单片机控制可控硅

合集下载

pic单片机控制双向可控硅调节交流电压的电路设计

pic单片机控制双向可控硅调节交流电压的电路设计

p i c单片机控制双向可控硅调节交流电压的电路设计(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除由于项目需要根据光照传感器采集到的光照强度或上位机的指令调节交流灯泡的亮度。

最好的方式便是调节供电的交流电压。

参考了许多资料,最后决定采用采集交流信号的同步信号,并根据此交流信号输出延时脉冲控制可控硅导通角的方式进行交流调压。

1.交流电压过零点信号提取图1 交流同步信号提取如上图1所示,左侧为两个30K/2W的电阻,这样限制输入电流为:220V/60K=3.67mA,由于该路仅仅是为了提取交流信号,因此小电流输入即可。

整流桥芯片采用小功率(2W)的KBP210,之后接入一个光耦(P521),这样如图1整流后信号电压值超过光耦前段二极管的导通电压时,即产生一次脉冲,光耦右侧为一上拉电路,VCC 为单片机供电电压:+3.3V。

光耦三极管导通时,输出低电平,关闭时输出高电平。

输出同步信号如上图1同步信号。

2.PIC单片机的输入信号及输出脉冲图2 单片机的输入同步信号及输出脉冲如上图2所示,采集到的同步信号进入PIC单片机的一个数值I/O口,作为外部中断的触发信号,每触发一次,单片机进一次中断,然后人为定义一个延时,一定导通角后输出可控硅触发信号,延时时间越长(注意应小于半个周期的时间:10ms),一个周期内的导电时间越短,即输出电压平均值越小,灯泡越暗。

3.双向可控硅驱动电路图3双向可控硅驱动电路如上图3所示,PIC单片机的数字输出口DO,输出触发信号。

此处考虑到单片机引脚的输出电流有限,电路用单片机引脚输出触发三极管,控制电路的通断。

(此处电路可考虑进一步精简,如单片机引脚串联一小电阻:200Ω,直接驱动光耦可控硅)触发信号为高电平时,光耦可控硅MOC3021基极触发已承受压降的集电极和发射极导通,使用一30K/2W的电阻限制双向可控硅TLC336A的基极电流最大为:220V/30K=7.34mA。

采用单片机控制可控硅的调光电路

采用单片机控制可控硅的调光电路

采用单片机控制可控硅的调光电路目前市面上有很多线路简单、价格低廉的调光灯,其调光方式主要有3种:一是利用可控硅改变电压导通角,二是利用变压器调节供电电压,三是利用电位器直接分压。

较理想的方式是通过可控硅调整电压导通角来实现调光。

可控硅调光的调光原理是通过可调电阻改变电容充放电速度,从而改变可控硅的导通角,控制灯泡在交流电源一个正弦周期内的导通时间,即而达到灯光调节的目的。

下面主要采用可控硅实现电灯亮度调节。

使用者通过按键控制电灯开、关,通过按键控制灯光的亮度。

可控硅直接接在220V交流电路上,但是单片机采用低电压供电,因此需要采用一定的隔离措施,将220V强电与5V弱电隔离。

系统使用MOC3051作为强电与弱电的隔离器。

MOC3051系列光电可控硅驱动器是美国摩托罗拉公司推出的器件。

该系列器件的显著特点是大大加强了静态dv/dt能力。

输入与输出采用光电隔离,绝缘电压可达7500V。

该系列有MOC3051及MOC3052,它们的差别只是触发电流不同,MOC3051最触发电流为15mA,MOC3052为l0mA。

MOC3051系列可以用来驱动工作电压为220V的交流双向可控硅。

MOC3051可直接驱动小功率负载,也适用于电磁阀及电磁铁控制、电机驱动、温度控制、固态继电器、交流电源开关等场合。

由于能用TTL电平驱动,它很容易与微处理器接口,进行各种自动控制设备的实时控制。

该调光电路是通过单片机控制双向可控硅的导通角来实现亮度调节的,如下图所示。

整个电路主要包括可控硅控制电路及过零检测电路。

图中MOC3051是摩托罗拉公司生产的光电耦合芯片,用以可靠驱动可控硅并实现强弱电隔离。

单片机P1.6口负责驱动光耦,控制可控硅导通和关断。

在灯泡主回路中,灯与可控硅串联、可控硅导通角的变化会改变灯光亮度。

XS1是外供交流220V电源的接入口。

为了精确控制可控硅的导通角,电路还加入过零检测电路,如图5-9所示。

交流电源从XS2引入并送入两片光耦,注意两光耦的输入端是反相的。

单片机控制的可控硅全波半控桥触发电路

单片机控制的可控硅全波半控桥触发电路

单片机控制的可控硅全波半控桥触发电路敖晓春 韩清涛 胡家华【摘 要】 介绍了用MCS -96系列单片机结合外围器件控制可控硅三相全波半控桥的触发电路,给出了实用的原理框图及应用程序,并详细介绍了各部分电路的特点。

