多功能数字时钟设计

合集下载

基于单片机的多功能数字时钟设计

基于单片机的多功能数字时钟设计

技术平台采用碱性电解液电沉积活性锌粉,选取电解液浓度1.25g/cm3,电流密度150mA/cm2,电解槽温度只需控制在室温,锌粉洗涤后真空干燥,所制得的锌粉比表面积大于0.8m2/g,具有较高的电化学活性,能满足锌银电池生产需要,生产效率也达到批量生产要求。

参考文献:[1]侯新刚,王胜,王玉棉.超细活性锌粉的制备与表征[J].粉末冶金工业,2004,14(1):10-13.[2]李永祥,黄孟阳,任锐.电解法制备树枝状锌粉工艺研究[J].四川有色金属,2011,(3):45-50.[3]胡会利,李宁,程瑾宁,等.电解法制备超细锌粉的工艺研究[J].粉末冶金工业,2007,17(1):24-29.基于单片机的多功能数字时钟设计刘晓萌(安徽职业技术学院铁道学院/合肥铁路工程学校,安徽 合肥 230011)摘 要:常见的数字钟有时间、闹钟等功能。

本文基于单片机、温度传感器、液晶显示屏、时钟芯片等硬件设计了多功能数字时钟,软件部分采用C语言编程实现。

该多功能数字时钟包含万年历、节日、节气、温度信息显示等功能,并且在断电的情况下也能正常工作。

关键词:单片机;多功能数字时钟;C语言编程0 引言人类对于时间的需求从古到今始终存在。

古代有浑天仪、日晷,近代出现了机械时钟。

如今,传统的计时工具,甚至是电子钟都已经满足不了人们多元化的时间需求。

数字时钟具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,符合电子仪器仪表的发展趋势,具有广阔的应用空间[1]。

使用数字时钟,用户可以获取精确到秒的时间信息,或是对时钟进行自定义的操作,为现代社会提供了极大的方便[2]。

然而,传统的数字时钟只包含时间显示、闹钟等功能,存在一定的局限性。

本文基于单片机、温度传感器、液晶显示屏、时钟芯片、键盘模块、闹铃模块和电力支持模块等硬件,设计了一款多功能的数字时钟。

1 系统硬件组成数字时钟的硬件由七个模块组成,包括:STC89C52单片机主控芯片、DS1302时钟芯片、DS18B20温度芯片、LCD1602液晶显示模块、闹铃模块、键盘模块和电源。

