2019年备战高考:高中生物光合作用的知识点汇总

合集下载

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结定义:光合作用是绿色植物吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。

反应场所:主要在叶绿体的类囊体薄膜上进行,而暗反应(碳反应)则在叶绿体基质中进行。

光反应:水的光解:在光下,叶绿体中的色素吸收光能,将水分解为氧气和[H]。

ATP的生成:在光反应中,利用光能合成ATP,提供暗反应所需的能量。

色素吸收光能:叶绿素和类胡萝卜素主要吸收红光和蓝紫光,将光能传递给少数特殊状态的叶绿素a分子,引发光反应。

暗反应(碳反应):CO₂的固定:在暗反应开始时,CO₂与五碳化合物(C₅)结合生成两个三碳化合物(C₃)。

C₃的还原:在光反应中生成的[H]和ATP作用下,C₃被还原为三碳糖(C₃H₆O₃),并释放出能量。

五碳化合物的再生:三碳糖的一部分合成五碳化合物(C₅),完成五碳化合物的再生。

糖类的合成:三碳糖的另一部分转化为葡萄糖或其他糖类。

光暗反应的联系:光反应产生的[H]和ATP是暗反应的原料,暗反应产生的五碳化合物是光反应的产物。

二者相互依存,缺一不可。

影响因素:光照强度:直接影响光反应速率,间接影响暗反应速率。

CO₂浓度:直接影响暗反应速率。

温度:通过影响酶的活性来影响光合作用速率。

矿质元素和水:矿质元素是叶绿素的组成成分,水是光合作用的光反应和暗反应的原料。

光合作用的意义:为生物圈提供有机物和氧气。

维持大气中氧和二氧化碳的平衡。

对生物的进化有重要作用,对地球的温室效应有重要影响。

以上仅为光合作用的基础知识点总结,更深入的理解和掌握可能需要通过更多的学习和实践来实现。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是生物体中发生的一种重要的生化过程,通过光合作用,植物可以利用光能将二氧化碳和水转化为有机物,同时释放出氧气。