【关键词】 MCS -96系列单片机 可控硅 触发电路 相移 触发点1 前言用模拟电子电路控制的可控硅触发电路体积比较大,调试比较困难,排障也是很困难的。

采用单片微型计算机来控制可控硅的触发,是可控硅应用的发展趋势。

本文介绍用单片机控制可控硅的触发。

2 原理结构图单片机控制可控硅触发电路中,我们选用MCS -96系列单片机中的8098型号。

该型号的单片机为48管脚,本身带有4路10位A/D 转换器,并有采样保持电路,具有高速输入输出电路,是一种准16位单片机。

该型号单片机的缺点是寻址空间不是很大,为64K ,与MCS -51系列单片机相比较是小得多。

但在一般应用场合是完全够用的,加之速度较快,因此在工业控制中得到广泛的应用。

用8098单片机控制的可控触发电路原理框图如图1所示。

在上述框图中,过零检测电路是用来检测交流信号的过零点,以确定可控硅触发角的触发时间。

该电路用集成运放LM311来完成,如图2所示。

LM311的输出端直接接到8098单片机的高速输入端HS1.1。

当交流信号有过零点时,LM311的输出端就会有一个高电平,其图形如图3所示。

图中u 是交流信号, u 是直流信号,其幅值要控制在4.5V 以内,但也不能过低,以防检测不到过零脉冲。

图1 可控硅触发电路原理图图2 过零检测电路框图中给定触发角是由2k 电位器来完成的。

5V 电压经2k 电位器分压送入8098的A/D 转换口ACH3,用来决定可控硅的触发角是多少。

(也就是相移)触发脉冲的发送是由高速输出通道・93・ 黑龙江电子技术 1999年第3期HS0.0,HS0.1,HS0.2三个通道经由一级光耦4N25的隔离,再由一级9013驱动加到可控硅的门极,其驱动电路见图4。

单片机atmege16控制可控硅调光电路与部分程序

单片机atmege16控制可控硅调光电路与部分程序

单片机控制可控硅调光不闪电路单片机控制可控硅调光,是件比较麻烦的事情,开始是没加过零检测,结果不管怎么做pwm 频率多高,都很闪,用了下面这个后就不闪了.在51hei单片机开发板上测试成功。

要调光的话,moc3063是不行的,3063是过零导通的,对交流电源的控制结果只能是对半波,而不能斩波,通常要调光,调压的话用3052,配合交流过零信号硬件,也可用变压器+二极管做过零检测电路.过零信号边沿触发中断,在过零后延时输出控制信号给光藕,使可控硅导通,过零前边沿关闭控制信号,使可控硅自然关断,完成一个半波的斩波控制,调整延时值就可以调节输出电压了,当然,延时值根据电源频率及定时器分频比不同,有相应的取值范围,一般可以用外中断负责过零边沿触发,一个边沿(至于哪个边沿与过零信号硬件结构有关)负责关闭可控硅,一个边沿负责延时计算,并写入定时器,由定时器中断来打开可控硅.'改变INT1中断中的"移相值",即可改变输出电压,这里T2分频比为1024,可根据主频计算出移相值取值范围'程序采用电平触发,脉冲触发可作相应修改'若主频12M,电源50Hz,则移相值计算约为0--117,但实际使用0-105就可以了,太大了会移相到过零位置,使可控硅不能关断'单片机类型atmege16,开发者: email:372xcom1@ 下面是主要的程序'主程序:'略ldi r16,4 'INT1上升,下降沿都中断Out Mcucr,R16ldi r16,128 'INT1中断允许,INT0,INT2中断禁止Out Gicr,R16ldi r16,7Out Tccr2,R16 'T2开始循环计数andi r17,127 '暂时禁止T2比较匹配中断(T2比较匹配中断在中断程序中启闭) Out Timsk,R17sei'-------------------------中断服务程序------------------------------------------Int_comp2: '移相中断push r17in r17,sregpush r17cbi porta,5 '触发信号输出in r17,timskandi r17,127 '禁止T2比较匹配中断out timsk,r17pop r17out sreg,r17pop r17retiInt1_isr: '电源同步中断push r17in r17,sregpush r17sbis pind,3 'int1引脚(电源同步)状态=1则跳行,上升沿中断rjmp falling'上升沿中断sbi portA,5 '关触发rjmp isr_overFalling:'下降沿中断ldi r17,0Out Tcnt2,R17 'T2清零lds r17,移相值Out Ocr2,R17'清中断标志,确保中断正确执行in r17,tifrori r17,128 '清T2匹配标志Out Tifr,R17in r17,timskori r17,128Out Timsk,R17 '允许T2比较匹配中断Isr_over:pop r17pop r17Reti上面的是的是A VR的汇编程序,51的也可以实现的,就是用定时器的溢出中断啦,溢出值-移相值=初始值触发可控硅用脉冲方式,计算好触发脉冲宽度对应的计数初值同步信号输入--下沿中断写计数初值,开始计数--计数器溢出中断,判标志=0,打开可控硅,写触发脉冲初值,写标志=1---再次溢出中断,判标志=1,关可控硅,清零标志--------再次同步中断超低成本的可控硅开关控制器概述传统的机械恒温器主要用于厨具等开关器具,控制温度的开关调节,存在调节精度不高、低温调节不精确、出厂校准、容易损坏零部件等缺陷,本文利用PIC10F204微控制器,结合可控硅开关器件设计的基于微控制器的恒温器,可广泛应用台灯、吸尘器等家用器具,具有超低成本、操作简单、灵敏度高、自动断电等功能。

