2020年广东省广州市中考数学试题及答案
2020年广东省广州市中考数学试卷(含解析)打印版

2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105 B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形B.该圆锥的主视图是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于°.12.(3分)化简:﹣=.13.(3分)方程=的解是.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm 时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).2020年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:15233000=1.5233×107,故选:C.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【分析】根据条形统计图得出即可.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【分析】根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C=68°.【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形B.该圆锥的主视图是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【分析】圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【分析】根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cos A=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【分析】利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF 的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.【分析】根据补角的概念求解可得.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.(3分)化简:﹣=.【分析】此题先把二次根式化简,再进行合并即可求出答案.【解答】解:﹣=2=.故填:.13.(3分)方程=的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为(4,3).【分析】根据平移的性质得出四边形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为16.【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【分析】构建二次函数,利用二次函数的性质即可解决问题.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x =﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x =﹣=时,w有最小值.故答案为10.0,.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.【分析】根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.【解答】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.【分析】运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.【解答】解:在△ABC与△ADC 中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.(10分)已知反比例函数y =的图象分别位于第二、第四象限,化简:﹣+.【分析】由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.【解答】解:∵反比例函数y =的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k +4+=k+4+|k﹣1|=k+4﹣k+1=5.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社676873757678808283848585909295区乙社666972747578808185858889919698区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【分析】(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y =(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【分析】(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.【解答】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.【分析】(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.【分析】(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC =60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).【分析】(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E坐标,可求DE解析式,可得c=9a,由二次函数的性质可求解.【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.。
广东省广州市2020年中考数学试题(解析版)

2020 年广州市初中毕业生学业考试数学第一部分选择题(共30 分)一、选择题(本大题共10 小题,每小题3分,满分30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A. 152.33 105B. 15.233 106C. 1.5233 107D. 0.15233 108【答案】C【解析】【分析】根据科学记数法的表示方法表示即可.【详解】15233000=1.5233 107, 故选C.【点睛】本题考查科学记数法的表示,关键在于熟练掌握科学记数法的表示方法.2. 某校饭堂随机抽取了100 名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A. 套餐一B. 套餐二C. 套餐三D. 套餐四【答案】A【解析】分析】通过条形统计图可以看出套餐一出现了50 人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50 人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选: A .【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中 得到必要的信息是解决问题的关键.3. 下列运算正确的是( )解析】分析】 根据二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则依次判断即可得到 答案.【详解】 A 、 a 与 b 不是同类二次根式,不能进行加法运算,故该选项错误;B 、 2 a 3 a 6a ,故该选项错误;C 、 x 5 x 6 x 11 ,故该选项错误;D 、 x 2 5 x 10 ,故该选项正确,故选: D.【点睛】此题考查计算能力,正确掌握二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂 的乘方运算法则是解题的关键 .4. ABC 中,点 D,E 分别是 ABC 的边 AB , AC 的中点,连接 DE ,若 C 68 ,则∠AED ( ) A. 22 B.68 C. 96 D. 112【答案】 B 【解析】 【分析】根据点 D,E 分别是 ABC 的边 AB , AC 的中点,得到 DE 是 ABC 的中位线,根据中位线的性质解答 【详解】如图,∵点 D,E 分别是 ABC 的边 AB , AC 的中点, ∴DE 是 ABC 的中位线, ∴DE ∥BC , ∴ ∠AED C 68 ,故选: B.A. a b a b5 6 30C.x x x【答案】 D B. 2 a 3 a 6 aD. x 2 5 x 10【点睛】此题考查三角形中位线的判定及性质,平行线的性质,熟记三角形的中位线的判定定理是解题的关键.5. 如图所示的圆锥,下列说法正确的是()A. 该圆锥的主视图是轴对称图形B. 该圆锥的主视图是中心对称图形C. 该圆锥的主视图既是轴对称图形,又是中心对称图形D. 该圆锥的主视图既不是轴对称图形,又不是中心对称图形【答案】A【解析】【分析】首先判断出圆锥的主视图,再根据主视图的形状判断是轴对称图形,还是中心对称图形,从而可得答案.【详解】解:圆锥的主视图是一个等腰三角形,所以该圆锥的主视图是轴对称图形,不是中心对称图形,故 A 正确,该圆锥的主视图是中心对称图形,故 B 错误,该圆锥的主视图既是轴对称图形,又是中心对称图形,故 C 错误,该圆锥的主视图既不是轴对称图形,又不是中心对称图形,故 D 错误,故选 A .点睛】本题考查的简单几何体的三视图,同时考查了轴对称图形与中心对称图形的识别,掌握以上知识是解题的关键.6.一次函数 y 3x 1的图象过点 x 1,y 1 , x 1 1,y 2 , x 1 2,y 3 ,则( )答案】 B 解析】 分析】根据一次函数的图象分析增减性即可.故选 B .解析】 分析】详解】解:∵ Rt ABC 中, C 90 , cosA 4, 5∴cosA= AC 4AB 5∵ AB 5 , ∴AC=4 ∴BC= BC 2 AC 2 3当 r 3时, B 与 AC 的位置关系是:相切A. y 1 y 2 y 3B. y 3 y 2y1C. y 2 y 1 y 3D. y 3 y 1 y 2详解】因为一次函数的一次项系数小于 0,所以 y 随 x 增减而减小.点睛】本题考查一次函数图象的增减性 ,关键在于分析一次项系数与零的关系.90 , AB45, cosA 54,以点 B 为圆心, r 为半径作 B ,当 r 3 时,相切 C. 相交 D. 无法确定根据 Rt ABC 中,径 r 的大小,即可得出 4,求出 AC 的值,再根据勾股定理求出 BC 的值,比较 BC 与半5B 与 AC 的位置关系. 90 , cosA B. 答案】 B7.如图, Rt ABC 中,故选: B【点睛】本题考查了由三角函数解直角三角形,勾股定理以及直线和圆的位置关系等知识,利用勾股定理 解求出BC 是解题的关键.8. 往直径为 52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽度为( )A. 8cmB. 10cmC. 16cm 【答案】 C 解析】分析】 过点 O 作OD ⊥AB 于 D ,交⊙O 于 E ,连接 OA ,根据垂径定理即可求得 AD 的长,又由⊙ O 的直径为 52cm , 求得 OA 的长,然后根据勾股定理,即可求得 OD 的长,进而求得油的最大深度 DE 的长. 【详解】解:过点 O 作 OD ⊥AB 于D ,交⊙O 于 E ,连接 OA ,11由垂径定理得: AD AB 48 24cm ,22∵⊙ O 的直径为 52cm ,∴ OA OE 26cm ,在 Rt AOD 中,由勾股定理得: OD OA 2AD 2= 262242=10cm ,∴ DE OE OD 26 10 16cm , ∴油的最大深度为 16cm , 故选: C .AB 48cm ,则水的最大深D. 20cm5【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三 角形,利用勾股定理解决.9.直线 y x a 不经过第二象限,则关于 x 的方程 ax 2 2x 1 0 实数解的个数是( ). A. 0 个B. 1个C. 2个D. 1 个或 2个【答案】 D 【解析】 【分析】根据直线 y x a 不经过第二象限,得到 a 0 ,再分两种情况判断方程的解的情况 . 【详解】∵直线 y x a 不经过第二象限, ∴ a 0,∵方程 ax 2 2x 1 0 ,当 a=0 时,方程为一元一次方程,故有一个解, 当 a<0 时,方程为一元二次方程,∵?=b 24ac 4 4a ,∴4-4a>0 ,∴方程有两个不相等的实数根, 故选: D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易 错点是 a 的取值范围,再分类讨论 .10.如图,矩形 ABCD 的对角线 AC , BD 交于点 O ,AB 6,BC 8,过点 O 作OE AC ,交 AD 于点 E ,过点 E 作 EF BD ,垂足为 F ,则 OE EF 的值为( )答案】 C 解析】48 5B. 32C. 24D.12 5A.分析】根据勾股定理求出 AC=BD=10 ,由矩形的性质得出 AO=5 ,证明 AOE ADC 得到 OE 的长,再证明 DEF DBA 可得到 EF 的长,从而可得到结论.AOE ADC ,又 CAD DAC ,AOE ADC ,点睛】本题主要考查了矩形的性质和相似三角形的判定与性质,熟练掌握判定与性质是解答此题的关键.AO AE EO ,AD AC CD,5 AE EO 8 10 625 15 AEOE ,4,47DE4,同理可证, DEF DBA ,DE EFBDBA74 FF ,10 621EF20,15 21 24OE EFAC BD , ABCBCDADCAB 6, BC 8AD BC 8 ,DC AB 6ACAB 2BC 210,BD10,OA 1 AC 25,OE AC ,BAD 90【详解】∵四边形 ABCD 是矩形,AOE 90第二部分非选择题(共120 分)、填空题(本大题共 6 小题,每小题3分,满分18分.)11. 已知A 100 ,则A的补角等于____________ .【答案】80【解析】【分析】根据补角的概念计算即可.【详解】∠ A 的补角=180°-100°=80°,故答案为:80.【点睛】本题考查补角的概念,关键在于牢记基础知识.12. 计算:20 5 _______________ .【答案】5【解析】【分析】先化简二次根式,再进行合并即可求出答案.【详解】20 5 2 5 5 5 ,故答案为:5 .【点睛】本题考查了二次根式的加减,关键是二次根式的化简,再进行合并.13. 方程x33的解是_x12x 2【答案】32【解析】【分析】根据分式方程的解法步骤解出即可【详解】x3x12x 2左右同乘2(x+1)得: 2x=33解得x= 323经检验x= 3是方程的跟.23.3 故答案为:2【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.14.如图,点A的坐标为1,3 ,点B在x轴上,把OAB沿x轴向右平移到ECD ,若四边形ABDC的面积为9,则点C 的坐标为____________ .【答案】(4,3)【解析】【分析】过点A作AH ⊥x轴于点H,得到AH=3 ,根据平移的性质证明四边形ABDC 是平行四边形,得到AC=BD ,根据平行四边形的面积是9得到BD AH 9,求出BD 即可得到答案.【详解】过点 A 作AH⊥x 轴于点H,∵A(1,3),∴AH=3 ,由平移得AB ∥CD ,AB=CD ,∴四边形ABDC 是平行四边形,∴AC=BD ,∵ BD AH 9 ,∴BD=3 ,∴AC=3 ,∴C(4,3)故答案:(4,3).