光合作用是维持地球上所有生物生存的关键过程之一,它不仅为植物提供能量和营养物质,还为其他生物提供氧气,并且调节着地球上的气候。

光合作用的主要步骤包括光能捕捉、光化学反应和暗反应三个过程。

下面将对这三个过程进行详细的介绍。

1. 光能捕捉光合作用的第一步是光能捕捉,植物通过叶绿素等色素分子吸收光能。

叶绿素是光合作用中最重要的色素之一,它可以吸收光谱中的红光和蓝光,而绿光则被反射出来,所以植物叶子呈现绿色。

光能捕捉发生在植物叶子的叶绿体中,叶绿体是一种专门用来进行光合作用的细胞器。

2. 光化学反应在光能捕捉后,光化学反应开始进行。

光化学反应发生在叶绿体的脉络膜上,其中包含许多色素分子。

在光化学反应中,吸收到的光能被转化为化学能,同时释放出了氧气。

在光化学反应中,水分子被分解成氧气、氢离子和电子。

氢离子和电子会被用于下一个过程——暗反应。

3. 暗反应暗反应也被称为Calvin循环,它发生在叶绿体的基质中。

在暗反应中,利用光化学反应产生的氢离子和电子,植物将二氧化碳转化为有机物(例如葡萄糖)。

暗反应是光合作用的核心步骤,它需要通过一系列酶的催化作用完成。

暗反应不依赖光能,因此可以在黑暗中进行。

此外,光合作用中还有一些其他重要的知识点:1. 光合作用对环境的影响:光合作用通过吸收二氧化碳和释放氧气,调节了地球上的气候。

光合作用还是地球上所有食物链的起点,提供了所有生物的能量源。

2. 光合作用与呼吸作用的关系:光合作用和呼吸作用是相互依赖的。

光合作用产生的有机物可以被用于呼吸作用产生能量,而呼吸作用产生的二氧化碳则可以被光合作用利用。

3. 光合作用的影响因素:光合作用的速率受到光强度、温度和二氧化碳浓度等因素的影响。

光强度越高、温度适宜以及二氧化碳浓度越高,光合作用的速率也越快。

光合作用知识点总结

光合作用知识点总结

光合作用知识点总结光合作用是植物、某些细菌和藻类利用太阳能将二氧化碳和水转化为氧气和葡萄糖的过程。

以下是光合作用的主要知识点总结:1. 光合作用的定义:光合作用是生物体通过光能将无机物质转化为有机物质的过程,同时释放氧气。

2. 光合作用发生的场所:主要在植物的叶绿体中进行。

3. 光合作用的过程:分为光反应和暗反应两个阶段。

- 光反应:在叶绿体的类囊体膜上进行,需要光能,产生ATP和NADPH。

- 暗反应(也称为Calvin循环):在叶绿体的基质中进行,不直接需要光能,利用ATP和NADPH将二氧化碳转化为葡萄糖。

4. 光合作用的关键分子:- 叶绿素:光合作用中捕获光能的主要色素。

- ATP(三磷酸腺苷):细胞能量的通用货币。

- NADPH:一种电子载体,参与暗反应。

5. 光合作用的化学方程式:6CO2 + 6H2O + 光能→ C6H12O6 + 6O26. 光合作用的意义:- 为地球生态系统提供氧气。

- 为生物体提供能量和有机物质。

- 是地球上碳循环和能量流动的基础。

7. 影响光合作用的因素:- 光照强度:光强增加,光合作用速率增加,但达到饱和点后不再增加。

- 二氧化碳浓度:二氧化碳浓度增加,光合作用速率增加,直到达到饱和点。

- 温度:在一定范围内,温度升高,光合作用速率增加,但过高的温度会抑制光合作用。

- 水分:水分是光合作用的必要条件,干旱会影响光合作用的进行。

8. 光合作用的局限性:光合作用受到环境条件的限制,如光照、温度、水分等,这些因素的变化会影响光合作用的效率。

9. 光合作用与全球气候变化的关系:光合作用是自然界中重要的碳汇,通过吸收大气中的二氧化碳,有助于减缓全球气候变化。

10. 光合作用在农业中的应用:通过改良作物的光合作用效率,可以提高作物的产量和抗逆性。

光合作用是自然界中一个复杂而精细的过程,对维持地球生态系统平衡具有至关重要的作用。

了解光合作用的机制和影响因素,有助于我们更好地保护和利用这一自然资源。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是植物、某些细菌和藻类通过光能将无机物转化为有机物的过程,同时释放氧气。

以下是高中生物中光合作用的知识点总结:1. 光合作用的定义:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程。

2. 光合作用的重要性:- 是生态系统能量流动的起点。

- 为生物圈提供氧气和有机物。

- 促进了大气中氧气的积累。

3. 光合作用的过程:- 光依赖反应:在叶绿体的类囊体膜上进行,需要光能,产生ATP和NADPH。

- 光合磷酸化:光能转化为化学能,储存在ATP中。

- 光合电子传递链:光能激发叶绿素分子,电子在一系列电子受体间传递。

- 光合色素:主要包括叶绿素a、叶绿素b、类胡萝卜素和叶黄素,其中叶绿素a是主要的光合色素。

4. 光合作用的场所:主要在植物的叶绿体中进行。

5. 光合作用的条件:- 光照:提供必要的光能。

- 二氧化碳:作为原料之一。

- 水:作为原料之一,同时参与光依赖反应。

6. 光合作用的产物:- 葡萄糖:是光合作用的主要产物,用于植物的生长和维持生命活动。

- 氧气:作为副产品释放到大气中。

7. 光合作用的类型:- C3植物:大多数植物,光合作用的主要途径。

- C4植物:如玉米、甘蔗等,具有特殊的二氧化碳固定机制,提高光合效率。

- CAM植物:如仙人掌,通过夜间固定二氧化碳,减少水分蒸发。

8. 光合作用的光反应和暗反应:- 光反应:在光照下进行,产生ATP和NADPH。

- 暗反应(Calvin循环):不依赖光照,利用ATP和NADPH将二氧化碳转化为有机物。

9. 光合作用的调控:- 光强、温度、水分等环境因素都会影响光合作用的效率。

10. 光合作用与呼吸作用的关系:- 呼吸作用是光合作用的逆过程,消耗有机物,释放能量。

11. 光合作用的限制因素:- 光强、二氧化碳浓度、温度、水分等。

12. 光合作用与全球气候变化:- 植物的光合作用对全球碳循环有重要影响,有助于缓解温室效应。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是生物体通过利用光能驱动的化学反应将二氧化碳和水转化为有机物和氧气的过程。