单片机控制可控硅

单片机控制可控硅

单片机控制可控硅单片机(Microcontroller)是一种集成了处理器、存储器和各种输入输出接口功能于一体的微型电子电路芯片。

它通过编程,可以实现对其他外部器件的控制。

而可控硅(Silicon-controlled rectifier,简称SCR)是一种电子元件,主要用于电能控制和电能变换。

单片机控制可控硅是一种常见且实用的控制技术。

在控制可控硅时,单片机可以根据需要控制可控硅的导通和断开状态,从而实现对电路中电能的控制和变换。

下面将详细介绍单片机控制可控硅的原理、应用以及优势。

一、单片机控制可控硅的原理单片机控制可控硅的原理是利用单片机的GPIO(General Purpose Input/Output)口来控制可控硅的门控信号。

当单片机的GPIO口输出高电平时,可控硅接收到高电平信号,从而导通;当GPIO口输出低电平时,可控硅接收到低电平信号,从而断开。

具体来说,单片机通过编程设置GPIO口的电平状态,可以控制可控硅的导通和断开时间。

通过控制导通和断开时间的比例,可以控制电路中电能的传输和变换。

二、单片机控制可控硅的应用1. 交流电调光控制在交流电调光控制中,可控硅被用来控制灯光的亮度。

通过单片机控制可控硅的导通时间比例,可以实现灯光的亮度调节。

这种应用常见于家庭、办公室及商业场所的照明系统。

2. 交流电机速度控制可控硅还可以用于交流电机的速度控制。

通过调节可控硅的导通时间比例,可以改变电机的驱动电压,从而实现电机的速度调节。

这在工业自动化、机械控制中得到广泛应用。

3. 直流电源调节单片机控制可控硅还可以用于直流电源的调节。

通过控制可控硅的导通时间,可以实现对直流电源输出电压的精确调节。

这在电子设备、通信设备等领域中非常常见。

三、单片机控制可控硅的优势1. 灵活性强单片机控制可控硅可以灵活调节其导通时间比例,从而实现对电路中电能的精确控制。

通过编程,可以方便地调整控制策略,满足不同需求。

单片机控制的可控硅三相全控桥整流触发电路

单片机控制的可控硅三相全控桥整流触发电路

单片机控制的可控硅三相全控桥整流触发电路64单片机控制的可控硅三相全控桥整流触发电路■武汉大学彭家银李晓明■武汉电力设备厂苗宏志摘要关键词研究以MCS-96系列80C196KB单片机为基础,结合外围器件来实现对可控硅三相全控桥的触发控制。

采用锁相环技术及过零触发的方法,实现触发脉冲与电源信号(线电压)的同步,提高了触发器的抗干扰能力,改善了三相触发脉冲的对称性。

由软件控制可产生不同顺序的6组触发脉冲。

单片机可控硅锁相环过零触发引言电力电子变流主要由电力电子器件、电力变流电路和控制电路组成。

电力电子变流技术在工业化国家中有着广泛的应用,大至兆瓦级高压直流输电,小至家用电器节能灯,无不渗透着这种技术。

在这些电力电子设备中,相控整流占有相当大的比重。

国产的这类设备大多仍停留在中小规模集成电路的水平,触发精度差、故障率高。

一些升级换代的计算机控制产品,靠计算机本身晶振构成的时钟决定触发角,由于机内时钟不可能与工频电源同步,故当工频电源频率有偏差时,必然要产生触发误差,虽然该项误差对触发精度影响不大,但其属于原理性误差,理应设法消除;而用模拟电子电路控制的可控硅触发电路,体积比较大,调试比较困难,排障也是很困难的。