【点睛】此题考查平移的性质,平行四边形的判定及性质,直角坐标系中点到坐标轴的距离与点坐标的关系. 15.如图,正方形ABCD中,ABC绕点A逆时针旋转到ABC ,AB ,AC分别交对角线BD于点E,F,若AE 4 ,则EF ED的值为 __________ .x16.对某条线段的长度进行了 3 次测量,得到 3 个结果(单位: mm ) 9.9, 10.1, 10.0,若用 a 作为这条线段长度的近以值,当mn 时, (a 9.9)2 (a 10.1)2 (a10.0)2最小.对另一条线段的长度进行了 n 次测量,得到 n 个结果(单位: mm )x 1,x 2, ,x n ,若用 x 作为这条线段长度的近似值,当 答案】mm 时,22 x 1 x x 22x x n 最小.(1). 10.0;(2).x 1 x2xn答案】 16 解析】 【分析】根据正方形及旋转的性质可以证明 AEF DEA ,利用相似的性质即可得出答案. 【详解】解:在正方形 ABCD 中, BAC= ADB 45 , ∵ ABC 绕点 A 逆时针旋转到 ABC , ∴ BAC = BAC 45 , ∴ EAF= ADE 45 , ∵ AEF= AED , ∴ AEF DEA ,∴AE EF ,DE AE ,22∴ EF?ED AE 2 42 16 . 故答案为: 16.性质,相似三角形的判定及性质是解题的关键.解析】 分析】1)把(a 9.9)2 (a 10.1)2 (a 10.0)2整理得: 3a 2 60.0a 300.02,设 y 3a 2 60.0a 300.02 ,点睛】本题考查了正方形的性质,旋转的性质, 相似三角形的判定及性质, 掌握正方形的性质,旋转的利用二次函数性质求出当 a 10.0 时有最小值;(2)把 x2x1x x 22x 2 x n2整理得:y nx 22x 1x 2x n x2 x 1x 22x n 2值.【详解】解: (1) 整理 (a9.9)2(a 2 10.1)2(a60.0a 300.02 ,设 y 3a 2nx 22 x 1 x 2 x n x x 12x 22x n2, 设,利用二次函数的性质即可求出当 y 取最小值时 x 的10.0)2得: 3a 260.0a 300.02,有最小值,函数,利用二次函数的性质—何时取最小值来解决即可.三、解答题(本大题共 9 小题,满分 102 分.解答应写出文字说明、证明过程或演算步骤. )2x 1 x 217. 解不等式组:.x 5 4x 1【答案】 x ≥3 【解析】【分析】 根据解不等式组的解法步骤解出即可.2x 1 x 2 ①【详解】x 5 4x 1②由二次函数的性质可知:当 60.010.0时, 3函数有最小值,即:当 a 10.0 时,(a 9.9)2(a 10.1)22(a 10.0)2的值最小,故答案为: 10.0; 2) 整理 2x x 1 2x 2xn 2得: nx 2 2 x 1 x 2x n2x122 x22x n 2,设y 2nx 2 x 1 x 2 x n2x 12x 2x n 2,由二次函数性质可知:当x2 x 1 x 2 x n2nx1x2x n时,y nx 22 x 1 x 2x n2 x12x 22x n 2即:当 x故答案为:x 1 x2n x 1x 2xnn时,xn2x 1xx2xn的值最小,点睛】 本题考查了二次函数模型的应用, 关键是设yxx 12x x 22x n 2,整理成二次由①可得x≥3,由②可得x>2,∴不等式的解集为:x≥3.【点睛】本题考查解不等式组,关键在于熟练掌握解法步骤.18. 如图,AB AD ,BAC DAC 25 ,D 80 .求BCA的度数.【答案】75°.【解析】【分析】由三角形的内角和定理求出∠ DCA=7°5 ,再证明△ ABC ≌△ ADC ,即可得到答案.【详解】∵ DAC 25 , D 80 ,∴∠ DCA=7°5 ,∵ AB AD , BAC DAC 25 ,AC=AC ,∴△ ABC ≌△ ADC ,∴∠ BCA= ∠ DCA=7°5 .【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题k19. 已知反比例函数y 的图象分别位于第二、第四象限,化简:xk2k416k4【答案】5【解析】【分析】由反比例函数图象的性质可得k<0, 化简分式时注意去绝对值.【详解】由题意得k<0.k216 (k 1)24k= k2 16k22k 1 4k k 4 k 4k22k 1 k 4 k 4 k 4 k 4k 4 k 1 k 4 k 1 k 4 k 1 5点睛】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题.20. 为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30 名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.1【答案】(1)中位数是82,众数是85;(2).3【解析】【分析】(1)根据中位数及众数的定义解答;(2)列树状图解答即可.【详解】(1)甲社区老人的15 个年龄居中的数为:82,故中位数为82,出现次数最多的年龄是85,故众数是85;(2)这4名老人的年龄分别为67,68,66,69 岁,分别表示为A、B、C、D,列树状图如下:共有12种等可能的情况,其中 2 名老人恰好来自同一个社区的有4种,分别为AB,BA,CD,DC,41∴P(这 2 名老人恰好来自同一个社区)= .12 3 【点睛】此题考查统计知识,会求一组数据的中位数、众数,能列树状图求事件的概率,熟练掌握解题的方法是解题的关键.21. 如图,平面直角坐标系xOy中,OABC的边OC在x轴上,对角线AC ,OB交于点M ,函数ky k x 0 的图象经过点A 3,4 和点M .x答案】(1)k=12,M (6,2);(2)28 解析】 分析】k(1)将点 A (3,4)代入 y 中求出 k 值,作 AD ⊥x 轴于点 D ,ME ⊥x 轴于点 E ,证明△ MEC ∽△ ADC ,xME MC 1 12 得到 ,求出 ME=2 ,代入 y 即可求出点 M 的坐标;AD CA 2x(2)根据勾股定理求出 OA=5 ,根据点 A 、M 的坐标求出 DE ,即可得到 OC 的长度,由此求出答案 . 【详解】( 1)将点 A (3,4)代入 y ∵四边形 OABC 是平行四边形, ∴MA=MC ,作 AD ⊥x 轴于点 D ,ME ⊥x 轴于点 ∴ME ∥AD ,∴△ MEC ∽△ ADC ,∴ME MC 1 ,AD CA 2 ,∴ME=2 ,12将 y=2 代入 y 中,得 x=6 ,2)求OABC 的周长.1)求 k 的值和点 M 的坐标;x(2)∵ A(3,4),∴OD=3 ,AD=4 ,∴OA OD2AD25,∵A(3,4),M (6,2),∴DE=6-3=3 ,∴CD=2DE=6 ,∴OC=3+6=9 ,∴ OABC 的周长=2(OA+OC)=28. 【点睛】此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图象上点的坐标,勾股定理,相似三角形的判定及性质.22. 粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260 辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50 万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25 万元;(2)明年改装的无人驾驶出租车是160辆.【解析】【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50 万元,预计明年每辆无人驾驶出租车的改装费用可下降50% ,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000 万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可.【详解】解:(1)依题意得:50 1-50% =25(万元)(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260-x )辆,依题意得:50 260 x +25x=9000解得:x=160答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160 辆.【点睛】本题考查了一元一次方程的实际应用问题,解题的关键是找到数量关系,列出方程.23.如图,ABD 中,ABD ADB .1)作点A关于BD的对称点C ;(要求:尺规作图,不写作法,保留作图痕迹)2)在(1)所作的图中,连接BC,DC ,连接AC,交BD于点O.①求证:四边形ABCD 是菱形;解析】【分析】(1)过点A做BD的垂线交BD于点M ,在AM的延长线上截取AM CM ,即可求出所作的点A关于BD 的对称点C ;(2)①利用ABD ADB ,AC BD得出BO DO,利用AO CO,以及AC BD 得出四边形ABCD是菱形;②利用OE为中位线求出AB 的长度,利用菱形对角线垂直平分得出OB 的长度,进而利用Rt AOB求出AO的长度,得出对角线AC的长度,然后利用面积法求出点E到AD的距离即可.∵ ABD ADB ,AC BD ,又∵ AO AO ,∴ ABO ADO ;∴ BO DO ,又∵ AO CO ,AC BD②取BC的中点E,连接OE ,若OE13,BD210,求点E到AD 的距离.答案】(1)见解析;2)①见解析:②120132)①证明:②解:∵四边形 ABCD 是菱形, ∴ AO CO , BO DO , AC BD 又∵ BD 10 ,∴ BO=5 , ∵ E 为 BC 的中点, ∴ CE BE , ∵ AO CO ,∴ OE 为 ABC 的中位线,∴菱形的边长为 13, ∵ AC BD , BO=5在 Rt AOB 中,由勾股定理得: AO 2 AB 2 BO 2 ,即: AO 132 52=12,∴ AC 12 2 24,设点 E 到 AD 的距离为 h ,利用面积相等得:1 24 10 13h ,2解得: h 120,13点睛】本题考查了对称点的作法、菱形的判定以及菱形的面积公式的灵活应用,牢记菱形的判定定理,∴四边形 ABCD 是菱形; ∵ OE∴ AB 132,13,即 E 到 AD 的距离120以及对角线乘积的一半等于菱形的面积是解决本题的关键.24. 如图,O 为等边ABC 外接圆,半径为 2 ,点D 在劣弧AB上运动(不与点A, B重合),连接DA ,DB,DC .1)求证:DC 是ADB 的平分线;2)四边形ADBC 的面积理由;3)若点M,N 分别在线段DMN 的周长有最小值t ,答案】(1)详见解析;(2)是,S解析】S 是线段D动 (不含端点CA,CB,t 的值会变化,求所有t 值中的随着点4D如果果不是,请说明到每一个确定的位置,经过探究发大值.(3) 4 3点D分析】(1)根据等弧对等角的性质证明即可;(2)延长DA 到E,让AE=DB, 证明△ EAC ≌△ DBC, 即可表示出S的面积;(3)作点 D 关于直线BC、AC 的对称点D1、D2,当D1、M 、N、D 共线时△ DMN 取最小值,可得t=D 1D2,有对称性推出在等腰△ D1CD2中,t= 3x ,D与O、C共线时t取最大值即可算出.【详解】(1)∵△ ABC 为等边三角形,BC=AC ,∴AC1BC,都为圆,3∴∠ AOC= ∠BOC=120 °,∴∠ ADC= ∠BDC=60 °,∴DC 是∠ ADB 的角平分线.(2)是.如图,延长DA 至点E,使得AE=DB .连接EC,则∠ EAC=180 °-∠ DAC=∠ DBC.∵AE =DB ,∠ EAC =∠ DBC,AC =BC,∴△ EAC ≌△ DBC(SAS) , ∴∠ E= ∠CDB= ∠ADC=60 故△EDC 是等边三角形,∵DC= x ,∴根据等边三角形的特殊性可知 DC 边上的高为 3 x2(3)依次作点 D 关于直线 BC 、AC 对称点 D 1、D 2,根据对称性C △DMN =DM+MN+ND=D 1M+MN+ND 2.∴D 1、M 、N 、D 共线时△ DMN 取最小值 t,此时 t=D 1D 2,∴S S DBC S ADC S EAC S ADC S CDE 2 x 2 x 4x (2 3 x 4) .同理D2H= 3CD2 3 x222 ∴t=D1D2=3DC 3x .∴x 取最大值时,t 取最大值.即D 与O、C共线时t 取最大值,x=4.所有t 值中的最大值为4 3 .【点睛】本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量.225.平面直角坐标系xOy中,抛物线G:y ax2bx c 0 a 12 过点A 1,c 5a ,B x1,3 ,C x2,3 ,顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1 ,△OCE的面积为S2,3S1S2 2.(1)用含 a 的式子表示b;(2)求点E 的坐标;(3)若直线DE与抛物线G的另一个交点F的横坐标为6 3,求y ax2bx c在1 x 6时的取值a范围(用含 a 的式子表示).6a;(2)E 7,3 或E 5,3 ;(3)当122解析】答案】(1)bx 6 时,有0 < y < 9a.3E 7 ,3 ,2分析】(1)把 A 1,c 5a 代入: G: y ax 2 bx c 0 a 12 ,即可得到答案;(2)先求解抛物线的对称轴,记对称轴与 BC 的交点为 H ,确定顶点的位置,分情况利用 S 1 S 2 3 , 2求解 S OEH ,从而可得答案;(3)分情况讨论,先求解 DE 的解析式,联立一次函数与二次函数的解析式,再利用一元二次方程根与系 数的关系求解 c, 结合二次函数的性质可得答案.【详解】解: ( 1)把 A 1,c 5a 代入: G : y ax 2 bx c 0 a 12 ,c 5a a b c,b 6a,(2) b 6a,2抛物线为: y ax 2 6ax c 0 a 12 ,6a抛物线的对称轴为: x 3, 2a顶点 D 不在第一象限,顶点 D 在第四象限, 如图,设 x 1< x 2, 记对称轴与 BC 的交点为H , 则 BH CH ,S 1 S 2 32 ,S OBH S OHE S OCH S OHE 2 ,S OHE 3,4,1EH 2 3 3,4EHS OBH S OCH ,当x1> x2,同理可得:E 5,32综上:E75,3或E ,3 .22(3)y 2 ax6ax c a x32c9a,D 3,c9a ,当E 7 ,3,设DE 为:y kx b,27kb323k b c9ak62c 18a解得:b7c63a 18DE 为y62c 18a x7c63a18,2y ax 6ax cy 6 2c 18a x 7 c 63a 182消去y 得:ax2 6 2c 24a x 6c 63a 18 0,6 6 2c 24a 由根与系数的关系得:3636 2c 24a,aa解得:c9a,y 2 ax6ax2 9a a x 3当x 1时,y4a,当x 3时,y 0 ,当x 6 时,y 9a,当1 x 6 时,有0 < y < 9a.当E 5 ,3 ,D 3,c 9a ,2同理可得DE 为:y2c18a 6x5c45a18,y 2c 18a 6x 5c45a18y ax26ax c同理消去y得:ax212a2c 6x6c45a186 12a 2c 6 6,aa解得:c 9a 6,22y ax26ac 9a 6 a x 3 6,此时,顶点在第一象限,舍去,综上:当1 x 6时,有0< y< 9a.【点睛】本题考查的是利用待定系数法求解一次函数的解析式,二次函数的解析式,二次函数图像上点的坐标特点,二次函数的性质,同时考查了二次函数与一元二次方程的关系,一元二次方程根与系数的关系,掌握以上知识是解题的关键.。
2020年广东省广州市中考数学试卷(含解析)

