胡广书_数字信号处理题解及电子_绪论 PPT课件

合集下载

胡广书_数字信号处理题解及电子课件_第5章

胡广书_数字信号处理题解及电子课件_第5章

π 3. 在实轴但不在圆上,无共轭,角度=0, π 4. 在实轴,但在圆上,无共轭,角度=0,
模<1; 模=1;
在单位圆内 四个零点同时存在, 构成四阶系统.
把该式展开,其系数也是对称的,是具 有线性相位的子系统。
无共轭零点, 有镜象零点
无镜象对称零点, 有共轭零点.
无镜象零点, 也无共轭零点.
− jω n
+
n = ( N +1) / 2

N −1
h ( n )e
− jω n
N −1 + h e 2
N −1 − j ω 2
令:
m = N −1 − n
( N −3) 2 ( N −3) 2 m=0
H (e jω ) 的对称性,有 并利用
H (e jω ) =
则该系统具有线性相位。
上述对称有四种情况:
偶对称
N : even N : odd
第一类 FIR 系统
N : even N : odd
奇对称
第二类 FIR 系统
1. N 为奇数
H (e jω ) = ∑ h(n)e − jω n
n =0 N −1
第一类 FIR 系统
=
( N −3) 2

n=0
h(n)e
幅频
一 阶 全 通 系 统
0 -0.5 -1 -1 0 -1 0 (a) 1
0
0.2 (b)
0.4
1
0.5 -2 0 -3 -4 -0.5
0
0.2 (c)
0.4
0
5
10 (d)
15
20
相频
抽样响应
1 1 0.5 0 -0.5 -1 -1 0 -2 0.5 -4 0 -6 -8 -0.5 0 (a) 1 0 0.5

胡广书 数字信号处理课件

胡广书 数字信号处理课件
西北大学信息科学与技术学院 2007年
数字频率的特点:
(1)ω是一个连续取值的量; (2)ω的量纲为一种角度的量纲单位:弧度 (rad)。它表示序列在采样间隔T内正弦或余弦 信号变化的角度,表示了信号相对变化的快慢程 度; (3) 序列对于ω是以2π为周期的,或者说,ω的 独立取值范围为[0,2π)或[-π,π)。
(t )
t
0 单位冲激信号
西北大学信息科学与技术学院
2007年
2.单位阶跃序列
u(n)
u ( n)
{0
1 n0
n0
1
n
0 1 2 3 4 5
u(n)可以表示成很多移位的δ(n)序列之和:
u ( n) ( n k )
k 0

u(n)也可以用来表示移位的δ(n):
(n) u(n) u(n 1)
西北大学信息科学与技术学院
2007年
下面来说明模拟频率和数字频率之间的关系。 设模拟余弦信号为
x(t ) cos( t ) cos(2ft )
对该 x(t ) 以T为采样间隔进行采样离散,得
x(t )
t nT
cos( nT ) cos(Tn)
cos(2fTn)
将离散后的信号表示成离散余弦序列,即
x1 (n) x(n) RN (n)
0 n N 1
1
1
n
-1
0 1 2 3
4
西北大学信息科学与技术学院
2007年
5.正弦和余弦序列
正弦序列定义为
x(n) A sin(n) 余弦序列定义为
x(n) A cos(n)
其中,A为信号的最 大幅度,ω 称为序列的数 字频率,如图是一个正弦 序列的图形表示。