基于51单片机的多功能电子钟设计

基于51单片机的多功能电子钟设计

基于51单片机的多功能电子钟设计1. 本文概述随着现代科技的发展,电子时钟已成为日常生活中不可或缺的一部分。

本文旨在介绍一种基于51单片机的多功能电子钟的设计与实现。

51单片机因其结构简单、成本低廉、易于编程等特点,在工业控制和教学实验中得到了广泛应用。

本文将重点阐述如何利用51单片机的这些特性来设计和实现一个具有基本时间显示、闹钟设定、温度显示等功能的电子钟。

本文的结构安排如下:将详细介绍51单片机的基本原理和特点,为后续的设计提供理论基础。

接着,将分析电子钟的功能需求,包括时间显示、闹钟设定、温度显示等,并基于这些需求进行系统设计。

将详细讨论电子钟的硬件设计,包括51单片机的选型、时钟电路、显示电路、温度传感器电路等。

软件设计部分将介绍如何通过编程实现电子钟的各项功能,包括时间管理、闹钟控制、温度读取等。

本文将通过实验验证所设计的电子钟的功能和性能,并对实验结果进行分析讨论。

通过本文的研究,旨在为电子钟的设计提供一种实用、经济、可靠的方法,同时也为51单片机的应用提供一个新的实践案例。

2. 51单片机概述51单片机,作为一种经典的微控制器,因其高性能、低功耗和易编程的特性而被广泛应用于工业控制、智能仪器和家用电器等领域。

它基于Intel 8051微处理器的架构,具备基本的算术逻辑单元(ALU)、程序计数器(PC)、累加器(ACC)和寄存器组等核心部件。

51单片机的核心是其8位CPU,能够处理8位数据和执行相应的指令集。

51单片机的内部结构主要包括中央处理单元(CPU)、存储器、定时器计数器、并行IO口、串行通信口等。

其存储器分为程序存储器(ROM)和数据存储器(RAM)。

程序存储器通常用于存放程序代码,而数据存储器则用于存放运行中的数据和临时变量。

51单片机还包含特殊功能寄存器(SFR),用于控制IO端口、定时器计数器和串行通信等。

51单片机的工作原理基于冯诺伊曼体系结构,即程序指令和数据存储在同一块存储器中,通过总线系统进行传输。

多功能数字钟电路设计

多功能数字钟电路设计

多功能数字钟电路设计1设计内容简介数字钟是一个简单的时序组合逻辑电路,数字钟的电路系统主要包括时间显示,脉冲产生,报时,闹钟四部分。

脉冲产生部分包括振荡器、分频器;时间显示部分包括计数器、译码器、显示器;报时和闹钟部分主要由门电路构成,用来驱动蜂鸣器。

2设计任务与要求Ⅰ以十进制数字形式显示时、分、秒的时间。

Ⅱ小时计数器的计时要求为“24翻1”,分钟和秒的时间要求为60进位。

Ⅲ能实现手动快速校时、校分;Ⅳ具有整点报时功能,报时声响为四低一高,最后一响为整点。

Ⅴ具有定制控制(定小时)的闹钟功能。

Ⅵ画出完整的电路原理图3主要集成电路器件计数器74LS162六只;74LS90三只;CD4511六只;CD4060六只;三极管74LS191一只;555定时器1只;七段式数码显示器六只,74LS00 若干;74LS03(OC) 若干;74LS20 若干;电阻若干,等4设计方案数字电子钟的原理方框图如图(1)所示。

该电路由秒信号发生器、“时,分,秒”计数器、译码器及显示器、校时电路、整点报时电路、闹钟定时等电路组成。

秒信号产生器决定了整个计时系统的精度,故用石英晶体振荡器加分频器来实现。

将秒信号送入“秒计时器”,“秒计时器”采用六十进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用六十进制计数器,每60分钟,发出一个“时脉冲”,该信号经被送到“时计数器”作为“时计数器”的时钟脉冲,而“时计数器”采用二十四进制计数器,实现“24翻1”的计数方式,可实现对一天二十四小时的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态通过七段式显示译码器译码,通过刘伟LED 七段显示器显示出来。

整点报时电路是根据计时系统的输出状态产生一脉冲信号,然后触发一音频发生器实现整点报时,定时电路与此类似。

校时电路是用“时”、“分”、“秒”显示数5电路设计5.1秒信号发生器秒信号发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体整荡器产生的脉冲经过整形、分频获得1 Hz的秒脉冲。

多功能数字钟的设计和制作

多功能数字钟的设计和制作

目录摘要 (1)1数字钟的结构设计及方案选择 (2)1.1振荡器的选择 (2)1.2计数单元的构成及选择 (3)1.3译码显示单元的构成选择 (3)1.4校时单元电路设计及选择 (4)2 数字钟单元电路的设计 (4)2.1振荡器电路设计 (4)2.2时间计数单元设计 (4)2.2.1集成异步计数器74LS390 (5)2.2.2 用74LS390构成秒和分计数器电路 (5)2.2.3用74LS390构成时计数器电路 (6)2.2.4 时间计数单元总电路 (7)2.3译码显示单元电路设计 (7)2.4 校时单元电路设计 (7)2.5整点报时单元电路设计 (1)3 数字钟的实现电路及其工作原理 (9)4电路的搭建与调试 (10)5结束语 (10)参考文献 (11)附录1: (12)摘要数字钟被广泛用于个人家庭及公共场所,成为人们日常生活中的必需品。