2020年广东省广州市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题3分,满分30分)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.12.化简:﹣=.13.方程=的解是.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x =mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:67 68 73 75 76 78 80 82 83 84 85 85 90 92 95甲社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98乙社区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).参考答案与试题解析一、选择题1.【解答】解:15233000=1.5233×107,故选:C.2.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题11.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.【解答】解:﹣=2=.故填:.13.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.三、解答题17.【解答】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.【解答】解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.【解答】解:∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.20.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.【解答】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a。
2020年广东省广州市中考数学试卷 (解析版)

67
68
73
75
76
78
80
82
83
84
85
85
90
92
95
乙社区
66
69
72
74
75
78
80
81
85
85
88
89
91
96
98
根据以上信息解答下列问题:
(1)求甲社区老人年龄的中位数和众数;
(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.
A.套餐一B.套餐二C.套餐三D.套餐四
解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,
故选: .
3.(3分)下列运算正确的是
A. B. C. D.
解: 、原式为最简结果,不符合题意;
、原式 ,不符合题意;
、原式 ,不符合题意;
、原式 ,符合题意.
故选: .
4.(3分) 中,点 , 分别是 的边 , 的中点,连接 .若 ,则
A. B. C. D.
9.(3分)直线 不经过第二象限,则关于 的方程 实数解的个数是
A.0个B.1个C.2个D.1个或2个
10.(3分)如图,矩形 的对角线 , 交于点 , , ,过点 作 ,交 于点 ,过点 作 ,垂足为 ,则 的值为
A. B. C. D.
二、填空题(本大题共6小题,每小题3分,满分18分.)
, ,
,
四边形 是菱形;
②过 点作 于 ,
四边形 是菱形,
, ,
是 的中点,
,
,
,
四边形 是菱形,
,
2020年广东省广州市中考数学试卷及答案解析

2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√a C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C .该圆锥的主视图既是轴对称图形,又是中心对称图形D .该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y =﹣3x +1的图象过点(x 1,y 1),(x 1+1,y 2),(x 1+2,y 3),则( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 27.(3分)如图,Rt △ABC 中,∠C =90°,AB =5,cos A =45,以点B 为圆心,r 为半径作⊙B ,当r =3时,⊙B 与AC 的位置关系是( )A .相离B .相切C .相交D .无法确定8.(3分)往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm ,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm9.(3分)直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ) A .0个B .1个C .2个D .1个或2个10.(3分)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,满分18分.) 11.(3分)已知∠A =100°,则∠A 的补角等于 °.12.(3分)化简:√20−√5= . 13.(3分)方程x x+1=32x+2的解是 .14.(3分)如图,点A 的坐标为(1,3),点B 在x 轴上,把△OAB 沿x 轴向右平移到△ECD ,若四边形ABDC 的面积为9,则点C 的坐标为 .15.(3分)如图,正方形ABCD 中,△ABC 绕点A 逆时针旋转到△AB 'C ,AB ',AC '分别交对角线BD 于点E ,F ,若AE =4,则EF •ED 的值为 .16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近似值,当a = mm 时,(a ﹣9.9)2+(a ﹣10.1)2+(a ﹣10.0)2最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )x 1,x 2,…,x n ,若用x 作为这条线段长度的近似值,当x = mm 时,(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x n )2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(9分)解不等式组:{2x −1≥x +2x +5<4x −1.18.(9分)如图,AB =AD ,∠BAC =∠DAC =25°,∠D =80°.求∠BCA 的度数.19.(10分)已知反比例函数y =k x 的图象分别位于第二、第四象限,化简:k 2k−4−16k−4+√(k+1)2−4k.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=kx(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧AB̂上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c ﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+3 2.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为6a+3,求y=ax2+bx+c在1<x <6时的取值范围(用含a的式子表示).参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【解答】解:15233000=1.5233×107,故选:C.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.(3分)下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√a C.x5•x6=x30D.(x2)5=x10【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cos A=4 5,∴ACAB =AC5=45,∴AC=4,∴BC=√AB2−AC2=3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=12AB=12×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD=√OB2−BD2=√262−242=10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C .9.(3分)直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ) A .0个B .1个C .2个D .1个或2个【解答】解:∵直线y =x +a 不经过第二象限, ∴a ≤0,当a =0时,关于x 的方程ax 2+2x +1=0是一次方程,解为x =−12, 当a <0时,关于x 的方程ax 2+2x +1=0是二次方程, ∵△=22﹣4a >0,∴方程有两个不相等的实数根. 故选:D .10.(3分)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125【解答】解:∵AB =6,BC =8,∴矩形ABCD 的面积为48,AO =DO =12AC =5, ∵对角线AC ,BD 交于点O , ∴△AOD 的面积为12, ∵EO ⊥AO ,EF ⊥DO ,∴S △AOD =S △AOE +S △DOE ,即12=12AO ×EO +12DO ×EF , ∴12=12×5×EO +12×5×EF ,∴5(EO+EF)=24,∴EO+EF=24 5,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.(3分)化简:√20−√5=√5.【解答】解:√20−√5=2√5−√5=√5.故填:√5.13.(3分)方程xx+1=32x+2的解是x=32.【解答】解:方程xx+1=32x+2,去分母得:2x=3,解得:x=3 2,经检验x=32是分式方程的解.故答案为:x=3 2.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为(4,3).【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为16.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AEDE =EFAE,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=x1+x2+⋯+x nnmm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x =−−60.06=10.0时,y 有最小值, 设w =(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x n )2=nx 2﹣2(x 1+x 2+…+x n )x +(x 12+x 22+…+x n 2),∵n >0, ∴当x =−−2(x 1+x 2+⋯+x n )2n =x 1+x 2+⋯+x nn时,w 有最小值. 故答案为10.0,x 1+x 2+⋯+x nn.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(9分)解不等式组:{2x −1≥x +2x +5<4x −1.【解答】解:{2x −1≥x +2①x +5<4x −1②解不等式①得:x ≥3, 解不等式②得:x >2, 所以不等式组的解集为:x ≥318.(9分)如图,AB =AD ,∠BAC =∠DAC =25°,∠D =80°.求∠BCA 的度数.【解答】解:在△ABC 与△ADC 中, {AB =AD∠BAC =∠DAC AC =AC, ∴△ABC ≌△ADC (SAS ), ∴∠D =∠B =80°,∴∠BCA =180°﹣25°﹣80°=75°.19.(10分)已知反比例函数y =k x 的图象分别位于第二、第四象限,化简:k 2k−4−16k−4+√(k +1)2−4k .【解答】解:∵反比例函数y =kx 的图象分别位于第二、第四象限, ∴k <0, ∴k ﹣1<0,∴k2k−4−16k−4+√(k+1)2−4k=(k−4)(k+4)k−4+√k2−2k+1=k+4+√(k−1)2=k+4+|k﹣1|=k+4﹣k+1=5.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)=412=13.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=kx(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【解答】解:(1)∵点A(3,4)在y=kx上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=12x上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA=√32+42=5,∴平行四边形ABCD的周长为2(5+9)=28.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=12BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC=√BC2−OB2=12,∴OA=12,∵四边形ABCD 是菱形, ∴AD =13,∴BF =12×12×5×2×2÷13=12013, 故点E 到AD 的距离是12013.24.(14分)如图,⊙O 为等边△ABC 的外接圆,半径为2,点D 在劣弧AB ̂上运动(不与点A ,B 重合),连接DA ,DB ,DC . (1)求证:DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,△DMN 的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.【解答】证明:(1)∵△ABC 是等边三角形, ∴∠ABC =∠BAC =∠ACB =60°,∵∠ADC =∠ABC =60°,∠BDC =∠BAC =60°, ∴∠ADC =∠BDC , ∴DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数, 理由如下:如图1,将△ADC 绕点逆时针旋转60°,得到△BHC ,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=√34CD2,∴S=√34x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=12EC,PE=√3PC=√32EC,∴EF=2PE=√3EC=√3CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4√3.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c ﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+3 2.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为6a+3,求y=ax2+bx+c在1<x <6时的取值范围(用含a的式子表示).【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B (x 1,3),C (x 2,3),线段BC 上有一点E , ∴S 1=12×BE ×3=32BE ,S 2=12×CE ×3=32CE , ∵S 1=S 2+32. ∴32CE +32=32BE ,∴BE =CE +1, ∵b =﹣6a ,∴抛物线G :y =ax 2﹣6ax +c , ∴对称轴为x =−6a−2a=3, ∴BC 的中点M 坐标为(3,3),∵BE =BM +EM ,CE =CM ﹣EM ,BM =CM ,BE =CE +1, ∴EM =12,∴点E (72,3)或(52,3);(3)∵直线DE 与抛物线G :y =ax 2﹣6ax +c 的另一个交点F 的横坐标为6a+3,∴y =a (6a+3)2﹣6a ×(6a+3)+c =36a−9a +c , ∴点F (6a+3,36a−9a +c ),∵点D 是抛物线的顶点, ∴点D (3,﹣9a +c ),∴直线DF 的解析式为:y =6x ﹣18+c ﹣9a , ∴点E 坐标为(72,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.。