《数字信号处理》课件

《数字信号处理》课件
特点
数字信号处理具有精度高、稳定性好、灵活性大、易于实现和可重复性好等优 点。它克服了模拟信号处理系统中的一些限制,如噪声、漂移和温度变化等。
数字信号处理的重要性
数字信号处理是现代通信、雷达、声 呐、语音、图像、控制、生物医学工 程等领域中不可或缺的关键技术之一 。
随着数字技术的不断发展,数字信号 处理的应用范围越来越广泛,已经成 为现代信息处理技术的重要支柱之一 。
04 数字信号变换技术
CHAPTER
离散余弦变换
总结词
离散余弦变换(DCT)是一种将离散信号变换到余弦函数基 的线性变换。
详细描述
DCT被广泛应用于图像和视频压缩标准,如JPEG和MPEG, 因为它能够有效地去除信号中的冗余,从而减小数据量。 DCT通过将信号分解为一系列余弦函数的和来工作,这些余 弦函数具有不同的大小和频率。
雷达信号处理
雷达目标检测
利用数字信号处理技术对雷达回 波数据进行处理和分析,实现雷 达目标检测和跟踪。
雷达测距和测速
通过数字信号处理技术,对雷达 回波数据进行处理和分析,实现 雷达测距和测速。
雷达干扰抑制
利用数字信号处理技术对雷达接 收到的干扰信号进行抑制和滤除 ,提高雷达的抗干扰能力。
谢谢
THANKS
《数字信号处理经典》ppt课 件
目录
CONTENTS
• 数字信号处理概述 • 数字信号处理基础知识 • 数字滤波器设计 • 数字信号变换技术 • 数字信号处理的应用实例
01 数字信号处理概述
CHAPTER
定义与特点
定义
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及信号的获 取、表示、变换、分析和综合的理论和技术。它以数字计算为基础,利用数字 计算机或其他数字硬件来实现信号处理的方法。

数字信号处理ppt课件

数字信号处理ppt课件
23
三.自相关函数与 自协方差函数的性质
24
性质1 :相关函数与协方差函数的关系
Cxx m rxx m mx 2
Cxy m rxy m m*xmy
当 mx 0
Cxx m rxx m Cxy m rxy m
25
性质2:均方值、方差与相关函数和协方差函数
rxx
0
E
xn
2
Cxx 0 rxx 0 mx 2
五、功率谱密度
44
维纳——辛钦定理
1. 复频域
rxx
(m)
1
2
j
c Sxx (z)zm1dz,
Sxx
(z)
m
rxx
(m)z
m
C (Rx , Rx )
45
2. 频域
{ rxx(m)
1
2
Pxx (e j )e jm d
2
Pxx (e j ) rxx (m)e jm
m
46
3.性质
实平稳随机信号 rxx m rxx m
rxx m E x x n1 n1m
x1x2 p x1 , x2 ; m dx1dx2
18
自协方差函数
Cxx (m) E (xn1 mx )*(xn2 mx ) E (xn1 mx )*(xn1m mx )
rxx m mx 2
19
对于均值为零的随机过程 rxx m Cxx m
①偶函数
Pxx e j Pxx e j
②实函数
Pxx e j Pxx e j
③极点互为倒数出现
Sxx
z
Sxx
1 z
47
④功率谱在单位圆上的积分等于平均功率
E
x2