诸如定时自动报警、按时自动打铃、定时广播、自动起闭路灯、定时开关烘箱、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。

因此,研究数字钟及扩大其应用,有着非常现实的意。

数字电子钟,从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

数字电子钟有以下几部分组成:振荡器,分频器,60进制的秒、分计时器和12进制计时计数器,秒、分、时的译码显示部分及校正电路等。

关键词:数字钟 555多谐振荡器计数器 74LS390 74LS48数字电子时钟的设计及制作1数字钟的结构设计及方案选择数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

主要由振荡器、分频器、计数器、译码器显示器和校时电路组成。

振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,通常使用石英晶体震荡器,然后经过分频器输出标准秒脉冲,或者由555构成的多谐振荡器来直接产生1HZ的脉冲信号。

秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“12翻1”规律计数。

多功能数字钟设计实验报告XilinxEDABasys2华中科技大学HUST

多功能数字钟设计实验报告XilinxEDABasys2华中科技大学HUST

多功能数字钟设计实验报告院系:电子与通信工程学院:郭世康班级:1301学号:U202113639指导教师:唐祖平一、实验目标掌握可编程逻辑器件的应用开发技术——设计输入、编译、仿真和器件编程熟悉EDA软件使用掌握Verilog HDL设计方法分模块、分层次数字系统设计二、实验容要求根本功能能显示小时、分钟、秒钟〔时、分用显示器,秒用LED〕能调整小时、分钟的时间提高要求任意闹钟;〔1分〕小时为12/24进制可切换〔1分〕报正点数〔几点钟LED闪烁几下〕〔1分〕三、实验条件Xilinx工程环境,win7操作系统,BASYS2实验板。

四、实验设计1.设计分析数字钟大体上由2个60进制计数器,1个24进制计数器构成,中间有数据选择器进展连接。

为实现提高功能,还需12进制计数和整点判断模块。

下列图为数字钟层次构造图。

2. 实验原理振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,再经分频器输出标准秒脉冲。

秒计数器计满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按24或12进制规律计数。

计数器的输送译码显示电路,即可显示出数码〔即时间〕。

计时出现误差时可以用校时电路进展校时和校分。

小时显示〔12\24〕切换电路、仿电台报时、定时闹钟为扩展电路,只有在计时主体电路正常运行的情况下才能进展功能扩展。

本实验采用Verilog HDL进展描述,然后用FPGA/CPLD实现,使用部50MHz 晶振作为时钟电路。

3. 逻辑设计实现上述功能的Verilog HDL 程序如下。

实现根本功能的程序分为两层次四个模块,底层有3个模块构成,即6进制计数器模块,10进制计数器模块和24进制计数器模块,顶层有一个模块,他调用底层的3个模块完成数字中的计时功能。

moduletimeclock(Hour,Minute,Second,CP,nCR,EN,Adj_Min,Adj_Hour,number,Light,clk,temp,c hange,AMTM,dingdong);output [7:0] Hour,Minute,Second;output [3:0] Light,temp;output [6:0] number;output clk,AMTM,dingdong;//clk为分频之后的时钟信号,频率为1Hz,AMTM为24进制转换12进制时说明上下午的变量,dingdong为整点报时时的闪烁信号。