2020年广东省广州市中考数学试题及答案

广州市2020年高中阶段学校招生考试数学第Ⅰ卷(选择题, 共35分)一、选择题(每小题有四个选项,其中有且仅有一项是符合题意的,本题共有13小题,第1~4题每小题2分,第5~13题每小题3分,共35分)1.0.000 000 108这个数,用科学记数法表示为 ( )(A )91.0810-⨯ (B )81.0810-⨯ (C )71.0810-⨯ (D )61.0810-⨯2.计算()210.25712-⎛⎫⨯-+- ⎪⎝⎭所得的结果是 ( )(A )2 (B )54 (C )0 (D )17163.如果两圆只有一条公切线,那么这两个圆的位置关系是 ( )(A )外离 (B )外切 (C )相交 (D )内切4.如图1,若四边形ABCD 是半径为1cm 的⊙O 的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为 ( )(A )()222cm π- (B )()221cm π- (C )()22cm π-(D )()21cm π-5.函数141y x x =++-中,自变量x 的取值范围是 ( ) (A )x>-4 (B )x>1 (C )x ≥-4 (D )x ≥16.如果已知一次函数y=kx+b 的图象不经过第三象限,也不经过原点,那么k 、b 的取值范围是 ( )(A )k>0且b>0 (B )k>0且b<0 (C )k<0且b>0 (D )k<0且b<07.若点()()()1232,11,y y y --、,、都在反比例函数1y x=-的图象上,则 ( ) (A )123y y y >> (B )213y y y >> (C )312y y y >> (D )132y y y >> 8.抛物线245y x x =-+的顶点坐标是 ( )(A )(-2,1) (B )(-2,-1) (C )(2,1) (D )(2,-1)9.某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按一定的速度注水,水池注满后,停止注水,又立即按一定的速度放完水池的水。
2020年广东省广州市中考数学试题及参考答案(word解析版)

2020年广州市初中毕业生学业考试数学(满分150分,考试用时120分钟)第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.12.化简:﹣=.13.方程=的解是.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n 个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm 时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98 根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B (x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).答案与解析第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:15233000=1.5233×107,故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【知识考点】条形统计图.【思路分析】根据条形统计图得出即可.【解答过程】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.【总结归纳】本题考查了条形统计图,能根据图形得出正确的信息是解此题的关键.3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10【知识考点】同底数幂的乘法;幂的乘方与积的乘方;二次根式的混合运算.【思路分析】各项计算得到结果,即可作出判断.【解答过程】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.【总结归纳】此题考查了二次根式的混合运算,同底数幂的乘法,以及幂的乘方,熟练掌握运算法则是解本题的关键.4.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【知识考点】三角形中位线定理.【思路分析】根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C =68°.【解答过程】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.【总结归纳】本题主要考查了三角形的中位线定理,能熟练地运用三角形的中位线定理是解此题的关键.5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【知识考点】轴对称图形;中心对称图形;简单几何体的三视图.【思路分析】圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.【解答过程】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.【总结归纳】本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图及轴对称图形、中心对称图形的概念.6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【知识考点】一次函数图象上点的坐标特征.【思路分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.【解答过程】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.【总结归纳】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【知识考点】直线与圆的位置关系;解直角三角形.【思路分析】根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答过程】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.【总结归纳】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【知识考点】垂径定理的应用.【思路分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答过程】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.【总结归纳】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【知识考点】根的判别式;一次函数的性质.【思路分析】利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.【解答过程】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.【总结归纳】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【知识考点】线段垂直平分线的性质;矩形的性质.【思路分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.【解答过程】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.【总结归纳】本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.【知识考点】余角和补角.【思路分析】根据补角的概念求解可得.【解答过程】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.【总结归纳】本题主要考查补角,解题的关键是掌握如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.12.化简:﹣=.【知识考点】二次根式的加减法.【思路分析】此题先把二次根式化简,再进行合并即可求出答案.【解答过程】解:﹣=2=.故填:.【总结归纳】此题考查了二次根式的加减,关键是把二次根式化简,再进行合并.13.方程=的解是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.【知识考点】三角形的面积;坐标与图形变化﹣平移.【思路分析】根据平移的性质得出四边形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.【解答过程】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).【总结归纳】本题考查了坐标与图形的变换﹣平移,平移的性质,平行四边形的性质,求得平移的距离是解题的关键.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.【知识考点】正方形的性质;旋转的性质;相似三角形的判定与性质.【思路分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【解答过程】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.【总结归纳】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【知识考点】二次函数的应用.【思路分析】构建二次函数,利用二次函数的性质即可解决问题.【解答过程】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.【总结归纳】本题考查二次函数的性质,解题的关键是学会构建二次函数解决最值问题.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.【知识考点】解一元一次不等式组.【思路分析】根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.【解答过程】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥3【总结归纳】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.【知识考点】全等三角形的判定与性质.【思路分析】运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.【解答过程】解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.【总结归纳】主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质,这是灵活运用的基础和关键.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.【知识考点】反比例函数的图象;反比例函数的性质.【思路分析】由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.【解答过程】解:∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.【总结归纳】本题考查了反比例函数的性质,反比例函数图象的性质,平方差公式,分式和二次根式的化简等知识,确定k的取值范围是本题的关键.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【知识考点】中位数;众数;列表法与树状图法.【思路分析】(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.【解答过程】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.【总结归纳】本题考查中位数、众数的意义和计算方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求出概率的关键.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M 的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.【解答过程】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.【总结归纳】本题考查反比例函数图象上的点的坐标特征,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【知识考点】一元一次方程的应用.【思路分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.【解答过程】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.【总结归纳】此题主要考查了一元一次方程的应用,正确找出等量关系是解题关键.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.【知识考点】等腰三角形的性质;菱形的判定与性质;作图﹣轴对称变换.【思路分析】(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.【解答过程】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.【总结归纳】此题主要考查了基本作图以及轴对称变换的作法、菱形的判定与性质,直角三角形的性质,勾股定理,三角形面积等知识,得出BC,AC的长是解题关键.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.【知识考点】圆的综合题.【思路分析】(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC=60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC 的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.【解答过程】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.【总结归纳】本题是圆的综合题,考查了圆的有关知识,等边三角形的性质,旋转的性质,轴对称的性质等知识,灵活运用这些性质进行推理是本题的关键.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B (x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).【知识考点】二次函数综合题.【思路分析】(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E坐标,可求DE解析式,可得c =9a,由二次函数的性质可求解.【解答过程】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.【总结归纳】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,三角形面积公式,一次函数图象的性质,求出c=9a是本题的关键.。