数字信号处理-第二版-胡广书-习题解答

数字信号处理-第二版-胡广书-习题解答

!!"#$%&’!"#$()*+,-./!!!"!!!"!""!!"#$!!""#!"$"#%$#"#%"%##"#$#"$%&%&’(!""9:!!""+;<&=>?@A+(%!!"BC !!""D&EF+GHIJ !!""%!&"K &"!""#!!!"%""&B9:&"!""+;<%!$"K &!!""#&!!"$!"&B9:&!!""+;<%!’"L !!""G H $M N O A P Q &R S T &U &&!""&B 9:&&!""+;<%!%"VL !!""ST &PGH $MNOAUW &$!""&B9:&$!""+;<%!’!""!!""+;<X;"’"’"YJ %;!"("("!!"!!""#%!!""$%!!"%""$%!!"%!"$%!!"%&"$%!!"%$"$)!!"$""$%!!"$!"$$!!"$&"$!!!"$$"!!"#$%&’()*+,-!!!!!&"&"!""#!!!"%""Z[4\!!""GH"MNO]^&P_Q‘-!UW+&&;<X;"’"’!YJ%;!"("(!!$"&!!""#&!!"$!"Z[4\!!""a7!MNO]^&=_Q‘-&UW+&;< X;"’"’&YJ%;!"("(&!’"L!!""GH$MNOAU!(!""#!!"%$"&PL!(!""Q&RSTU&&!""# !(!%""#!!%"%$"&&&!""+;<X;"’"’$YJ%;!"("($!%"&$!""bIc%’&$!""#!!%"$$"&&;<X;"’"’’YJ%!"#!!"#"!d"’"!:+!!""’!""9:!!%""+;<%"!./01#$2./01345’67(8"!;!"("(’!&"ef !+!""#"!(!!""%!!%"")&=9:!+!""+;<%!$"BC !*!""&!+!""IJ !!""&=ghLiM4\jk%iMldm4\niM odm4\+pq %!’!""!!%""+;<X;"’!’"YJ %;!"(!("!!"!*!""#"!(!!""$!!%"")#"$)%$#"#%"%"$)"#"#$%"###"$%&%&’(&;<X;"’!’!YJ %!!"#$%&’()*+,-#!!&"!+!""#"!(!!""%!!%"")#"$!%$#"#%""%!"#"#$#"$%&%&’(&;<X;"’!’&YJ %;!"(!(&!$"drstuvwx4\!!""&bQL&jk%iMldm4\!*!""yiMo dm4\!+!""zy &{Zuvwx#$jk+i|}~p & !!""#!*!""$!+!"" *!*!""#"!(!!""$!!%"")!+!""#"!(!!""%!!%"$%&") &!*!""y !+!""j !*!""#!*!%""&!+!""#%!+!%""+dm ‘%!"$!#"!"!!" ‘ ’!""&!""#!!""$!!"%""$!!"%!"%!!"&!""#&!%""%!&"&!""#!!"!"%!$"&!""#!!!""%!’"&!""#!!"",-.!"""%!%"&!""#)!!""$*&&*)&*% -%B iM‘ Z * += 0 %!’!""d‘ &!""#!!""$!!"%""$!!"%!"&!" !"!""y !!!""& Y! j p &"!./01#$2./01345’67(8$! K!!""##!"!""$$!!!""‘ d!!""+ F&!""#+(!!"")##!"!""$$!!!""$#!"!"%""$$!!!"%""$#!"!"%!"$$!!!"%!"##(!"!""$!"!"%""$!"!"%!")$$(!!!""$!!!"%""$!!!"%!")&!""##&"!""$$&!!""¡¢‘ !""Z +%r&!""#+(!!"")#!!""$!!"%""$!!"%!"£¤‘ d!!"%,"+ F&,!""Z&,!""#+(!!"%,")#!!"%,"$!!"%,%""$!!"%,%!"¥&!"%,"#!!"%,"$!!"%,%""$!!"%,%!"¦§&!"%,"#+(!!"%,")#&,!""¡¢‘ !"" %!!"d‘ &!""#&!%""&!" !"!""y!!!""& Y! jp &&"!""#+(!"!"")#!"!%""&!!""#+(!!!"")#!!!%""K!!""##!"!""$$!!!""£¤‘ d!!""+ F&!""#+(!!"")##!"!%""$$!!!%""##&"!""$$&!!"" ? +¨©ªZ&"!""y&!!""+«¬&­‘ !!"Z +%r&!""#+(!!"")#!!%""£¤‘ d!!"%,"+ F&,!""Z&,!""#+(!!"%,")#!(%!"%,")¥&!"%,"#!(%!"%,")!!"#$%&’()*+,-%!YQ‘ !!" %!&"d‘ &!""#!!"!"&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!"!"!"&!!""#+(!!!"")#!!!"!"K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")##!"!"!"$$!!!"!"##&"!""$$&!!""? +¨©ªZ &"!""y &!!""+«¬&­‘ !&"Z +% r&!""#+(!!"")#!!"!"£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!(!"%,"!)¥&!"%,"#!(!"%,"!)¦§&!"%,"#+(!!"%,")#&,!""YQ‘ !&" %!$"d‘ &!""#!!!""&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!!"!""&!!""#+(!!!"")#!!!!""K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#(#!"!""$$!!!"")!’#&"!""$$&!!""¡¢&‘ !$"Z® +% r&!""#+(!!"")#!!!""£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!!!"%,"¥&!"%,"#!!!"%,""!./01#$2./01345’67(8&!YQ‘ !$" %!’"d‘ &!""#!!"",-.!"""&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!"