多功能数字钟电路设计

多功能数字钟电路设计

多功能数字钟电路设计
1.时钟显示:设计一个数字时钟显示电路,可以显示当前的时间(小
时和分钟)。

可以使用七段显示器来显示数字。

2.闹钟功能:设计一个闹钟功能,可以设置闹钟时间,并在到达闹钟
时间时发出提示声音或闹铃。

3.温度显示:设计一个温度传感器电路,并将当前温度显示在数字时
钟上。

4.日历功能:设计一个日历功能,可以显示当前的日期和星期。

5.定时器功能:设计一个定时器功能,可以设置一个特定的时间间隔,并在到达时间间隔时发出提示声音或闹铃。

6.闹钟休眠功能:设计一个闹钟休眠功能,可以设置一个特定的时间
间隔,在此时间间隔内按下按钮可以将闹钟功能暂时关闭。

7.闹钟重复功能:设计一个闹钟重复功能,可以设置一个特定的时间
间隔,使闹钟在每天相同的时间段重复响铃。

8.亮度调节功能:设计一个亮度调节功能,可以调整数字时钟的显示
亮度。

这些功能可以根据需求进行组合设计,可以使用逻辑门、计数器、显
示器驱动器、温度传感器、按钮等元件来完成电路设计。

多功能数字时钟课程设计

多功能数字时钟课程设计

多功能数字时钟课程设计一、课程目标知识目标:1. 学生能理解数字时钟的基本构成,掌握时、分、秒的概念及其相互关系。

2. 学生能运用所学知识,分析多功能数字时钟的显示原理和编程逻辑。

3. 学生掌握基本的数字逻辑运算,并能将其应用于时钟设计中。

技能目标:1. 学生能通过实际操作,学会使用编程软件进行数字时钟的设计与编程。

2. 学生能够运用问题解决策略,调试并优化数字时钟程序,提高程序运行效率。

3. 学生能够运用所学知识,创作具有个性化功能的数字时钟,培养创新意识和实践能力。

情感态度价值观目标:1. 学生在学习过程中,培养对信息技术学科的兴趣,激发学习热情。

2. 学生通过团队协作,培养沟通、交流和合作的能力,增强团队意识。

3. 学生通过解决实际问题,体会科技改变生活的魅力,增强社会责任感和使命感。

课程性质:本课程为信息技术学科,结合学生年级特点,注重理论与实践相结合,培养学生的动手操作能力和创新思维。

学生特点:学生具备一定的信息技术基础,好奇心强,喜欢动手操作,但逻辑思维和问题解决能力有待提高。

教学要求:教师应关注学生的个体差异,提供有针对性的指导,引导学生通过自主学习、合作探究和实践活动,达到课程目标,提高学生的信息技术素养。

二、教学内容1. 数字时钟基础知识:时钟的演变、数字时钟的构成、时、分、秒的概念及其进制关系。

教材章节:第一章 认识数字时钟2. 数字时钟显示原理:LED显示技术、点阵显示原理、数字时钟显示编程。

教材章节:第二章 数字时钟显示技术3. 数字时钟编程基础:基本逻辑运算、程序流程控制、函数的运用。

教材章节:第三章 数字时钟编程基础4. 多功能数字时钟设计与实现:设计思路、编程实践、调试与优化。

教材章节:第四章 多功能数字时钟设计与实现5. 创新实践:个性化数字时钟设计、功能拓展、作品展示。

教材章节:第五章 创新实践与作品展示教学进度安排:1. 数字时钟基础知识(1课时)2. 数字时钟显示原理(2课时)3. 数字时钟编程基础(3课时)4. 多功能数字时钟设计与实现(4课时)5. 创新实践(2课时)教学内容科学系统,注重理论与实践相结合,引导学生通过自主学习、合作探究和实践操作,掌握数字时钟的设计与编程,培养学生的创新能力和信息技术素养。