采用单片机来控制可控硅的触发,是可控硅应用的发展趋势。

本文设计用MCS-96系列80C196KB 单片机结合外围器件来控制可控硅的触发。

同时,还将锁相环技术及过零触发的方法引入触发脉冲的生成中,提高了触发脉冲的稳定性以及对称性。

此外,还可采用软件编程得到触发角可调的触发脉冲。

1系统的组成及工作原理系统原理结构如图1所示。

主回路是典型的三相全控桥整流电路后接负载。

控制电路由80C196KB 单片机及其外围电路组成。

单片机的外部输入信号为与电源工频信号同步的V 3→HSI.0(来自电源的工频信号先经变压器变压、锁相环锁相后再次形成50 Hz 工频信号,然后送入基准点脉冲形成电路,进行过零比较、整形输出,送入HSI.0),输出的控制信号为HSO.0口在软件定时控制下产生与电源同步的可移相的脉冲信号。

基于89C2051单片机控制的可控硅调速电路设计

基于89C2051单片机控制的可控硅调速电路设计

基于89C2051单片机控制的可控硅调速电路设计本文主要介绍一种基于89C2051单片机控制的可控硅调速电路设计。

一、可控硅调速电路的基本原理可控硅调速电路是利用可控硅在导通状态时的阻值很小的特性,通过控制相位来控制电路中的电流大小,从而实现电机的调速。

其电路结构简单,成本低廉,广泛应用于工业控制中。

二、89C2051单片机的介绍89C2051单片机是一种高性能、低功耗的8位单片机,具有片内Flash存储器、片内RAM、定时/计数器、串行通信口等多种功能。

其特点是:易学易用,具有较高的可编程性和可扩展性。

三、可控硅调速电路设计步骤1.设计原理图可控硅调速电路的原理图分为两部分,分别是控制单元和功率单元。

其中,控制单元采用89C2051单片机,通过调节单片机端口的高低电平,控制可控硅的触发,从而控制电路中的电流大小。

功率单元包括变压器、可控硅和电机,其中变压器将交流电压转换成适合电机工作的交流低压,可控硅则控制交流电压的大小,从而实现电机的调速。

2.电路元件选型电路中各元件的选型需要根据具体的需求进行选择。

变压器需要选择符合电机工作电压和功率的产品;可控硅则需要根据具体的负载电流进行选择;电机也需要根据工作条件和负载要求进行选择。

3.编写程序编写程序需要根据具体的需求进行设计。

首先需要进行可控硅触发角度的计算,确定电路中可控硅的触发时机。

然后通过编写程序,控制单片机端口的高低电平,实现对可控硅的触发控制,从而控制电路中的电流大小,实现电机的调速。

四、可控硅调速电路设计注意事项1.元件选型时需要注意每个元件的参数和相互匹配的要求,以确保电路的稳定性和可靠性。

2.编写程序时需要注意程序的正确性和有效性,以确保控制的准确性和效率。

3.在搭建电路时需要注意电路的安全性和可靠性,以避免电路故障和安全事故的发生。

以上就是基于89C2051单片机控制的可控硅调速电路设计的相关介绍。

通过合理的电路设计和程序编写,可以实现电机的调速,并在工业生产和控制中得到广泛应用。

单片机控制双向可控硅导通角的计算公式

单片机控制双向可控硅导通角的计算公式

单片机控制双向可控硅导通角的计算公式一、概述1. 单片机控制在现代电子设备中广泛应用,其中双向可控硅是一种重要的半导体器件。

2. 本文旨在探讨单片机控制双向可控硅导通角的计算公式,帮助读者更好地理解和应用相关知识。

二、双向可控硅简介1. 双向可控硅是一种三端触发型器件,可同时控制正向和反向的导通。

2. 双向可控硅的导通角是指整个交流周期内双向可控硅的导通时间。

三、单片机控制双向可控硅的原理1. 单片机通过输出脉冲控制双向可控硅的导通。

2. 利用单片机的定时器模块生成高精度的脉冲信号,来控制双向可控硅的导通角度。

四、双向可控硅导通角的计算公式1. 双向可控硅导通角的计算公式为:α = (UD / Uπ) * 180°其中,α为双向可控硅的导通角;UD为双向可控硅的导通电压;Uπ为双向可控硅的触发电压。

2. 通过该公式,可以根据双向可控硅的导通电压和触发电压,计算得到双向可控硅的导通角度。

五、实例分析1. 以某型号双向可控硅为例,其导通电压UD为0.7V,触发电压Uπ为0.5V。

2. 代入计算公式,可得该双向可控硅的导通角α为:α = (0.7 / 0.5) * 180° = 252°该双向可控硅的导通角为252°。

六、结论1. 本文通过探讨单片机控制双向可控硅导通角的计算公式,帮助读者更好地理解了相关知识。

2. 通过计算公式,可以方便地计算得到双向可控硅的导通角度,为单片机控制相关电路的设计和工程应用提供了参考。

七、参考资料1. 《电子器件手册》2. 《单片机应用技术》以上便是本文的全部内容,希望对读者有所帮助。

八、实际应用场景1. 双向可控硅作为电力电子器件,在工业控制系统中有着广泛的应用,例如交流调压调速系统、电力变流器、热功率控制系统等。

2. 在这些应用场景中,单片机控制双向可控硅的导通角度具有重要意义,通过合理地控制导通角度,可以实现精确的电能调节和电气控制。

单片机控制可控硅

单片机控制可控硅

单片机控制可控硅 This model paper was revised by LINDA on December 15, 2012.1 调光控制器设计在日常生活中,我们常常需要对灯光的亮度进行调节。