2020年广东省广州市中考数学试卷和答案解析

2020年广东省广州市中考数学试卷和答案解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案::解:15233000=1.5233×107,故选:C.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四解析:根据条形统计图得出即可.参考答案::解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.点拨:本题考查了条形统计图,能根据图形得出正确的信息是解此题的关键.3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10解析:各项计算得到结果,即可作出判断.参考答案::解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.点拨:此题考查了二次根式的混合运算,同底数幂的乘法,以及幂的乘方,熟练掌握运算法则是解本题的关键.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°解析:根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C=68°.参考答案::解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.点拨:本题主要考查了三角形的中位线定理,能熟练地运用三角形的中位线定理是解此题的关键.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形解析:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.参考答案::解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.点拨:本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图及轴对称图形、中心对称图形的概念.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2解析:先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.参考答案::解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x1+2,∴y3<y2<y1,故选:B.点拨:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B 为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定解析:根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.参考答案::解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.点拨:本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm解析:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.参考答案::解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.点拨:本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个解析:利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.参考答案::解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.点拨:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.解析:依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD =S△AOE+S△DOE,即可得到OE+EF的值.参考答案::解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.点拨:本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.解析:根据补角的概念求解可得.参考答案::解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.点拨:本题主要考查补角,解题的关键是掌握如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.12.(3分)化简:﹣=.解析:此题先把二次根式化简,再进行合并即可求出答案.参考答案::解:﹣=2=.故填:.点拨:此题考查了二次根式的加减,关键是把二次根式化简,再进行合并.13.(3分)方程=的解是x=.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.参考答案::解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.点拨:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB 沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C 的坐标为(4,3).解析:根据平移的性质得出四边形ABDC是平行四边形,从而得A 和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.参考答案::解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).点拨:本题考查了坐标与图形的变换﹣平移,平移的性质,平行四边形的性质,求得平移的距离是解题的关键.15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF •ED的值为16.解析:根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.参考答案::解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.点拨:本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x =mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.解析:构建二次函数,利用二次函数的性质即可解决问题.参考答案::解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.点拨:本题考查二次函数的性质,解题的关键是学会构建二次函数解决最值问题.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.解析:根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.参考答案::解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥3点拨:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.解析:运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.参考答案::解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.点拨:主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质,这是灵活运用的基础和关键.19.(10分)已知反比例函数y =的图象分别位于第二、第四象限,化简:﹣+.解析:由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.参考答案::解:∵反比例函数y =的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.点拨:本题考查了反比例函数的性质,反比例函数图象的性质,平方差公式,分式和二次根式的化简等知识,确定k的取值范围是本题的关键.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲676873757678808283848585909295社区乙666972747578808185858889919698社区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.解析:(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.参考答案::解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.点拨:本题考查中位数、众数的意义和计算方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求出概率的关键.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.解析:(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.参考答案::解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.点拨:本题考查反比例函数图象上的点的坐标特征,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.解析:(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.参考答案::解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.点拨:此题主要考查了一元一次方程的应用,正确找出等量关系是解题关键.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.解析:(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.参考答案::解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.点拨:此题主要考查了基本作图以及轴对称变换的作法、菱形的判定与性质,直角三角形的性质,勾股定理,三角形面积等知识,得出BC,AC的长是解题关键.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.解析:(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC=60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN 的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.参考答案::证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.点拨:本题是圆的综合题,考查了圆的有关知识,等边三角形的性质,旋转的性质,轴对称的性质等知识,灵活运用这些性质进行推理是本题的关键.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D 不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE 的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).解析:(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E 坐标,可求DE解析式,可得c=9a,由二次函数的性质可求解.参考答案::解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.点拨:本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,三角形面积公式,一次函数图象的性质,求出c=9a 是本题的关键.。
2020年广东省广州市中考数学试卷(含详细解析)

(2)求明年改装的无人驾驶出租车是多少辆.
23.如图, 中, .
(1)作点 关于 的对称点 ;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接 , ,连接 ,交 于点 .
①求证:四边形 是菱形;
②取 的中点 ,连接 ,若 , ,求点 到 的距离.
16.对某条线段的长度进行了3次测量,得到3个结果(单位: )9.9,10.1,10.0,若用 作为这条线段长度的近以值,当 ______ 时, 最小.对另一条线段的长度进行了 次测量,得到 个结果(单位: ) ,若用 作为这条线段长度的近似值,当 _____ 时, 最小.
评卷人
得分
三、解答题
17.解不等式组: .
保密★启用前
2020年广东省广州市中考数学试卷
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、单选题
1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()
A. B. C. D.
A. B. C. D.
评卷人
得分
二、填空题
11.已知 ,则 的补角等于________ .
12.计算: __________.
13.方程 的解是_______.
14.如图,点 的坐标为 ,点 在 轴上,把 沿 轴向右平移到 ,若四边形 的面积为9,则点 的坐标为_______.
15.如图,正方形 中, 绕点 逆时针旋转到 , , 分别交对角线 于点 ,若 ,则 的值为_______.
2020年广东省广州市中考数学试卷及答案