eda多功能数字时钟课程设计

eda多功能数字时钟课程设计

eda多功能数字时钟课程设计一、课程目标知识目标:1. 学生能理解数字时钟的基本原理,掌握EDA工具的使用方法,并运用相关电路知识设计多功能数字时钟。

2. 学生能够运用所学知识,分析并解释数字时钟电路中各个部分的功能及其相互关系。

3. 学生了解数字时钟在实际生活中的应用,理解其重要性。

技能目标:1. 学生能够运用EDA工具进行电路设计,具备实际操作能力。

2. 学生通过动手实践,培养解决实际问题的能力,提高创新意识和团队协作能力。

3. 学生能够运用所学知识,对数字时钟电路进行调试和优化。

情感态度价值观目标:1. 学生在学习过程中,培养对电子技术的兴趣,激发创新精神。

2. 学生通过团队合作,学会尊重他人,培养良好的沟通能力和团队精神。

3. 学生认识到科技发展对社会进步的重要性,树立正确的价值观。

课程性质:本课程为实践性较强的课程,结合理论教学,注重培养学生的动手能力和实际操作技能。

学生特点:学生具备一定的电子技术基础知识,对实践操作有较高的兴趣。

教学要求:教师需结合理论教学,指导学生进行实践操作,注重启发式教学,引导学生主动探究,提高学生的综合能力。

在教学过程中,关注学生的学习进度,及时调整教学策略,确保课程目标的实现。

通过课程学习,使学生能够将所学知识应用于实际生活中,提高学生的创新意识和实践能力。

二、教学内容本课程教学内容主要包括以下几部分:1. 数字时钟原理:讲解数字时钟的基本工作原理,包括时钟信号、计数器、显示驱动等组成部分。

2. EDA工具使用:介绍EDA工具的基本操作,如原理图绘制、电路仿真、PCB设计等。

3. 电路设计与实现:指导学生运用EDA工具设计多功能数字时钟电路,包括时钟信号电路、分频器、计数器、显示驱动和按键控制等模块。

4. 电路调试与优化:教授学生如何对设计的数字时钟电路进行调试,找出问题并进行优化。

教学内容与教材关联性如下:1. 《电子技术基础》中关于数字电路的基础知识,为理解数字时钟原理提供理论支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指导教师评定成绩:审定成绩:重庆邮电学院自动化学院计算机控制技术课程设计报告设计题目:多功能数字时钟设计单位(二级学院):自动化学院学生姓名:****专业:自动化班级:08*****学号:2009********指导教师:*****设计时间:2012 年 6 月重庆邮电学院自动化学院制摘要数字时钟在日常生活中最常见,应用也最广泛。

本次数字时钟电路根据设计要求采用AT89C51单片机作为控制核心,采用单片机内部计时器来实现时、分、24小时计时,采用DS18B20来实现温度的测量,采用LED实现时间、温度显示,采用蜂鸣器实现闹铃功能。

文章的核心主要是硬件设计和软件编程两个大的方面。

硬件电路设计主要包括中央处理单元电路、时钟电路、温度测量电路、键盘扫描电路、闹铃电路。

软件用C语言来实现,主要包括主程序、时间设置子程序、温度测量子程序、键盘扫描子程序、闹铃电路子程序等软件模块。

最终电路实现了显示时间、调整时间、测量并显示温度、闹钟定时及响动等功能,达到了设计的要求和目的。

在Protuse软件上进行了仿真和调试通过,并最后焊接出实物实现其所有功能。

关键词:数字时钟;AT89C51;DS18B20;LED;蜂鸣器目录摘要............................................... 错误!未定义书签。

目录. (3)一设计题目 (4)1.1 多功能数字时钟设计 (4)1.2 设计目的 (4)1.3 设计要求 (4)二设计报告正文 (5)2.1 设计方案总体方向的选择 (5)2.2 温测芯片及显示部分的选择 (5)2.2.1 温测芯片的选择 (5)2.2.2 显示部分的选择 (5)2.3 核心芯片选择 (5)2.3.1 AT89C51简介 (5)2.3.2 DB18B20简介 (6)2.3.3 DB18B20特性 (6)2.4 系统硬件设计 (8)2.4.1 硬件主要设计电路 (8)2.4.2 温度测量电路设计 (9)2.4.3 键盘扫描.............................. 错误!未定义书签。

2.4.4 LED显示.............................. 错误!未定义书签。

2.4.5 闹铃电路设计 (11)2.4.6 复位电路、时钟电路设计 (12)2.5 系统软件设计 (13)三系统模拟仿真及实现 (14)3.1 Proteus仿真............................... 错误!未定义书签。