!"",-.!"""&!!""#+(!!!"")#!!!"",-.!"""K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#(#!"!""$$!!!""),-.!"""##!"!"",-.!"""$$!!!"",-.!"""&!""##&"!""$$&!!""¡¢&‘ !’"Z +% r&!""#+(!!"")#!!"",-.!"""£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!!"%,",-.!"""¥&!"%,"#!!"%,",-.(!"%,"")¦§&!"%,"’+(!!"%,")#&,!""¡¢&‘ !’" %!%"d‘ &!""#)!!""$*&!" !"!""y !!!""& r )&*% -& Y! j p &&"!""#+(!"!"")#)!"!""$*&!!""#+(!!!"")#)!!!""$*K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#)(#!"!""$$!!!"")$*’#&"!""$$&!!""¡¢&‘ !%"Z® +% r!!"#$%&’()*+,-’!&,!""#+(!!"%,")#)!!"%,"$*¥&!"%,"#)!!"%,"$*¦§&!"%,"#+(!!"%,")#&,!""¡¢&‘ !%" %!"%!#"#"!!" ‘ ’!""&!""#"-$"(-,##!!"%,"&&*-%¯r°+±-%!!"&!""#)!!""$*%!&"&!""#!!""$.!!"$""&&*.% -%!$"&!""#!!"!"%!’"&!""#!!,""&&*,%¯r°+±-%!%"&!""#!!%""%B "²iMZ¡³‘ +²iMZ®¡³‘ += 0 %!’!""&!""#"-$"(-,##!!"%,"&&*-%¯r°+±-%¡%´‘ µs¶w·+ :¸¹"rºµw·y»¼+ !!""&!!"%""&,& !!"%-"&¥yL½+ ¾ &YQ&´‘ Z¡³‘ %!!"&!""#)!!""$*%¡%´‘ µs¶w·+ :¸¹"rºµw·+!!""&¥yL½+ ¾ &Y Q&´‘ Z¡³‘ %!&"&!""#!!""$.!!"$""&&*.% -%¡%´‘ µ¿7w·!""+ : ÀÁ¹r¿7w·!""+ !!""&¥ÂÃÁ¹rL½w·!"$""w+ !!"$""&YQ´‘ Z®¡³‘ %!$"&!""#!!"!"%µ")!w&´‘ ds¶w·"w+ :Ä L½w·"!+ Y¹"&¡¢´‘ %®¡³‘ %!’"&!""#!!,""&&*,%¯r°+±-%XÅÆ,!$"&¿"*#w&‘ + : L½w·,"+ Y¹"&¡¢‘ %®¡³‘ %"!./01#$2./01345’67(8(!¡³‘ %!"&!#"$"!X ÈM‘ ’!""&!""#(-%",###,!!"%,"&&*##&#"&,&#-%"% -%!!"&!""#!#/+,"#&!"%""%#!&!"%!"$!!""%#/+,"#!!"%""&&*#&"#% -%BÉ&ÊËNO F /!""&= ‘ Z Ì"+Ì"+ÍÎZϤ+!’!""ÊËNO FZ‘ µ %ÊËNO4\!!""w+ :%dr´‘ &&ÊËNO F/!""#(-%",###,!!"%,"!!ÐZi M ÑÒr "##&ÓÔ%-+ ÕÓ4\& Z i M 012‘ %Ö r ##&#"&,&#-%"Ä% Õ+ -&YQ´‘ gZÌ"+%!!"bCÈ|pqÉU´‘ +ÊËNO F %pqi ’K !!""#!!""& ‘ + :&!""#/!""& /!""#!#/+,"#/!"%""%#!/!"%!"$!!""%#/+,"#!!"%"""##!/!#"#""#"!/!""#!#/+,"#%#/+,"###/+,"#"#!!/!!"#!#/+,"#(#/+,"#)%#!##!/+,!"#"#&!/!&"#!#/+,"#(#!/+,!"#)%#!(#/+,"#)##&/+,&"#×¢ØÙ&/!""##"/+,""#0!""!!pqÚ’ÛÜbQÝCÞßà!á r 3 â+pqÉ:‘ +ÊËNO F %d‘ + jp ãä3 â&U !"%!#1%"/+,"#$#!1%!"2!1"#!"%#1%"/+,"#"3!1"ã¥UW´‘ T å-4!1"#2!1"3!1"#"%#1%"/+,"#"%!#1%"/+,"#$#!1%!ÊËNO F /!""ZT å-4!1"+æ3 â& Þß+I !’&’"!ç’d #-.#$/012$ZI !’’’""&U /!""#5%"(4!1")##"/+,""#0!""¿§&È|pq!:+h³ZiO+%!!"#$%&’()*+,-)*!8&!""8#8/!"""!!""8#($7,###,/+,"#,!!"%,"#($7,###,/+,"#,8!!"%,"8#6($7,###,/+,"#,#6($7,##8#,8#6($7,##8#8,¿#+"w &‘ + :&!""#/!"""!!""#6"%8#8ÇZ ë+&YQ‘ ZÌ"+%ìz &X³#)"& ‘ Ì"%?íYC+ pq ZÌ" +"î& ë+ ïð ë+ :!4145"%!"’!#"&"!K /!""#-/!#"&/!""&/!!".#-&&!&".&É!""&"!""#/!"""/!""!!"&!!""#/!"""/!"""/!""!’Ék´, È|p q &i Z ñò óô+"îÉ&ÚZ 678974*+:õÎ/+.;½É&ºj !:EF+h³%pqi ’dÆ,!""& &"!""#(79#%7/!"%9"/!9"&bÉ:&"!#"#/!#"/!#"#<&"!""#/!#"/!""$/!""/!#"#"!&"!!"#/!#"/!!"$/!""/!""$/!!"/!#"#"#&"!&"#/!""/!!"$/!!"/!""#$&"!$"#/!!"/!!"#"!!dÆ,!!"&ö÷?&!!""#&"!"""/!""&øùóô+"îbÉ:&!!""#-!=&’$&%&&$$&!"&%&". ú+Ékûüýþÿ!"!:%pqÚ’öºÆ,!""+678974 4Z *>/#"/#%/"(:&#ä´ 4+h³%<!!"!!!"#!!$!!"!!öºÆ,!!"+678974 4ýþÿ!"!:%!"(!/!""$ "’%,!:&K !!""#-!!#"&!!""&!!!"&!!&".#-"&!&&&$.%!""É/!""+!E å-:/!9"%!!"É/!""y !!""+%E å-:/!!9"&=9::/!9"&:/!!9"+;<%。