2020年广州市初中毕业生学业考试数学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为( ) A. 5152.3310⨯B. 615.23310⨯C. 71.523310⨯D. 80.1523310⨯2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )A. 套餐一B. 套餐二C. 套餐三D. 套餐四3.下列运算正确的是( ) A. a b a b +=+ B. 236a a a ⨯= C. 5630x x x ⋅=D. ()5210xx =4.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( ) A. 22︒B. 68︒C. 96︒D. 112︒5.如图所示的圆锥,下列说法正确的是( )A. 该圆锥的主视图是轴对称图形B. 该圆锥的主视图是中心对称图形C. 该圆锥的主视图既是轴对称图形,又是中心对称图形D. 该圆锥的主视图既不是轴对称图形,又不是中心对称图形 6.一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A. 123y y y <<B. 321y y y <<C. 213y y y <<D. 312y y y <<7.如图,Rt ABC ∆中,90C ∠=︒,5AB =,4cos 5A =,以点B 为圆心,r 为半径作B ,当3r =时,B 与AC 的位置关系是( )A. 相离B. 相切C. 相交D. 无法确定8.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A. 8cmB. 10cmC. 16cmD. 20cm9.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ). A. 0个B. 1个C. 2个D. 1个或2个10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A.485B.325C.245D.125第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知100A ∠=︒,则A ∠的补角等于________. 12.计算:205-=__________. 13.方程3122x x x =++的解是_______. 14.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.15.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为_______.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近以值,当a =______mn 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )12,,,n x x x ,若用x 作为这条线段长度的近似值,当x =_____mm 时,()()()22212n x x x x x x -+-++-最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.解不等式组:212541x x x x -+⎧⎨+<-⎩.18.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.19.已知反比例函数k y x =的图象分别位于第二、第四象限,化简:2216(1)444k k k k k -++---.20.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下: 甲社区 67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区 666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.如图,平面直角坐标系xOy 中,OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,函数()0ky x x=>的图象经过点()3,4A 和点M .(1)求k 的值和点M 的坐标; (2)求OABC 的周长.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%. (1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.如图,ABD ∆中,ABD ADB ∠=∠.(1)作点A 关于BD 的对称点C ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC ,DC ,连接AC ,交BD 于点O . ①求证:四边形ABCD 是菱形; ②取BC 的中点E ,连接OE ,若132OE =,10BD =,求点E 到AD 的距离.24.如图,O 为等边ABC ∆的外接圆,半径为2,点D 在劣弧AB 上运动(不与点,A B 重合),连接DA ,DB ,DC .(1)求证:DC 是ADB ∠的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点,M N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,DMN ∆的周长有最小值,随着点D 的运动,的值会发生变化,求所有值中的最大值.25.平面直角坐标系xOy 中,抛物线()2:012G y ax bx c a =++<<过点()1,5A c a -,()1,3B x ,()2,3C x ,顶点D 不在第一象限,线段BC 上有一点E ,设OBE △的面积为1S ,OCE △的面积为2S ,1232S S =+. (1)用含a 的式子表示b ; (2)求点E 的坐标;(3)若直线DE 与抛物线G 的另一个交点F 的横坐标为63a+,求2y ax bx c =++在16x <<时的取值范围(用含a 的式子表示).2020年广州市初中毕业生学业考试数学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为( ) A. 5152.3310⨯ B. 615.23310⨯C. 71.523310⨯D. 80.1523310⨯【答案】C 【解析】 【分析】根据科学记数法的表示方法表示即可. 【详解】15233000=71.523310⨯, 故选C .【点睛】本题考查科学记数法的表示,关键在于熟练掌握科学记数法的表示方法.2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )A. 套餐一B. 套餐二C. 套餐三D. 套餐四【答案】A 【解析】 分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一; 故选:A .【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键. 3.下列运算正确的是( ) a b a b +=+ B. 236a a a =C. 5630x x x ⋅= D. ()5210x x =【答案】D 【解析】 【分析】根据二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则依次判断即可得到答案.【详解】A a b 不是同类二次根式,不能进行加法运算,故该选项错误; B 、236a a a =,故该选项错误;C 、5611x x x ⋅=,故该选项错误;D 、()5210x x =,故该选项正确,故选:D.【点睛】此题考查计算能力,正确掌握二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则是解题的关键.4.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( ) A. 22︒ B. 68︒C. 96︒D. 112︒【答案】B 【解析】 【分析】根据点,D E 分别是ABC ∆的边AB ,AC 的中点,得到DE 是ABC ∆的中位线,根据中位线的性质解答. 【详解】如图,∵点,D E 分别是ABC ∆的边AB ,AC 的中点, ∴DE 是ABC ∆的中位线, ∴DE ∥BC ,∴AED =∠68C ∠=︒, 故选:B.【点睛】此题考查三角形中位线的判定及性质,平行线的性质,熟记三角形的中位线的判定定理是解题的关键.5.如图所示的圆锥,下列说法正确的是( )A. 该圆锥的主视图是轴对称图形B. 该圆锥的主视图是中心对称图形C. 该圆锥的主视图既是轴对称图形,又是中心对称图形D. 该圆锥的主视图既不是轴对称图形,又不是中心对称图形 【答案】A 【解析】 【分析】首先判断出圆锥的主视图,再根据主视图的形状判断是轴对称图形,还是中心对称图形,从而可得答案. 【详解】解:圆锥的主视图是一个等腰三角形,所以该圆锥的主视图是轴对称图形,不是中心对称图形,故A 正确, 该圆锥的主视图是中心对称图形,故B 错误,该圆锥的主视图既是轴对称图形,又是中心对称图形,故C 错误, 该圆锥的主视图既不是轴对称图形,又不是中心对称图形,故D 错误, 故选A .【点睛】本题考查的简单几何体的三视图,同时考查了轴对称图形与中心对称图形的识别,掌握以上知识是解题的关键.6.一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A. 123y y y <<B. 321y y y <<C. 213y y y <<D. 312y y y <<【答案】B 【解析】 【分析】根据一次函数的图象分析增减性即可.【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小. 故选B .【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.7.如图,Rt ABC ∆中,90C ∠=︒,5AB =,4cos 5A =,以点B 为圆心,r 为半径作B ,当3r =时,B 与AC 的位置关系是( )A. 相离B. 相切C. 相交D. 无法确定【答案】B 【解析】 【分析】根据Rt ABC ∆中,90C ∠=︒, 4cos 5A =,求出AC 的值,再根据勾股定理求出BC 的值,比较BC 与半径r 的大小,即可得出B 与AC 的位置关系.【详解】解:∵Rt ABC ∆中,90C ∠=︒, 4cos 5A =, ∴cosA=45AC AB = ∵5AB =, ∴AC=4∴BC=223BC AC -= 当3r =时,B 与AC 的位置关系是:相切故选:B【点睛】本题考查了由三角函数解直角三角形,勾股定理以及直线和圆的位置关系等知识,利用勾股定理解求出BC 是解题的关键.8.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A. 8cmB. 10cmC. 16cmD. 20cm【答案】C 【解析】 【分析】过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长. 【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA , 由垂径定理得:11482422AD AB cm ==⨯=, ∵⊙O 的直径为52cm , ∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:2222=2624=10O m O A D A D c -=-, ∴261016DE OE OD cm =-=-=, ∴油的最大深度为16cm , 故选:C .【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.9.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ). A. 0个 B. 1个C. 2个D. 1个或2个【答案】D 【解析】 【分析】根据直线y x a =+不经过第二象限,得到0a ≤,再分两种情况判断方程的解的情况. 【详解】∵直线y x a =+不经过第二象限, ∴0a ≤,∵方程2210ax x ++=,当a=0时,方程为一元一次方程,故有一个解, 当a<0时,方程为一元二次方程, ∵∆=2444b ac a -=-, ∴4-4a>0,∴方程有两个不相等的实数根, 故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a 的取值范围,再分类讨论.10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A.485B.325C.245D.125【答案】C 【解析】 【分析】根据勾股定理求出AC=BD=10,由矩形的性质得出AO=5,证明AOEADC 得到OE 的长,再证明DEF DBA 可得到EF 的长,从而可得到结论.【详解】∵四边形ABCD 是矩形,AC BD ∴=,90ABC BCD ADC BAD ∠=∠=∠=∠=︒ 6AB =,8BC =8AD BC ∴==,6DC AB ==2210AC AB BC ∴=+=,10BD =,152OA AC ∴==, OE AC ⊥,90AOE ∴∠=︒AOE ADC ∴∠=∠,又CAD DAC ∠=∠,AOEADC ∴,AO AE EOAD AC CD ∴==, 58106AE EO ∴==, 254AE ∴=,154OE =, 74DE ∴=, 同理可证,DEFDBA ,DE EFBD BA ∴=, 74106FF ∴=,2120EF ∴=,1521244205OE EF ∴+=+=,故选:C .【点睛】本题主要考查了矩形的性质和相似三角形的判定与性质,熟练掌握判定与性质是解答此题的关键.第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知100A ∠=︒,则A ∠的补角等于________. 【答案】80 【解析】 【分析】根据补角的概念计算即可.【详解】∠A 的补角=180°-100°=80°, 故答案为:80.【点睛】本题考查补角的概念,关键在于牢记基础知识.12.=__________.【答案】5【解析】【分析】先化简二次根式,再进行合并即可求出答案.【详解】2052555-=-=,故答案为:5.【点睛】本题考查了二次根式的加减,关键是二次根式的化简,再进行合并.13.方程3122xx x=++的解是_______.【答案】3 2【解析】【分析】根据分式方程的解法步骤解出即可.【详解】3122 xx x=++左右同乘2(x+1)得: 2x=3解得x=32.经检验x=32是方程的跟.故答案为: 32.【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.14.如图,点A的坐标为()1,3,点B在x轴上,把OAB∆沿x轴向右平移到ECD∆,若四边形ABDC的面积为9,则点C的坐标为_______.【答案】(4,3)【解析】【分析】过点A作AH⊥x轴于点H,得到AH=3,根据平移的性质证明四边形ABDC是平行四边形,得到AC=BD,根据平行四边形的面积是9得到9BD AH ⋅=,求出BD 即可得到答案. 【详解】过点A 作AH ⊥x 轴于点H , ∵A (1,3), ∴AH=3,由平移得AB ∥CD ,AB=CD , ∴四边形ABDC 是平行四边形, ∴AC=BD , ∵9BD AH ⋅=, ∴BD=3, ∴AC=3, ∴C(4,3) 故答案为:(4,3).【点睛】此题考查平移的性质,平行四边形的判定及性质,直角坐标系中点到坐标轴的距离与点坐标的关系.15.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为_______.【答案】16 【解析】 【分析】根据正方形及旋转的性质可以证明AEF DEA ~,利用相似的性质即可得出答案. 【详解】解:在正方形ABCD 中,BAC=ADB 45∠∠=︒, ∵ABC ∆绕点A 逆时针旋转到AB C ''∆,∴B AC =BAC 45''∠∠=︒, ∴EAF=ADE 45∠∠=︒, ∵AEF=AED ∠∠, ∴AEF DEA ~, ∴AE EFDE AE=, ∴22EF ED AE 416•===. 故答案为:16.【点睛】本题考查了正方形的性质,旋转的性质,相似三角形的判定及性质,掌握正方形的性质,旋转的性质,相似三角形的判定及性质是解题的关键.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近以值,当a =______mn 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )12,,,n x x x ,若用x 作为这条线段长度的近似值,当x =_____mm 时,()()()22212n x x x x x x -+-++-最小.【答案】 (1). 10.0; (2). 12nx x x n+++.【解析】 【分析】(1)把222(9.9)(10.1)(10.0)a a a -+-+-整理得:2360.0300.02a a -+,设2360.0300.02y a a =-+,利用二次函数性质求出当10.0a =时有最小值; (2)把()()()22212n x x x x x x -+-++-整理得:()()222212122n n nx x x x x x x x -++++++, 设()()222212122n n y nx x x x x x x x =-++++++,利用二次函数的性质即可求出当y 取最小值时x 的值.