光合作用是生命活动的基础,对维持地球上所有生命物种的生存和进化起着重要作用。

1. 光合作用的概念光合作用是生物体利用光能将无机物转化为有机物的过程。

植物、藻类和一些细菌都能进行光合作用。

光合作用分为光化反应和暗反应两个阶段,光化反应需要光能驱动,暗反应则不需要光能直接参与。

2. 光合作用的过程光合作用的过程可以分为光化反应和暗反应两个阶段。

2.1 光化反应光化反应发生在叶绿体的光合膜内,通过叶绿体中的叶绿体色素分子吸收光能,激发电子,形成高能化学物质ATP和NADPH。

2.1.1 光能的吸收叶绿素是植物中的光合色素,它能吸收蓝色和红色光线,而反射和透过绿色光线,因此植物呈现绿色。

叶绿体膜中的叶绿素分子吸收光能后,电子会被激发到高能态,从而开始光合作用的过程。

2.1.2 光合色素集合体叶绿体膜中的叶绿素分子会组成光合色素集合体,其中的光合单位包括两个类型的反应中心:光系统I和光系统II。

光系统I主要吸收700nm附近的红光,而光系统II主要吸收680nm附近的红光。

2.1.3 光系统I和光系统II的作用光系统I和光系统II各自有特定的光敏色素,它们吸收光能后会激发电子,并传递到电子传递链中。

光系统II先被激发,产生高能电子,并生成ATP。

随后,电子通过电子传递链传递到光系统I,激发光敏色素并产生NADPH。

2.1.4 水的光解和氧气的释放光系统II在光化反应中的最后一步是水的光解,即将水分子分解为氧气和氢离子。

这是光合作用中产生氧气的重要过程。

2.2 暗反应暗反应发生在叶绿体基质中,是一系列以光化反应生成的ATP 和NADPH为能量和还原力来源的化学反应。

暗反应主要包括碳固定、还原和再生三个阶段。

2.2.1 碳固定暗反应的第一步是碳固定,即将二氧化碳与含有5个碳的化合物——磷酸核糖(RuBP)反应,生成稳定的6碳分子。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是高中生物中的一个重要知识点,对于理解生物的能量转换和物质循环具有关键作用。

以下是对高中生物光合作用知识点的详细总结。

一、光合作用的概念光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。

从反应式来看:6CO₂+ 6H₂O → C₆H₁₂O₆+ 6O₂二、光合作用的场所——叶绿体叶绿体是进行光合作用的细胞器。

它具有双层膜结构,内部含有类囊体堆叠形成的基粒,基粒上分布着与光反应有关的色素和酶。

叶绿体基质中含有与暗反应有关的酶。

三、光合作用的过程光合作用包括光反应和暗反应两个阶段。

1、光反应(1)条件:光照、色素、酶。

(2)场所:叶绿体的类囊体薄膜上。

(3)物质变化:水的光解:2H₂O → 4H + O₂ATP 的合成:ADP + Pi +能量→ ATP(4)能量变化:光能转化为活跃的化学能储存在 ATP 和H中。

2、暗反应(1)条件:多种酶。

(2)场所:叶绿体基质。

(3)物质变化:CO₂的固定:CO₂+ C₅ → 2C₃C₃的还原:2C₃+ H +ATP → (CH₂O)+ C₅+ ADP + Pi (4)能量变化:ATP 中活跃的化学能转化为有机物中稳定的化学能。