3.2 实物实现.................................. 错误!未定义书签。

四设计总结. (15)五参考文献 (16)六附录 (17)一、设计题目1.1多功能数字钟设计设计制作一个24小时制多功能数字钟。

通过该数字钟可以显示小时、分钟、有AM、PM指示器,具有时间设置(小时和分钟)、闹钟时间设置、闹钟开、闹钟关功能。

通过温度传感器检测环境温度,并显示当前环境温度信息。

1.2设计目的:1.掌握LED显示设计方法;2.掌握数据采集电路设计方法;3.掌握测控系统设计方法。

1.3设计要求:1.画出系统结构功能结构框图;2.选择合适元器件进行电路设计,画出电路原理图;3.画出系统功能实现程序流程图;4.编写程序。

二、设计报告正文2.1设计方案总体方向的选择针对要实现的功能,采用AT89C51单片机进行设计,AT89C51 单片机是一款低功耗,高性能CMOS8位单片机,片内含4KB在线可编程(ISP)的可反复擦写1000次的Flash只读程序存储器,器件采用高密度、非易失性存储技术制造,兼容标准MCS- 51指令系统及80C51引脚结构。

这样,既能做到经济合理又能实现预期的功能。

在总体方面,采用分块设计的方法,这样既减小了编程难度、使程序易于理解,又能便于添加各项功能。

程序可分为延时程序,闹钟定时程序,时间、日期调整程序,显示程序,温测显示程序,中断程序等。

通过各模块之间的兼容和配合,完成整个系统的设计。

2.2温测芯片及显示部分的选择2.2.1温测芯片的选择DS18B20是美国DALLAS公司生产的单线数字温度传感器芯片,具有结构简单、体积小、功耗低、抗干扰能力强、使用简单等优点。

它的ROM中存有其芯片的唯一标识码,即任意两个DS18B20的标识码是不同的,特别适合于微处理芯片构成多点温度测控系统。

它支持“一线总线”接口,使用户可以轻松地组建传感器网络。

其内部采用在板温度测量专利技术,测量范围为-55~+125℃,精度为0.5℃。

DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的稳定报警触发器TH和TL、配置寄存器。

该芯片非常适合本设计,予以采用。

2.2.2显示部分的选择用单片机驱动LED数码管显示有很多方法,按显示方式分有静态显示和动态显示。

静态显示方式虽然显示的数据稳定,无闪烁,占用CPU时间少。

但是由于数码管始终发光,功耗比较大,所以不予采用。

而动态扫描用分时的方法轮流控制每个显示器的COM端,使每个显示器轮流电亮。

在轮流点亮过程中,每位显示器的点亮时间极为短暂,给人的印象就是一组稳定的显示数据。

动态驱动一般用于多位LED数码管显示,主要是节省驱动管脚,减少器件。

故选择动态显示。

2.3核心芯片介绍2.3.1 AT89C51简介AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。

AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

AT89C51外形及引脚排列如图2.1所示:图2.1 AT89C51其具有与MCS-51 兼容、4K字节可编程闪烁存储器、寿命:1000写/擦循环、数据保留时间:10年、全静态工作:0Hz-24MHz、三级程序存储器锁定、128×8位内部RAM、32可编程I/O线、两个16位定时器/计数器、5个中断源、可编程串行通道、低功耗的闲置和掉电模式、片内振荡器和时钟电路等多种特性。

2.3.2 DS18B20简介DS18B20 数字温度计提供 9 —12位分辨率,指示器件的温度。

信息经过单线接口送入 DS18B20或从DS18B20送出,因此从中央处理器到DS18B20仅需连接一条线(和地)。

读、写和完成温度变换所需的电源可以由数据线本身提供,而不需要外部电源。

因为每一个DS18B20 有唯一的系列号(silicon serial number),因此多个DS18B20可以存在于同一条单线总线上。

这允许在许多不同的地方放置温度灵敏器件,此特性的应用范围包括 HVAC环境控制,建筑物、设备或机械内的温度检测,以及过程监视和控制中的温度检测。

2.3.3 DS18B20特性独特的单线接口,只需1个接口引脚即可通信;多点(multidrop)能力使分布式温度检测应用得以简化;不需要外部元件;可用数据线供电;不需备份电源;测量范围从-55 至+125,以12位数字值方式读出温度;在750ms典型值内把温度变换为数字;用户可定义的9-12位分辨率。