【详解】解:(1)整理222(9.9)(10.1)(10.0)a a a -+-+-得:2360.0300.02a a -+, 设2360.0300.02y a a =-+, 由二次函数的性质可知:当60.010.023a -=-=⨯时,函数有最小值, 即:当10.0a =时,222(9.9)(10.1)(10.0)a a a -+-+-的值最小,故答案为:10.0;(2)整理()()()22212n x x x x x x -+-++-得:()()222212122n n nx x x x x x x x -++++++,设()()222212122n n y nx x x x x x x x =-++++++,由二次函数性质可知:当()121222n nx x x x x x x nn-++++++=-=⨯时,()()222212122n n y nx x x x x x x x =-++++++有最小值,即:当12n x x x x n+++=时,()()()22212n x x x x x x -+-++-的值最小,故答案为:12nx x x n+++.【点睛】本题考查了二次函数模型的应用,关键是设()()()22212n y x x x x x x =-+-++-,整理成二次函数,利用二次函数的性质—何时取最小值来解决即可.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.解不等式组:212541x x x x -+⎧⎨+<-⎩. 【答案】x ≥3 【解析】 【分析】根据解不等式组的解法步骤解出即可.【详解】212541x x x x -+⎧⎨+<-⎩①②由①可得x ≥3, 由②可得x>2,∴不等式的解集为:x ≥3.【点睛】本题考查解不等式组,关键在于熟练掌握解法步骤.18.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.【答案】75°. 【解析】 【分析】由三角形的内角和定理求出∠DCA=75°,再证明△ABC ≌△ADC ,即可得到答案. 【详解】∵25DAC ∠=︒,80D ∠=︒, ∴∠DCA=75°, ∵AB AD =,25BAC DAC ∠=∠=︒,AC=AC , ∴△ABC ≌△ADC , ∴∠BCA=∠DCA=75°. 【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.19.已知反比例函数k y x =的图象分别位于第二、第四象限,化简:21644k k k -+--.【答案】5 【解析】 【分析】由反比例函数图象的性质可得k <0,化简分式时注意去绝对值. 【详解】由题意得k <0.()()224416164444k k k k k k k k +---++=+----441415k k k k k +=++-=+-+==【点睛】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题.20.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【答案】(1)中位数是82,众数是85;(2)13. 【解析】 【分析】(1)根据中位数及众数的定义解答; (2)列树状图解答即可.【详解】(1)甲社区老人的15个年龄居中的数为:82,故中位数为82, 出现次数最多的年龄是85,故众数是85;(2)这4名老人的年龄分别为67,68,66,69岁,分别表示为A 、B 、C 、D , 列树状图如下:共有12种等可能的情况,其中2名老人恰好来自同一个社区的有4种,分别为AB ,BA ,CD ,DC , ∴P (这2名老人恰好来自同一个社区)=41123=. 【点睛】此题考查统计知识,会求一组数据的中位数、众数,能列树状图求事件的概率,熟练掌握解题的方法是解题的关键.21.如图,平面直角坐标系xOy 中,OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,函数()0ky x x=>的图象经过点()3,4A 和点M .(1)求k 的值和点M 的坐标; (2)求OABC 的周长.【答案】(1)k=12,M (6,2);(2)28 【解析】 【分析】(1)将点A (3,4)代入ky x=中求出k 的值,作AD ⊥x 轴于点D ,ME ⊥x 轴于点E ,证明△MEC ∽△ADC ,得到12ME MCAD CA==,求出ME=2,代入12yx=即可求出点M的坐标;(2)根据勾股定理求出OA=5,根据点A、M的坐标求出DE,即可得到OC的长度,由此求出答案.【详解】(1)将点A(3,4)代入kyx=中,得k=3412⨯=,∵四边形OABC是平行四边形,∴MA=MC,作AD⊥x轴于点D,ME⊥x轴于点E,∴ME∥AD,∴△MEC∽△ADC,∴12 ME MCAD CA==,∴ME=2,将y=2代入12yx=中,得x=6,∴点M的坐标为(6,2);(2)∵A(3,4),∴OD=3,AD=4,∴225OA OD AD=+=,∵A(3,4),M(6,2),∴DE=6-3=3,∴CD=2DE=6,∴OC=3+6=9,∴OABC的周长=2(OA+OC)=28.【点睛】此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图象上点的坐标,勾股定理,相似三角形的判定及性质.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【解析】【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可.【详解】解:(1)依题意得:()501-50%=25⨯(万元)(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260-x )辆,依题意得: ()50260x +25x=9000⨯-解得:x=160答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【点睛】本题考查了一元一次方程的实际应用问题,解题的关键是找到数量关系,列出方程.23.如图,ABD ∆中,ABD ADB ∠=∠.(1)作点A 关于BD 的对称点C ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC ,DC ,连接AC ,交BD 于点O .①求证:四边形ABCD 是菱形;②取BC 的中点E ,连接OE ,若132OE =,10BD =,求点E 到AD 的距离.【答案】(1)见解析;(2)①见解析:②12013. 【解析】【分析】 (1)过点A 做BD 的垂线交BD 于点M ,在AM 的延长线上截取AM CM =,即可求出所作的点A 关于BD 的对称点C ;(2)①利用ABD ADB ∠=∠,AC BD ⊥得出BO DO =,利用AO CO =,以及AC BD ⊥得出四边形ABCD 是菱形;②利用OE 为中位线求出AB 的长度,利用菱形对角线垂直平分得出OB 的长度,进而利用Rt AOB ∆求出AO 的长度,得出对角线AC 的长度,然后利用面积法求出点E 到AD 的距离即可.【详解】(1)解:如图:点C 即为所求作的点;(2)①证明:∵ABD ADB ∠=∠,AC BD ⊥,又∵AO AO =,∴ABO ADO ∆≅∆;∴BO DO =,又∵AO CO =,AC BD ⊥∴四边形ABCD 是菱形;②解:∵四边形ABCD 是菱形,∴AO CO =,BO DO =,AC BD ⊥又∵10BD =,∴=5BO ,∵E 为BC 的中点,∴CE BE =,∵AO CO =,∴OE 为ABC ∆的中位线, ∵132OE =, ∴13AB =,∴菱形的边长为13,∵AC BD ⊥,=5BO在Rt AOB ∆中,由勾股定理得:222AO AB BO =-,即:22135=12AO =-,∴12224AC =⨯=,设点E 到AD 的距离为h ,利用面积相等得:12410132h ⨯⨯=, 解得:12013h =, 即E 到AD 的距离为12013.【点睛】本题考查了对称点的作法、菱形的判定以及菱形的面积公式的灵活应用,牢记菱形的判定定理,以及对角线乘积的一半等于菱形的面积是解决本题的关键.24.如图,O 为等边ABC ∆的外接圆,半径为2,点D 在劣弧AB 上运动(不与点,A B 重合),连接DA ,DB ,DC .(1)求证:DC 是ADB ∠的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点,M N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,DMN∆的周长有最小值,随着点D的运动,的值会发生变化,求所有值中的最大值.【答案】(1)详见解析;(2)是,24)S x x=<≤;(3)【解析】【分析】(1)根据等弧对等角的性质证明即可;(2)延长DA到E,让AE=DB,证明△EAC≌△DBC,即可表示出S的面积;(3)作点D关于直线BC、AC的对称点D1、D2,当D1、M、N、D共线时△DMN取最小值,可得t=D1D2,有对称性推出在等腰△D1CD2中,t,D与O、C共线时t取最大值即可算出.【详解】(1)∵△ABC为等边三角形,BC=AC,∴AC BC=,都为13圆,∴∠AOC=∠BOC=120°,∴∠ADC=∠BDC=60°,∴DC是∠ADB的角平分线.(2)是.如图,延长DA至点E,使得AE=DB.连接EC,则∠EAC=180°-∠DAC=∠DBC.∵AE=DB,∠EAC=∠DBC,AC=BC,∴△EAC≌△DBC(SAS),∴∠E=∠CDB=∠ADC=60°,故△EDC是等边三角形,∵DC=x,∴根据等边三角形的特殊性可知DC x∴214)2DBC ADC EAC ADC CDES S S S S S x x x x=+=+==⋅=<≤.(3)依次作点D 关于直线BC 、AC 的对称点D 1、D 2,根据对称性C △DMN =DM+MN+ND=D 1M+MN+ND 2.∴D 1、M 、N 、D 共线时△DMN 取最小值t ,此时t =D 1D 2,由对称有D 1C=DC=D 2C=x ,∠D 1CB=∠DCB ,∠D 2CA=∠DCA,∴∠D 1CD 2=∠D 1CB+∠BCA+∠D 2CA=∠DCB+60°+∠DCA=120°.∴∠CD 1D 2=∠CD 2D 1=60°,在等腰△D 1CD 2中,作CH ⊥D 1D 2,则在Rt △D 1CH 中,根据30°特殊直角三角形的比例可得D 1133x =, 同理D 2233x = ∴t =D 1D 233DC x =.∴x 取最大值时,t 取最大值.即D 与O 、C 共线时t 取最大值,x =4.所有t 值中的最大值为43.【点睛】本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量. 25.平面直角坐标系xOy 中,抛物线()2:012G y ax bx c a =++<<过点()1,5A c a -,()1,3B x ,()2,3C x ,顶点D 不在第一象限,线段BC 上有一点E ,设OBE △的面积为1S ,OCE △的面积为2S ,1232S S =+. (1)用含a 的式子表示b ; (2)求点E 的坐标;(3)若直线DE 与抛物线G 的另一个交点F 的横坐标为63a +,求2y ax bx c =++在16x <<时的取值范围(用含a 的式子表示).【答案】(1)6b a =-;(2)7,32E ⎛⎫⎪⎝⎭或5,32E ⎛⎫ ⎪⎝⎭;(3)当16x <<时,有0<y <9.a 【解析】【分析】(1)把()1,5A c a -代入:()2:012G y ax bx c a =++<<,即可得到答案; (2)先求解抛物线的对称轴,记对称轴与BC 的交点为H ,确定顶点的位置,分情况利用1232S S =+,求解OEH S ,从而可得答案;(3)分情况讨论,先求解DE 的解析式,联立一次函数与二次函数的解析式,再利用一元二次方程根与系数的关系求解,c 结合二次函数的性质可得答案.【详解】解:(1)把()1,5A c a -代入:()2:012G y ax bx c a =++<<, 5,c a a b c ∴-=++6,b a ∴=-(2)6,b a =-∴ 抛物线为:()26012,y ax ax c a =-+<<∴ 抛物线的对称轴为:63,2a x a-=-= 顶点D 不在第一象限, ∴顶点D 在第四象限,如图,设1x <2,x 记对称轴与BC 的交点为H ,则,BH CH =,OBH OCH S S ∴=1232S S =+, 3,2OBH OHE OCHOHE S S S S ∴+=-+ 3,4OHE S ∴= 133,24EH ∴⨯= 1,2EH ∴= 7,3,2E ⎛⎫∴ ⎪⎝⎭当1x >2,x 同理可得:5,3.2E ⎛⎫ ⎪⎝⎭综上:7,32E ⎛⎫⎪⎝⎭或5,3.2E ⎛⎫ ⎪⎝⎭ (3)()22639,y ax ax c a x c a =-+=-+-()3,9,D c a ∴- 当7,32E ⎛⎫ ⎪⎝⎭,设DE 为:,y kx b =+ 73239k b k b c a⎧+=⎪∴⎨⎪+=-⎩解得:621876318k c a b c a =-+⎧⎨=--⎩DE ∴为()621876318,y c a x c a =-++--()26621876318y ax ax c y c a x c a ⎧=-+⎪∴⎨=-++--⎪⎩消去y 得:()26224663180,ax c a x c a +-+--++= 由根与系数的关系得:6622433,c a a a-+-++=- 解得:9,c a = ()22693,y ax ax a a x ∴=-+=-当1x =时,4,y a =当6x =时,9,y a =当3x =时,0y =,当16x <<时,有0<y <9.a 当5,32E ⎛⎫ ⎪⎝⎭,()3,9,D c a - 同理可得DE 为:()218654518,y c a x c a =---++()22186545186y c a x c a y ax ax c⎧=---++∴⎨=-+⎩ 同理消去y 得:()21226645180,ax a c x c a +-++--= 612266,a c a a-+∴+=- 解得:96,c a =+()2269636,y ax ac a a x ∴=-++=-+此时,顶点在第一象限,舍去,综上:当16x <<时,有0<y <9.a【点睛】本题考查的是利用待定系数法求解一次函数的解析式,二次函数的解析式,二次函数图像上点的坐标特点,二次函数的性质,同时考查了二次函数与一元二次方程的关系,一元二次方程根与系数的关系,掌握以上知识是解题的关键.。
2020年广东省广州市中考数学试卷及答案

A. 152.33 105
B. 15.233 106
C. 1.5233 107
D. 0.15233108
2.某校饭堂随机抽取了 100 名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图 的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )
A.套餐一
B.套餐二
3.下列运算正确的是( )
(2)在(1)所作的图中,连接 BC , DC ,连接 AC ,交 BD 于点 O .
①求证:四边形 ABCD 是菱形; ②取 BC 的中点 E ,连接 OE ,若 OE 13 , BD 10 ,求点 E 到 AD 的距离.
2 24.如图,O 为等边 ABC 的外接圆,半径为 2,点 D 在劣弧 AB 上运动(不与点 A, B 重合),连接 DA ,
B.1 个
C.2 个
D.1 个或 2 个
10.如图,矩形 ABCD 的对角线 AC , BD 交于点 O , AB 6 , BC 8,过点 O 作 OE AC ,交 AD 于
点 E ,过点 E 作 EF BD ,垂足为 F ,则 OE EF 的值为( )
A. 48 5
B. 32 5
C. 24 5
D.无法确定
8.往直径为 52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽 AB 48cm ,则水的最大深
度为( )
A. 8cm
B.10cm
C.16cm
D. 20cm
9.直线 y x a 不经过第二象限,则关于 x 的方程 ax2 2x 1 0 实数解的个数是( ).
A.0 个
D. 12 5
第二部分 非选择题(共 120 分)
二、填空题(本大题共 6 小题,每小题 3 分,满分 18 分.)
