极其重要的基础课程。
信号与系统 课件 ppt
02
信号的基本性质
信号的时域特性
信号的幅度
描述信号在某一时刻的强度。
信号的频率
描述信号周期性变化的快慢程度。
信号的相位
描述信号在某一时刻相对于参考相位的偏移 。
信号的周期
描述信号重复变化的时间间隔。
信号的频域特性
01
02
03
幅度谱
描述信号在不同频率下的 幅度大小。
相位谱
描述信号在不同频率下的 相位偏移。
信号的叠加原理线性性质若两个信号来自足线性性质,则它们的和也是信号 。
独立性
两个信号之和的图形与它们各自的图形没有交点 。
叠加原理的应用
在电路中,多个信号源共同作用产生的电流可以 叠加。
信号的相加与相乘
信号相加
两个信号的图形在时间上对齐,求和后得到一个新的信号。
信号相乘
两个信号相乘得到一个新的信号,称为卷积。
感谢您的观看
THANKS
卷积的性质
两个信号相乘后,其卷积的图形与两个信号分别作图形变换后的 图形有类似形状。
信号的频谱合成与分解
频谱的概念
01
一个周期信号可以分解为多个不同频率的正弦波的和。
傅里叶级数
02
将周期信号分解为正弦波的级数,其中每个正弦波都有一个特
定的频率。
频谱分析
03
通过傅里叶变换将时域信号转换为频域信号,可以观察到信号
信号与系统 课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本性质 • 系统的基本性质 • 信号与系统的基本分析方法 • 信号的合成与分解 • 系统的响应与稳定性分析
01
信号与系统概述
信号的定义与分类
信号与系统课件pdf
信号与系统课件汇报人:XXX汇报日期:XX年XX月XX日目录01信号与系统概述02信号的特性03系统的特性04信号与系统的分析方法信号与系统概述PART 01的,数字信号是离散变化的。
图像等。
机数据、电信号等。
联系线性系统:满足叠加原理和齐次性原理的系统非线性系统:不满足叠加原理和齐次性原理的系统时变系统:系统参数随时间变化的系统定常系统:系统参数不随时间变化的系统因果系统:输出只取决于当前和过去的输入,不取决于未来的输入信号是系统的输入或输出系统对信号进行处理和变换信号与系统之间的关系是研究信号处理和变换的核心信号与系统之间的关系是通信、控制、电子等领域的基础信号的特性PART 02信号的时域表示:t(n)信号的时域特性包括:幅度、频率、相位信号的时域分析方法:时域分析、频域分析、拉普拉斯变换、Z变换等信号的时域特性在实际应用中的重要性:分析信号的传输、处理和接收过程,优化系统设计,提高系统性能。
频谱:信号在频率域中的分布频率响应:信号在不同频率下的响应瞬时能量:信号的瞬时能量是指信号在某一时刻的能量系统的特性PART 03瞬态响应:系统对输入信号的初始状态和暂态过程的响应频率响应:系统对不同频率输入信号的响应特性相位响应:系统对输入信号的相位变化特性稳态响应:系统在输入信号稳定后的输出响应频率响应:系统在不同频率下的响应特性相频特性:系统在不同频率下的相位响应特性频率选择性:系统在不同频率下的选择性响应特性幅频特性:系统在不同频率下的幅度响应特性能量守恒:系统在任意时刻的能量总和保持不变能量损耗:系统在转换过程中可能会产生能量损耗能量传递:系统可以将能量从一个部分传递到另一个部分能量转换:系统可以将一种形式的能量转换为另一种形式的能量信号与系统的分析方法PART 04添加标题添加标题添加标题添加标题拉普拉斯变换法:将时域信号与系统转换为复频域进行分析傅里叶变换法:将时域信号与系统转换为频域进行分析状态空间法:通过建立状态空间模型来描述信号与系统的时域特性添加标题添加标题添加标题添加标题拉普拉斯变换:将时域信号转换为复频域信号频谱分析:分析信号的频率成分和能量分布滤波器设计:设计满足特定要求的滤波器,如低通、高通、带通等能量谱密度:描述信号的能量分布能量谱密度的应用:分析信号的频率特性和能量分布能量谱密度估计:估计信号的能量谱密度能量谱密度函数:计算信号的能量谱密度THANK YOU。
信号系统第一章信号与系统PPT课件
系统具有输入、输出、 转换、反馈等基本特 性。
系统的分类
01
根据系统的特性,可以 将系统分为线性系统和 非线性系统。
02
03
04
根据系统的动态特性, 可以将系统分为时不变 系统和时变系统。
根据系统的参数是否随时 间变化,可以将系统分为 连续系统和离散系统。
根据系统的功能和用途,可 以将系统分为控制系统、信 号处理系统、电路系统等。
控制系统中的信号处理
01
02
03
信号采集与转换
将物理量转换为电信号, 以便进行后续处理和控制。
信号处理算法
如PID控制、模糊控制等, 对采集到的信号进行计算 和分析,以实现系统的自 动控制。
信号反馈与调节
将系统的输出信号反馈给 控制器,通过调节输入信 号来控制系统的运行状态。
图像处理中的信号处理
变化规律是确定的,例如正弦波;随机 续变化的信号,例如声音的波形;数字
信号则是指信号的变化规律是不确定的, 信号则是指幅度离散变化的信号,例如
例如噪声。
计算机中的进制数。
02
系统的定义与分类
系统的基本概念
系统是由相互关联、 相互作用的若干组成 部分构成的有机整体。
系统可以用于描述自 然界、工程领域、社 会现象等各种领域中 的事物。
冲激响应与阶跃响应
冲激响应
系统对单位冲激信号的响应,反 映了系统对单位冲激信号的传递 特性。
阶跃响应
系统对单位阶跃信号的响应,反 映了系统对单位阶跃信号的传递 特性。
卷积积分与卷积和
卷积积分
描述信号与系统的相互作用,通过将 输入信号与系统的冲激响应进行卷积 积分来计算输出信号。
卷积和
将卷积积分简化为离散时间系统的卷 积和运算,用于计算离散时间系统的 输出序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统分析过程
列写方程 : 根据元件约束,网络拓扑约束
经典法
解方程
双零法
零输入 零状态
: :
可利用经典法求 利用卷积积分法求解
变换域法
经典法:前面电路分析课里已经讨论过,但与 (t)
有关的问题有待进一步解决—— h(t );
卷积积分法: 任意激励下的零状态响应可通过冲 激响应来求。(新方法)
号与系统 信
§2 .1 引言
哈尔滨理工大学
பைடு நூலகம்
系统数学模型的时域表示
时域分析方法:不涉及任何变换,直接求解系统的 微分、积分方程式,这种方法比较直观,物理概念比 较清楚,是学习各种变换域方法的基础。
输入输出描述 : 一元 N 阶微分方程 状态变量描述 : N 元一阶微分方程
本课程中我们主要讨论输入、输出描述法。