胡广书_数字信号处理题解及电子课件_第8章

胡广书_数字信号处理题解及电子课件_第8章
2


按 K—L 变换的思路,现需要求 Rx 的特征 值及特征向量,以形成变换的正交矩阵 A 。 但对Markov-1 过程,协方差阵 Rx 的特征向量 可以解析的给出,因此正交变换的矩阵也可解 析的得到:
j , j
是 Rx 的特征值
j 是方程
的根
1 1
有: 由:
tan( N ) 0
ˆ ˆ j x(t ), j (t ) x(t ) (t )dt
* j
ˆ ˆ j x(n), j (n) x(n) (n)
* j n

1 , 2 ,, N
ˆ ˆ ˆ 1 , 2 ,, N
则称
如果:
ˆ i i i 1,2, , N
0 ACA1 ACAT N 1
1

数据压缩的理论基础。后面即将讨论。
正交变换的实例: FS,FT, DTFT, DFS, DFT DCT,DST, DHT Walsh-Hadamard, Haar 变换, SLT(斜变换)
8.1 正交变换
一、信号的分解
概念:Βιβλιοθήκη 设空间 X 是由 N 维空间一组向量 1 , 2 ,, N 所张成,即
X span{1 , 2 ,, N }
对任一
x X,都可作如下分解:
x n n
n 1 N
x n n
n 1
N
信号的离散表示,或 信号的分解 是分解系数 或信号的变换
若:
T
AN N
y Ax
矩阵 A 的 行(列)向 量即是前面 的向量 i
Ax, Ax x, x y, y

[工学]胡广书_数字信号处理题解及电子课件_绪论

[工学]胡广书_数字信号处理题解及电子课件_绪论

有关期刊
1. I EEE Trans. on Signal Processing; 2. I EEE Trans. on Circuits and Systems; 3. I EEE Trans. on Biomedical Engineering; 4. Proc. of I EEE; 5. Signal Processing; 6. 信号处理
(2)通过应用来加深理解和记忆;
特别希望大家在学习的过程中一定要重视利 用MATLAB来完成实际的信号处理任务。
(3)打好基础,循序渐进;
(4)尽可能的多看一些国外的教科书及有关文献
参考书
[1] S J. Orfanids. Introduction to Signal Processing. 1996; 清华大学出版社,1999
MATLAB Signal Processing Tool Box
硬件实现:
CPU, MCU,
DSP
TI产品系列
数字信号处理中最常用的算法是线性卷 积和 DFT,其特点是大量的“连乘连加”运 算,如:
y(n) x(k)h(n k)
k
N 1
X (k ) x(n)e j2nk N
n0
DSP的特点:
时钟快;硬件乘法器(实现连乘连加); 哈佛结构;较多的寄存器, 等等
5、数字信号处理的应用
DSP的应用
耳背式 耳道式 耳内式 完全耳内式
心电 Holterຫໍສະໝຸດ 5. 关于数字信号处理的学习
作为一门课程,学好数字信号处理和学好其他课程有 着共同的要求。下面是几点特殊的要求:
(1)特别要注意加深概念的理解,不要只停留在死 记数学公式上;
(二)数字信号