非易失性的温度告警设置;告警搜索命令识别和寻址温度在编定的极限之外的器件(温度告警情况); 应用范围包括恒温控制,工业系统,温度计或任何热敏系统等。

1、DS18B20引脚排列引脚排列如图2.2所示: 引脚说明: GND 地DQ 数字输入输出 VDD 可选的VDD NC 空引脚 DNC 不连接引脚详细说明见表2.1 图2.2 DB18B20引脚排列表2.12、测量温度DS18B20 通过门开通期间内低温度系数振荡器经历的时钟周期个数计数来测量温度,而门开通期由高温度系数振荡器决定计数器予置对应于-55的基数,如果在门开通期结束前计数器达到零,那么温度寄存器它也被予置到-55的数值将增量指示温度高于-55;同时计数器用钭率累加器电路所决定的值进行予置,为了对遵循抛物线规律的振荡器温度特性进行补偿,这种电路是必需的。

时钟再次使计数器计值至它达到零,如果门开通时间仍未结束那么此过程再次重复。

钭率累加器用于补偿振荡器温度特性的非线性,以产生高分辩率的温度测量。

通过改变温度每升高一度,计数器必须经历的计数个数来实行补偿。

因此为了获得所需的分辩率,计数器的数值以及在给定温度处每一摄氏度的计数个数(钭率累加器的值)二者都必须知道。

此计算在DS18B20内部完成以提供0./625的分辩率温度读数,以16位符号扩展的二进制补码读数形式提供。

表2.2说明输出数据对测量温度的关系数据在单线接口上串行发送DS18B20,可以以0.0625的增量值在-55至+125的范围内测量温度。

对于应用华氏温度的场合必须使用查找表或变换系数。

引脚8脚SOIC 引脚FR35 符号 说明5 1 GND 地42DQ 单线运用的数据输入/输出引脚 3 3 VDD可选VDD 的引脚。

注意,在DS18B20中温度是以1/2 LSB (最低有效位)形式表示时产生以下12位格式:MSB (最高有效位) (最低有效位) LSB其中s 为符号位这种符号扩展产生了如表2.2所示的16位温度读数。

以下的过程可以获得较高的分辩率。

首先,读温度并从读得的值截去0.5位(最低有效位),这个值便是(TEMP_READ ),然后可以读留在计数器内的值。

此值是门开通期停止之后计数剩余,所需的最后一个数值是在该温度处每一摄氏度的计数个数(COUNT_PER_C) ,于是用户可以使用下式计算实际温度:(___)_0.25__COUNT PER C COUNT REMAIN TEMPERATURE TEMP READ COUNT PER C -=--表2.2 温度/数据关系2.4系统硬件设计2.4.1 硬件主要设计电路本系统设计的硬件电路由主控部分(AT89C51)、测温部分(DS18B20)、显示部分(八段数码管)、按键部分(开关按钮)、闹铃部分(蜂鸣器)5个部分组成。

各部分之间相互协作,构成一个统一的有机整体,实现多功能数字时钟的功能。

各部分硬件电路设计如图2.3所示。

流程图如图2.4所示。

设计总电路图及其PCB 图见附录。

ss s s s 1 1 0 11111温度 数字输出(二进制) 安息字输出(十六进制)+125 00000111 11010000 07D0H +85 00000101 00101000 0550H +10.125 00000000 10100010 00A2H +0 00000000 00000000 0000H -0.5 11111111 11111000 FFF8H -25.0625 11111110 01101111 FE6FH -5511111100 10010000FC90H图2.3总体电路设计图图2.4 总体流程图2.4.2 温度测量电路的设计DS18B20是美国DALLAS 公司生产的单线数字温度传感器芯片,具有结构简单、体积小、功耗低、抗干扰能力强、使用简单等优点。

相关文档
最新文档