本调光控制器通过单片机控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。

双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。

所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。

调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。

这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。

1.1 硬件部分本调光控制器的框图如下:查看原图(大图)控制部分:为了便于灵活设计,选择可多次写入的可编程器件,这里选用的是ATMEL 的AT89C51单片机。

驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。

继电器由于是机械动作,响应速度慢,不能满足其需要。

可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。

所以这里选用的是可控硅。

负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。

1.2 软件部分要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。

当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。

延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。

由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。

单片机控制可控硅加热

单片机控制可控硅加热

单片机控制可控硅加热单片机控制可控硅加热随着科技的飞速发展,现代工业生产越来越依赖于控制技术的应用。

而在控制技术中,单片机技术被广泛应用于许多领域,包括工业自动化、机器人技术、交通运输等。

其中,单片机控制可控硅加热在工业制造和生产中发挥了重要的作用。

何为可控硅?可控硅是一种半导体器件,具有很好的电控特性。

可控硅的特点是只有在阳极电压正向电压达到开关电压时,才能导通电流。

在感性和电容性负载下,可控硅的瞬时开关速度较快,可以比其他电器开关更精准的控制电力调节。

单片机控制可控硅加热的意义可控硅的特性可以通过单片机技术完全控制。

单片机的优点是可编程性强,对工业现场强电控制灵活,可全程监视控制电路状态,适合构建精密的控制系统。

单片机控制可控硅加热可以降低能源消耗和生产环境的恶化,也可以提高产品质量和生产效率。

单片机控制可控硅加热的实现方法单片机控制可控硅加热的主要步骤如下:1.设计并搭建硬件电路在单片机和可控硅之间需要深入严谨的配合,需要设计电路板,选购电子器件,焊接和组装。

可以采用现成的集成电路板,如针对可控硅的驱动电路板,也可以自行设计电路板,其中包括掌握器、电力器和驱动电路等。

2.软件编程通过廉价的开发板进行实验和编程,控制可控硅开关通断的时间,从而达到控制电器的芈展示。

3.实际应用在电磁脉冲防护、数字控制机床、电气化模块和化工炉炉控制等众多行业中,单片机控制可控硅加热被广泛应用。

在数字控制机床中,采用单片机控制可控硅加热,做到工件加热温度的快速准确控制,最终保证工件质量和加工精度。

在化工炉中,采用单片机控制可控硅加热,做到炉温恒定、升降温速度阀控,也可以远程控制;而在矽碳炉中,则采用可控硅PN结管控制,做到炉温精确控制。

总结单片机控制可控硅加热是一种高效且环保的电力调节方式,具有精密控制、大电量控制范围、全电路保护等优点,可以用于各个领域的电器控制中。

通过单片机控制可控硅加热的应用,可以提高工业生产效率和产品质量,降低能源消耗和对环境的污染。

单片机控制可控硅电路

单片机控制可控硅电路

单片机控制可控硅电路单片机控制可控硅电路摘要:以单片机为核心的控制可控硅触发电路,充分利用了TLC2272双运算放大器的优势,以最少的硬件电路实现同步检测的功能,不仅可准确的提供同步信号,而且提供了相当好的AC性能。

关键词:单片机TLC2272 同步脉冲触发电路Abstract:Thyristor’ trigger circuit with computer which make full of the advantage of TLC2272 operational amplifier to realize the Synchronous Pulse characteristics with the least hardware.The test circuit can offer the excitate phase-control and comparable performance.Key words:computer TLC2272 Synchronous Pulse trigger circuit可控硅最重要的特性是正向导通,当阳极加上正向电压后,还必须在门极与阴极之间加上足够功率的正向控制电压,即触发电压,元件才能从阻断转化为导通。

正确供给各触发电路特定相位的同步信号电压才能是触发电路在可控硅需要触发脉冲的时刻输出脉冲。

一、TLC2272简介TLC2272是德州仪器公司生产的满电源输出幅度双运算放大器,器件提供相当好的AC性能,具有较现存CMOS运放更好的噪声,输入失调电压和功耗性能。

电气特性(极限性能)电源电压VDD+ 8V电源电压VDD--8V差分输入电压VID 16V输入电压VI8V引脚排列如图1二、同步控制电路要使可控硅导通,需要控制可控硅导通角,而导通角的控制需要交流电,以过零点为基准,过零同步检测电路如图2所示,市电经电源变压器220V/15V输出正弦波,信号通过二极管D10,经电阻R9送到限幅二极管D12,利用运放。