2020广东广州中考数学试题(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2020广东广州中考数学试题
一天,毕达哥拉斯应邀到朋友家做客。
这位习惯观察思考的人,突然,对主人家地面上一块块漂亮的正方形大理石感兴趣。
他没有心思听别人闲聊,沉思于脚下排列规则,大小如一的大理石彼此间产生的数的关系中。
他越想越兴奋,完全被自己的思考迷住,索性蹲到地上,拿出笔尺。
在4块大理石拼成的大正方上,均以每块大理石的对角线为边,画出一个新的正方形,他发现这个正方形的面积正好等于2块大理石的面积;他又以2块大理石组成的矩形对角线为边,画成一个更大的正方形,而这个正方形正好等于5块大理石的面积。
于是,毕达哥拉斯根据自己的推算得出结果:直角三角形斜边的平方等于两条直角边的平方和。
著名的毕达哥拉斯定理就这样产生了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市2020年高中阶段学校招生考试数学第Ⅰ卷(选择题, 共35分)一、选择题(每小题有四个选项,其中有且仅有一项是符合题意的,本题共有13小题,第1~4题每小题2分,第5~13题每小题3分,共35分)1.0.000 000 108这个数,用科学记数法表示为 ( )(A )91.0810-⨯ (B )81.0810-⨯ (C )71.0810-⨯ (D )61.0810-⨯2.计算()210.25712-⎛⎫⨯-+- ⎪⎝⎭所得的结果是 ( )(A )2 (B )54 (C )0 (D )17163.如果两圆只有一条公切线,那么这两个圆的位置关系是 ( )(A )外离 (B )外切 (C )相交 (D )内切4.如图1,若四边形ABCD 是半径为1cm 的⊙O 的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为 ( )(A )()222cm π- (B )()221cm π- (C )()22cm π-(D )()21cm π-5.函数141y x x =++-中,自变量x 的取值范围是 ( ) (A )x>-4 (B )x>1 (C )x ≥-4 (D )x ≥16.如果已知一次函数y=kx+b 的图象不经过第三象限,也不经过原点,那么k 、b 的取值范围是 ( )(A )k>0且b>0 (B )k>0且b<0 (C )k<0且b>0 (D )k<0且b<07.若点()()()1232,11,y y y --、,、都在反比例函数1y x=-的图象上,则 ( ) (A )123y y y >> (B )213y y y >> (C )312y y y >> (D )132y y y >> 8.抛物线245y x x =-+的顶点坐标是 ( )(A )(-2,1) (B )(-2,-1) (C )(2,1) (D )(2,-1)9.某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按一定的速度注水,水池注满后,停止注水,又立即按一定的速度放完水池的水。
若水池的存水量为v (立方米),放水或注水的时间t (分钟),则v 与t 的关系的大致图象只能是 ( )10.直线y x =与抛物线22y x =-的两个交点的坐标分别是 ( ) (A )(2,2)(1,1) (B )(2,2)(-1,-1) (C )(-2,-2)(1,1)(D )(-2,-2)(-1,1) 11.如图3,若C 是线段AB 的中点,D 是线段AC 上的任一点(端点除外),则 ( ) (A )CB AC DB AD ⋅<⋅ (B )CB AC DB AD ⋅=⋅(C )CB AC DB AD ⋅>⋅ (D )CB AC DB AD ⋅⋅与大小关系不确定12.在一次向“希望工程”捐款的活动中,若已知小明的捐款数比他所在学习小组中13个人捐款的平均数多2元,则下列的判断中,正确的是 ( )(A )小明在小组中捐款数不可能是最多的 (B )小明在小组中捐款数可能排在第12位(C )小明在小组中捐款数不可能比捐款数排在第七位的同学的少 (D )小明在小组中捐款数可能是最少的13.若12⊙⊙o o 、的半径分别为1和3,且1⊙o 和2⊙o 外切,则平面上半径为4且与12⊙⊙o o 、都相切的圆有( )(A )2个 (B )3个 (C )4个 (D )5个第Ⅱ卷(非选择题,共115分)二、填空题(本题共有6小题,每小题3分,共18分)14.如图4,AB//CD ,若∠ABE=120°,∠DCE=35°,则∠BEC=_________________。
15.过△ABC 的顶点C 作边AB 的垂线,如果这垂线将∠ACB 分为40°和20°的两个角,那么∠A 、∠B 中较大的角的度数是______________。
16.如图5,在正方形ABCD 中,AO ⊥BD ,OE 、FG 、HI 都垂直于AD ,EF 、GH 、IJ 都垂直于AO ,若已知1AIJ S ∆=,则ABCD S 正方形=________________。
17.方程55x x -=-的解是__________________。
18分数 50 60 70 80 90 100 人数251013146这组学生成绩的中位数是______________。
19.在平坦的草地上有A 、B 、C 三个小球,若已知A 球和B 球相距3米,A 球与C 球相距1米,则B 球与C 球可能相距______________米。
(球的半径忽略不计,只要求填出一个符合条件的数)三、(本题满分8分)20.已知:如图6,A 是直线l 外的一点。
求作:(1)一个⊙A,使得它与l有两个不同的交点B、C;(2)一个等腰△BCD,使得它内接于⊙A。
(说明:要求写出作法。
)四、(本题共有2个小题,每小题9分,共18分)21.解方程243311 xx x-=-++22.在半径为27m的圆形广场中央点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图7)。
求光源离地面的垂直高度SO(精确到0.1m)(2 1.414,3 1.732,5 2.236===,以上数据供参考。
)五、(本题满分13分)23.在图8的方格纸上有A、B、C三点(每个小方格的边长为1个单位长度)。
(1)在给出的直角坐标系中(或舍去该直角坐标系,在自己另建立适当的直角坐标系中)分别写出点A、B、C的坐标;(2)根据你得出的A、B、C三点的坐标,求图象经过这三点的二次函数的解析式。
六、(本题满分13分)24.如图9,⊙O的弦AB、CD的延长线相交于点E请你根据上述条件,写出一个正确的结论(所写的结论不能自行再添加新的线段及标注其它字母),并给出证明。
(证明时允许自行添加辅助线)七、(本题满分15分)25.当a 取什么数值时,关于未知数x 的方程2410ax x +-=只有正实数根?26于点P 。
(2、MB 、MN 九、广州市2002年高中阶段学校招生考试参考答案1.C 2.A 3.D 4.C 5.B 6.C 7.B 8.C 9.A 10.B11.A 12.B 13.D 14.95° 15.70 16.256 17.x=5 18.80分 19.3 20.(1)作法:①在l 外取一点E ,使点E 、A 在l 的两侧②以点A 为圆心,AE 长为半径,作圆交l 于B 、C 两点。
则⊙A 即为所求。
(2)①以点B 为圆心,BC 长为半径画弧,交⊙A 于点D ,②连结BD 和CD 。
则△BCD 即为所求。
(其它作法只要符合要求,均视为正确)21.解:去分母,得()24313x x -=+-,整理,得2340x x --=,解之,得124,1x x ==-。
经检验,x=-1是增根。
∴原方程的根是x=4 22.解:在△SAB 中,SA=SB ,∠ASB=120° ∵SO ⊥AB ,∴O 为AB 的中点。
且∠ASO=∠BSO=60°。
在Rt △ASO 中,OA=27m,∴)(6.153933276027m ctg ASO ctg OA SO ≈=⋅=︒⋅=∠⋅=。
答:光源S 离地面的垂直高度为15.6m 。
23.解法一(在所给的直角坐标系中计算) (1)点A 的坐标是(2,3),点B 的坐标是(4,1),点C 的坐标是(8,9)。
(2)设所求的二次函数解析式为:2y ax bx c =++。
把点A 、B 、C 的坐标分别代入上式,得:423,1641,6489。
a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解之,得124,9。
a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴所求的二次函数解析式为21492y x x =-+。
解法二(在以B 为原点,另建的直角坐标系中计算)(1)以B 为原点,建立如图所示的直角坐标系。
点A 的坐标是(-2,2),点B 的坐标是(0,0),点C 的坐标是(4,8)。
(2)设所求的二次函数解析式为:2y ax bx c =++。
把点A 、B 、C 的坐标分别代入上式,得:422,0,1648。
a b c c a b c -+=⎧⎪=⎨⎪++=⎩解之,得1,20,0。
a b c ⎧=⎪⎪=⎨⎪=⎪⎩∴所求的二次函数解析式为212y x =。
解法三(在以点A 为原点,另建的直角坐标系中计算) (1)以A 为原点,建立如图所示的直角坐标系, 点A 的坐标是(0,0),点B 的坐标是(2,-2),点C 的坐标是(6,6)。
(2)设所求的二次函数解析式为:2y ax bx c =++把点A 、B 、C 的坐标分别代入上式,得:0,422,3666。
c a b c a b c =⎧⎪++=-⎨⎪++=⎩ 解之,得1,22,0。
a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴所求的二次函数解析式为2122y x x =-。
六、可以得出的结论及证明如下:(1)EA ·EB=EC ·ED证明:连结AD 、BC 。
∵∠A=∠C ,∠E=∠E ,∴△AED ∽△CEB 。
∴AE EDCE EB=。
即 AE ·EB=CE ·ED 。
(2)AE>DE 。
证明:连结AD 、BD 、BC ,∵∠1是△BCD 的外角,∠C 是△BCD 的内角, ∴∠1>∠C 。
而∠ADE>∠1,∠C=∠A ,∴在△ADE 中,∠ADE>∠A 。
∴AE>DE 。
(3)。
连结AD 。
∵∠2是△ADE 的外角,∠A 是△ADE 的内角, ∴∠2>∠A 。
∵∠2所对的弧是,∠A 所对的弧是,∴。
七、解:(1)当a=0时,方程为4x -1=0。
∴14x =。
(2)当a ≠0时,()2441164a a ∆=--=+。
令16+4a ≥0,得 a ≥-4且a ≠0时方程有两个实数根。
①设方程的两个实数根为12x x 、,∵方程只有正实数根,∴由根与系数的关系,得且1240x x a+=->。
解之,得a<0。
② 由①、②可得:当-4≤a<0时,原方程有两个正实数根。
综上讨论可知:当-4≤a ≤0时,方程2410ax x +-=只有正实数根。
八、(1)∵∠B=90°,OP ⊥AB , ∴∠AOP=∠B=90°,∴△AOP ∽△ABC 。
∴OP BCAO AB=。
∵AB=4,BC=3,O 是AB 的中点。
∴324OP =。
∴32OP =。
∵32,2OP AO OB =<==且3222+>,∴OP+AO>OB 。