胡广书数字信号处理题解及电子课件第3章1

胡广书数字信号处理题解及电子课件第3章1

如果 x(n) 是实偶信号,即
j X ( e ) 是 则

的实函数!
4. 如果
则:
5. 如果 Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2004-2011 Aspose Pty Ltd. 则:
1 Px 2



Px (e j )d
说明:
j P ( e ) 在 ~ 内的积分等于信号的功 1. x j j 率,所以称 Px (e ) 为功率谱,同理,Ex (e ) 为能量谱; Evaluation only. j 2. Px (e ) 始终是 的实函数; eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2004-2011 Aspose Pty Ltd. 3. 相关函数和功率谱是随机信号分析与处
时域卷积定理
频域卷积定理!
6. 时域相关定理 互相关:
DTFT
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2004-2011 Aspose Pty Ltd.
自相关:
自相关函数的 DTFT 始终是 的实函数!
在经典数学的意义上是不可实现的,
但在引入了奇异函数后可以实现。
周期信号
FS
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2004-2011 Aspose Pty Ltd.

数字信号处理课件.ppt

数字信号处理课件.ppt

4)实指数序列 x(n) anu(n) a 为实数
5)复指数序列 x(n) e( j0 )n en e j0n
en cos(0n) jen sin(0n) 0 为数字域频率
例:
x(n)=0.9
ne
j 3
n
6)正弦序列
x(n) Asin(0n )
模拟正弦信号:
xa (t) Asin(t )
后向差分:
x(n) x(n) x(n 1)
x(n) x(n 1)
x(n) x(n 1)
7)时间尺度变换
x(mn)
抽取
x(n) xa (t) tnT x(mn) xa (t) tmnT
x(n)
x( n ) 插值 m
2 1 0 -1 -4 -3 -2 -1 0 1 2 3 4 5 6
n 2 1 0 -1 -4 -3 -2 -1 0 1 2 3 4 5 6
若采样从n = 0 开始,可用x向量表示序 列 x(n) (注意:Matlab数组的下标是从1开始)
n为整数
1、序列的运算
移位 翻褶 和 积 累加 差分 时间尺度变换 卷积和 相关 能量
1)移位
序列x(n),当m>0时 x(n-m):延时/右移m位 x(n+m):超前/左移m位
n
举例说明卷积过程
n -2, y(n)=0
n=-1
n=0
n=1
y(-1)=8
y(0)=6+4=10
y(1)=4+3+6=13
n=5
n=6
n=7
y(5)=-1+1=0
y(6)=0.5
y(n)=0, n 7
y(n)
两序列卷积的长度:

《数字信号处理题解及电子课件》_电子课件

《数字信号处理题解及电子课件》_电子课件

有:
二式 相比
C
2
2N
10
( ) /10
1
C 10
2
p /10
1
求出 C
10s /10 1 N lg / lg s p /10 10 1
对Butterworth滤波器,通常 p 3dB ,所以
C 10
2
p /10
1 100.3 1 1
N lg 10 s /10 1 lg s
如何由上述的幅平方特性得到
系统的转移函数
G ( p)
3. 确定 G ( p )
s j p j / p
p j j / p s / p
p/ j
1 1 G( p)G( p) 2N N 2N 1 ( p / j) 1 (1) p
DF : f p 100 Hz, f s 300 Hz, Fs 1000 Hz
p 0.2 ,
s 0.6 ,
2 AF : p tan( p / 2) 685.8 2 109(Hz) Ts 2 s tan( s / 2) 2452.76 2 438(Hz) Ts 设计的 AF 并不是按给定的技术指标,但再 由 s 变回 z 后,保证了 DF的技术要求。
与本章内容有关的MATLAB文件
1.buttord.m 确定 LP DF、或 LP AF的阶次; (1) [N, Wn] = buttord(Wp, Ws, Rp, Rs);
对应 数字滤波器。其中 Wp, Ws分别是通带和 阻带的截止频率,其值在 0~1 之间,1对应 抽样频率的一半(归一化频率)。对低通和高通, Wp, Ws都是标量,对带通和带阻,Wp, Ws是 1×2的向量。Rp, Rs 分别是通带和阻带的衰 减(dB)。N是求出的相应低通滤波器的阶次, Wn是求出的3dB频率,它和Wp稍有不同。