过零检测单片机控制可控硅电路

过零检测单片机控制可控硅电路

过零检测单片机控制可控硅电路
过零检测单片机控制可控硅电路是一种常见的电力电子技术,主要用于实现对交流电的精确控制。

这种电路的主要组成部分包括过零检测电路、单片机和可控硅模块。

首先,过零检测电路的作用是检测交流电的过零点。

当交流电从正半周期转为负半周期或从负半周期转为正半周期时,会经过一个零点,此时电压为零。

过零检测电路就是利用这个特性,通过检测电压的变化来判断过零点的位置。

然后,单片机是整个电路的控制中心。

它根据过零检测电路的信号,计算出合适的触发时刻,然后输出相应的脉冲信号来控制可控硅的导通和关断。

单片机通常使用PWM(脉宽调制)技术来实现对可控硅的精确控制。

通过改变脉冲的宽度,可以改变可控硅的导通时间,从而改变交流电的有效值。

最后,可控硅模块是电路的执行部分。

它接收到单片机的脉冲信号后,会在适当的时刻导通,使电流流过负载。

可控硅的特点是可以在很小的电流下就能导通,而且导通后的电压降很小,因此非常适合用于电力电子设备。

总的来说,过零检测单片机控制可控硅电路是一种非常实用的电
力电子技术,它可以实现对交流电的精确控制,广泛应用于各种电力电子设备中,如调光器、变频器、电机控制器等。

stc单片机的可控硅调压调光程序

stc单片机的可控硅调压调光程序

STC单片机是一种常用的嵌入式微控制器,具有性能稳定、扩展性强等特点。

在实际的控制系统中,可控硅是一种重要的电器元件,常用于调光、调压等场合。

本文将介绍如何利用STC单片机编写可控硅调压调光程序,以实现对灯光亮度和电压的精确控制。

一、可控硅调压调光原理1. 可控硅是一种电子开关器件,其导通角和关断角可通过控制电压来调整。

通过改变可控硅的导通角和关断角,可以实现对交流电压的调节,进而实现调压和调光的功能。

2. 在调光方面,通过控制可控硅的导通角和关断角,可以实现对灯光亮度的精确调节。

通过改变可控硅的触发脉冲宽度和频率,可以实现不同亮度的调光效果。

二、STC单片机的应用1. STC单片机具有丰富的外设接口和强大的计算能力,适用于各种控制系统的设计。

2. 在可控硅调压调光程序中,STC单片机可以通过定时器模块产生精确的触发脉冲,控制可控硅的导通角和关断角,实现对电压和灯光亮度的精确调节。

三、STC单片机控制可控硅的实现1. 程序框图设计:在STC单片机的开发环境中,设计可控硅调压调光的程序框图,包括定时器模块的初始化、脉冲宽度的调节、脉冲频率的调节等内容。

2. 代码编写:根据程序框图,编写STC单片机的控制程序,包括定时器模块的设置、中断服务程序的编写等内容。

3. 调试测试:将编写好的程序下载到STC单片机中,并通过实验评台连接可控硅和灯泡,进行调试测试,验证程序的正确性和稳定性。

四、可控硅调压调光程序的优化1. 采用PWM调光方案:利用STC单片机的PWM输出功能,可以实现对可控硅触发脉冲的精确控制,提高调光的稳定性和精度。

2. 优化触发脉冲生成算法:通过优化触发脉冲的生成算法,可以减小程序的运行时间,提高系统的响应速度。

3. 加入过压、过流保护:在程序中加入过压、过流保护机制,保护可控硅和灯泡免受损坏。

五、总结本文介绍了利用STC单片机编写可控硅调压调光程序的原理、应用和实现方法,以及程序的优化方案。

单片机控制可控硅调光不闪电路+程序

单片机控制可控硅调光不闪电路+程序

单片机控制可控硅调光不闪电路+程序单片机控制可控硅调光,是件比较麻烦的事情,开始是没加过零检测,结果不管怎么做pwm 频率多高,都很闪,用了下面这个后就不闪了.在51hei 单片机开发板上测试成功。

要调光的话,moc3063 是不行的,3063 是过零导通的,对交流电源的控制结果只能是对半波,而不能斩波,通常要调光,调压的话用3052,配合交流过零信号硬件,也可用变压器+二极管做过零检测电路.过零信号边沿触发中断,在过零后延时输出控制信号给光藕,使可控硅导通,过零前边沿关闭控制信号,使可控硅自然关断,完成一个半波的斩波控制,调整延时值就可以调节输出电压了,当然,延时值根据电源频率及定时器分频比不同,有相应的取值范围,一般可以用外中断负责过零边沿触发,一个边沿(至于哪个边沿与过零信号硬件结构有关)负责关闭可控硅,一个边沿负责延时计算,并写入定时器,由定时器中断来打开可控硅.单片机驱动可控硅调光电路’改变INT1 中断中的”移相值”,即可改变输出电压,这里T2 分频比为1024,可根据主频计算出移相值取值范围‘程序采用电平触发,脉冲触发可作相应修改‘若主频12M,电源50Hz,则移相值计算约为0--117,但实际使用0-105 就可以了,太大了会移相到过零位置,使可控硅不能关断‘单片机类型atmege16,开发者:51heiemail:372xcom1@21cn 下面是主要的程序’主程序: ‘略ldir16,4’INT1上升,下降沿都中断OutMcucr,R16 ldir16,128’INT1中断允许, INT0,INT2 中断禁止OutGicr,R16 ldir16,7 OutTccr2,R16’T2开始循环计数inr17,timsk andir17,127’暂时禁止T2 比较匹配中断(T2 比较匹配中断在中断程序中启闭) OutTimsk,R17 sei ‘-------------------------中断服务程序------------------------- ----------------- Int_comp2:’移相中断pushr17 inr17,sreg pushr17 cbiporta,5’触发信号输出inr17,timsk andir17,127’禁止T2 比较匹配中断outtimsk,r17 popr17。

单片机控制可控硅

单片机控制可控硅

1 调光控制器设计在日常生活中,我们常常需要对灯光得亮度进行调节。

本调光控制器通过单片机控制双向可控硅得导通来实现白炽灯(纯阻负载)亮度得调整。

双向可控硅得特点就是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。

所以需要在交流电得每个半波期间都要送出触发信号,触发信号得送出时间就决定了灯泡得亮度。

调光得实现方式就就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通得时间越短,灯得亮度就越低;反之,灯就越亮。

这就要求要提取出交流电压得过零点,并以此为基础,确定触发信号得送出时间,达到调光得目得。

1.1 硬件部分本调光控制器得框图如下:查瞧原图(大图)控制部分:为了便于灵活设计,选择可多次写入得可编程器件,这里选用得就是ATMEL得AT89C51单片机。

驱动部分:由于要驱动得就是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。

继电器由于就是机械动作,响应速度慢,不能满足其需要。

可控硅在电路中能够实现交流电得无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。

所以这里选用得就是可控硅。

负载部分:本电路只能控制白炽灯(纯阻负载)得亮度。

1.2 软件部分要控制得对象就是50Hz得正弦交流电,通过光耦取出其过零点得信号(同步信号),将这个信号送至单片机得外中断,单片机每接收到这个同步信号后启动一个延时程序,延时得具体时间由按键来改变。

当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。

延时越长,亮得时间就越短,灯得亮度越暗(并不会有闪烁得感觉,因为重复得频率为100Hz,且人得视觉有暂留效应)。

由于延时得长短就是由按键决定得,所以实际上就就是按键控制了光得强弱。

理论上讲,延时时间应该可以就是0~10ms内得任意值。

在程序中,将一个周期均分成N等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身得限制与基于实际必要性得考虑,只需要分成大约100份左右即可,实际采用得值就是95。

单片机控制可控硅

单片机控制可控硅

1 调光控制器设计在日常生活中,我们常常需要对灯光的亮度进行调节。

本调光控制器通过单片机控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。

双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。

所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。

调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。

这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。

1 .1 硬件部分本调光控制器的框图如下:查看原图(大图)控制部分:为了便于灵活设计,选择可多次写入的可编程器件,这里选用的是ATMEL 的AT89C51 单片机。

驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。

继电器由于是机械动作,响应速度慢,不能满足其需要。

可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。

所以这里选用的是可控硅。

负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。

1 .2 软件部分要控制的对象是50Hz 的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。

当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。

延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。

由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。

理论上讲,延时时间应该可以是0 ~10ms 内的任意值。

在程序中,将一个周期均分成N 等份,每次按键只需要去改变其等份数,在这里,N 越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。

单片机控制可控硅加热

单片机控制可控硅加热

单片机控制可控硅加热摘要:随着计算机的发展和普及,单片机以他体积小,性能稳定,性价比高,操作简单等优点得到快速的发展。

本文主要介绍利用单片机通过双向可控硅控制一个周波内的导通角来控制单位周波的导通时间,从而控制负载的功率。

本试验负载为一个灯泡,通过实验证明了通过控制导通角的大小可以改变灯泡的亮度,本论文验证了实验的可行性。

因此,利用单片机编程可控制负载在单位周波内的导通时间,达到控制温度的目的。

关键词:单片机;设计;可控硅中图分类号:s611 文献标识码:a 文章编号:一、电路主要设计思路本试验的各个主要环节如下图:本试验主要论证的是控制器和执行机构之间的部分。