数字信号处理(胡广书)

数字信号处理(胡广书)
n=0 m
系统的能量累计情况 6.6 令 H1 ( z ) = 1 − 0.6 z −1 − 1.44 z −2 + 0.864 z −3
H 2 ( z ) = 1 − 0 . 98 z − 1 + 0 . 9 z − 2 − 0 . 8 z − 3
H 3 ( z ) = H1 ( z ) H 2 ( z )
相位,滤波器 系数的长度为 29 点,即 M/2=14 (1) 用矩形窗 (2) 利用 Hamming 窗 试计算并打印滤波器的系数,幅频响应及相频响应。滤波器系数 的计算先用手算,然后调用子程序 DEFIR1 来计算。 8.4 一滤波器的理想频率响应如图所示 (1)试用窗函数法设计该滤波器,要求具有线性相位,滤波器长 度为 33,用 Hamming 窗 (2)用频率抽样法设计,应要求具有线性相位,滤波器长度为 33,过度点自行设置。 注:先用手算出 h(n),然后上机求 H (e jω ) .
x(n)
y(n)
y(n) a
z
a
−1
x(n)
b
zb
−1
(a) x(n)
x(n)
y(n)
z
−1
z
b
−1
z
− a1
y(n)
−1
a (b)
− a2
z −1
b1 b2
− a3
2.9 (c)
2.10 题图 2.10 是一个三阶 FIR 系统,试写出该系统的差分方程及转 移函数。
x(n) -0.7026 -0.7026 0.7385 0.7385
1.4 给定下述系统:
1 (1)y(n)= N +1

k =0
N
x(n-k),N 为大于零的整数。

《数字信号处理》课件

《数字信号处理》课件

05
数字信号处理中的窗函 数
窗函数概述
窗函数定义
窗函数是一种在一定时间 范围内取值的函数,其取 值范围通常在0到1之间。
窗函数作用
在数字信号处理中,窗函 数常被用于截取信号的某 一部分,以便于分析信号 的局部特性。
窗函数特点
窗函数具有紧支撑性,即 其取值范围有限,且在时 间轴上覆盖整个分析区间 。
离散信号与系统
离散信号的定义与表示
离散信号是时间或空间上取值离散的信号,通常用序列表示。
离散系统的定义与分类
离散系统是指系统中的状态变量或输出变量在离散时间点上变化的 系统,分类包括线性时不变系统和线性时变系统等。
离散系统的描述方法
离散系统可以用差分方程、状态方程、传递函数等数学模型进行描 述。
Z变换与离散时间傅里叶变换(DTFT)
1 2 3
Z变换的定义与性质
Z变换是离散信号的一种数学处理方法,通过对 序列进行数学变换,可以分析信号的频域特性。
DTFT的定义与性质
DTFT是离散时间信号的频域表示,通过DTFT可 以分析信号的频域特性,了解信号在不同频率下 的表现。
Z变换与DTFT的关系
Z变换和DTFT在某些情况下可以相互转换,它们 在分析离散信号的频域特性方面具有重要作用。
窗函数的类型与性质
矩形窗
矩形窗在时间轴上均匀取值,频域表现为 sinc函数。
汉宁窗
汉宁窗在时间轴上呈锯齿波形状,频域表现 为双曲线函数。
高斯窗
高斯窗在时间轴上呈高斯分布,频域表现为 高斯函数。
海明窗
海明窗在时间轴上呈三角波形状,频域表现 为三角函数。
窗函数在数字信号处理中的应用
信号截断
通过使用窗函数对信号进行截 断,可以分析信号的局部特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档