即使用8031单片机对双向可控硅进行控制,改变其一个周波内的导通角,从而控制单位周波的导通时间,最后使得控制负载的功率发生改变。

为了更加直观的说明问题,本试验使用一个灯泡作为其负载,通过实验证明了通过控制导通角的大小可以改变灯泡的亮度。

程序要使用汇编语言在计算机上用编译器进行编程,然后用wave仿真器对程序进行测试,最后编程器将由计算机串口输出程序代码转换成八位的并行数据通过单片机的编程口下载到单片机的内存中。

实验时把单片机放入设计好的电路当中。

单片机就可以按照提前编好的程序工作。

二、硬件设计2.2.1 mcs-51系列单片机简介mcs-51单片机是由美国inte公司于1980年推出的产品,一直到现在,mcs-51系列或其兼容的单片机仍然是应用的主流产品。

mcs-51系列单片机主要包括8031,8051和8751等产品。

mcs-51单片机主要有cpu和存储器构成,其中cpu由运算器和控制器组成:8051单片机的内部总体结构其基本特性如下:8位cpu、片内振荡器4k字节rom、128字节ram21个特殊功能寄存器32根i/o线可寻址的64k字节外部数据、程序存贮空2个16位定时器、计数器中断结构:具有二个优先级、五个中断源一个全双口串行口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机控制可控硅 This manuscript was revised on November 28, 2020
1 调光控制器设计
在日常生活中,我们常常需要对灯光的亮度进行调节。

本调光控制器通过控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。

双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。

所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。

调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。

这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。

1.1 硬件部分
本调光控制器的框图如下:
控制部分:为了便于灵活设计,选择可多次写入的可器件,这里选用的是ATMEL的AT89C51单片机。

驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。

继电器由于是机械动作,响应速度慢,不能满足其需
要。

可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。

所以这里选用的是可控硅。

负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。

1.2 部分
要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。

当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。

延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。

由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。

理论上讲,延时时间应该可以是0~10ms内的任意值。

在程序中,将一个周期均分成N等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。

可控硅的触发脉冲宽度要根据具体的光耦结合示波器观察而定,在本设计中取20 μs。

程序中使用T1来控制这个时间。

对两个调光按键的处理有两种方式:一种是每次按键,无论时间的长短,都只调整一个台阶(亮或暗);另一种是随按键时间的不同,调整方法
不同:短按只调整一个台阶,长按可以连续调整。

如前面所述,由于本设计中的台阶数为95(N=95),如果使用前一种方式,操作太麻烦,所以用后者较为合理。

2 各单元电路及说明
2.1 交流电压过零点信号提取
交流电压过零点信号提取电路如图2所示,图中的同步信号就是我们需要的交流电压过零点信号。

各部分波形如图3所示。

图中整流后波形中的水平虚线表示光藕P52l输入二极管的门限电压。

P521是TLP521的简称,下图是其引脚图。

引脚图中器件名的后缀“-1”表示包含一组光藕。

2. 2 主控单元
主控单元以AT89C51单片机为核心,交流电压过零点信号提取电路中产生的同步信号SYN接到AT89C5l的INT0,此信号的下降沿将使AT89-C51产生中断,以此为延时时间的起点。

三个按键只用于控制一路灯:一个为开关,另外两个分别为提高亮度和降低亮度。

74HC573用于输出控制可控硅的导通的触发信号。

220V交流主导通区间、同步信号和触发信号的时序关系如图6所示。

图中的阴影部分表示可控硅的导通区间,它的大小决定了灯的亮度。

改变延时时间可改变触发信号和同步信号的相位关系,也改变了可控硅的导通区间的大小,达到调光的目的。

2.3 驱动单元
图中,L1_D是单片机输出的触发信号,该信号通过光控可控硅
MOC3022去驱动可控硅T435。

受控的白炽灯接在Ll和零线(图中未画出)之间。

MOC3022是DIP-6封装的光控可控硅。

其1、2脚分别为二极管的正、负极:4、6脚为输出回路的两端;3、5脚不用连接。

如图8所示。

T435-400是可控硅,“4”表示主回路电流是4A;“35”表示触发端的最大电流是35mA,一般该端有最大电流的5%就可保证可靠地触发。

T435-400外型图如图9所示。

3 程序流程图
4 结束语
本控制器使用了三个开关控制一路灯,主要是为了在教学过程中降低难度。

也可改为一个开关控制一路灯,比如短按为开、关,第一次长按为降低亮度,连续的第二次长按为提高亮度等。

电路不用改动,只需修改程序即可。

学生通过制作该调光控制器,可以掌握单片机、光藕和可控硅等方面的知识和使用技能,特别是后两者,学生较少接触。

由于该调光控制器调光的效果比较好,对提高学生的学习兴趣有很大帮助,教学效果良好。

相关文档
最新文档