光反应为暗反应提供H和 ATP,暗反应为光反应提供 ADP 和 Pi,二者相互依存,共同完成光合作用的过程。

四、影响光合作用的因素1、光照强度在一定范围内,光照强度增加,光合作用强度增强;当光照强度达到一定值后,光合作用强度不再增加。

2、二氧化碳浓度二氧化碳是光合作用的原料之一。

在一定范围内,二氧化碳浓度增加,光合作用强度增强。

3、温度温度通过影响酶的活性来影响光合作用。

一般来说,在最适温度之前,随着温度升高,光合作用强度增强;超过最适温度后,光合作用强度减弱。

4、水分水是光合作用的原料之一,同时也是体内各种化学反应的介质。

缺水会导致气孔关闭,影响二氧化碳的吸收,从而影响光合作用。

光合作用的生物知识点总结

光合作用的生物知识点总结

光合作用的生物知识点总结一、光合作用的基本过程光合作用是一种复杂的生物化学反应,其基本过程包括光能的吸收、光能的转化、光合色素的参与、光合产物的合成等多个步骤。

1.1 光合作用的发生地点光合作用的主要发生在植物叶绿体的叶绿体内膜系统中的光合膜上,其中主要包括光合色素、载体蛋白和光合酶等。

1.2 光能的吸收光合色素是植物叶绿体内的色素颗粒,其中包括叶绿素a、叶绿素b、类胡萝卜素等光合色素分子。

这些分子能够吸收来自太阳的光能,并将其转化为化学能。

1.3 光能的转化当光合色素吸收到光能后,会激发其中的电子,使得这些电子跃迁至更高的能级。

接着,这些高能电子在光合作用的电子传递链中逐步失去能量,并最终被用来合成光合产物。

1.4 光合产物的合成光合作用最终产生的是ATP和NADPH。

这些物质是植物进行生长发育和代谢活动所需的能量与电子供体。

二、光合作用的过程与途径光合作用的过程及途径主要包括光合作用的两个阶段和不同环境条件下的适应性变化。

2.1 光合作用的两个阶段光合作用可以分为光反应与暗反应两个阶段。

光合作用的光反应阶段是在光下进行的,其中光能被转化为ATP和NADPH。

而暗反应阶段则利用这些能量和电子来合成有机物质。

2.2 光合作用的适应性变化光合作用的进行受到光照、温度、二氧化碳浓度以及水分等多个环境因素的影响。

植物在不同环境条件下,会通过调节叶片的气孔开闭、调节叶绿体和光合酶的产生等途径来适应外界环境的变化。

三、光合作用的生物学意义和应用价值光合作用在生物界中具有重要的生物学意义和应用价值,包括对生物能量转化、资源利用、生态环境以及农业生产等方面的影响。

3.1 生物能量转化光合作用是地球上生物界中最重要的能量来源之一,通过光合作用,植物能够将太阳光能转化为化学能,并利用这些能量来维持生长发育和代谢活动。

3.2 资源利用光合作用参与了植物中的碳水化合物(如葡萄糖、淀粉等)的合成,这些有机物质是植物的主要养分来源,也是人类和其他动物的食物来源。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是生物体利用光能将无机物转化为有机物的过程,是维持地球生态平衡的重要途径。

下面将对高中生物光合作用的相关知识点进行总结。

一、光合作用的基本概念光合作用是指植物和一些单细胞生物在光的作用下,将二氧化碳和水转化为有机物和氧气的化学反应。

这个过程主要发生在植物叶绿体的内膜系统中,包括光合色素的吸收光能、光能转化为化学能、化学能合成有机物等多个步骤。

二、光合作用的反应方程式光合作用的反应方程式可以用化学式表示为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2其中,CO2代表二氧化碳,H2O代表水,C6H12O6代表葡萄糖,O2代表氧气。

三、光合作用的两个阶段光合作用可以分为光能捕获和光能转化两个阶段。

1. 光能捕获阶段:光合色素吸收光能的过程。

光合色素主要包括叶绿素a、叶绿素b等,它们能吸收不同波长的光。

其中,叶绿素a 的吸收峰在蓝光和红光的波长范围内,而叶绿素b的吸收峰在橙光和蓝绿光的波长范围内。

光合色素吸收光能后,激发电子进入光化学反应中心。

2. 光能转化阶段:光合色素激发的电子经过一系列的传递过程,最终被NADP+接受并还原为NADPH。

同时,光能转化为化学能,用于合成ATP。

这个过程称为光化学反应。

四、光合作用的影响因素光合作用的速率受到多个因素的影响,主要包括光强、温度和二氧化碳浓度。

1. 光强:光合作用的速率随光强的增加而增加,但达到一定光强后会趋于饱和,即光合作用速率不再增加。

2. 温度:适宜的温度可以促进光合作用的进行,但过高或过低的温度都会抑制光合作用的进行。

3. 二氧化碳浓度:二氧化碳是光合作用的底物之一,二氧化碳浓度的增加可以促进光合作用的速率。

五、光合作用的产物和作用光合作用的产物主要包括葡萄糖和氧气。

葡萄糖是植物的主要有机物质,可以被植物用来产生能量和合成其他有机物。

而氧气则释放到大气中,供动物呼吸所需。

光合作用不仅提供了植物的能量和有机物质,还维持了地球上大气中氧气和二氧化碳的平衡。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是指植物通过光能将无机物转化成有机物的过程。

光合作用是地球上最重要的化学反应之一,不仅为植物提供能量和物质,还产生氧气,维持着整个生态系统的平衡。

光合作用过程中主要涉及到三个关键因素:光能、光合色素和光合细胞器(叶绿体)。

首先,光能是光合作用的驱动力。

光合作用需要吸收太阳光中的光子来提供能量。

植物叶片中的叶绿素是光合作用过程中对光能的主要吸收体。

其次,光合色素是叶绿体中的一种生化物质,其中主要的成分是叶绿素。

叶绿素可以吸收可见光中的红、橙、蓝、紫等波长的光,并反射绿色光,因此植物叶片呈现出绿色。

叶绿素可以将吸收到的光能转化成电子能,供给光合作用的反应过程。

最后,光合细胞器是进行光合作用的主要细胞结构,其主要组成是叶绿体。

叶绿体内含有许多光合作用的组织单位——类囊体。

类囊体中含有多种光合色素,可以吸收并传递光能,从而进行光合作用反应。

总结起来,光合作用的关键步骤如下:1. 光能的吸收:当植物叶子暴露在阳光下时,叶绿素可以吸收到光能。

2. 光能的转化:通过光合色素的吸收和传递,光能转化为电子能,并传递给光合作用反应中的电子接受体。

3. ATP的合成:在光合作用反应中,电子能用来合成一种高能物质,即三磷酸腺苷(ATP)。

ATP是细胞内最重要的能量供应分子之一,能够提供细胞所需的能量。

4. 光合产物的合成:光合作用反应还能合成有机物质,主要是葡萄糖。

葡萄糖是植物体内最重要的有机物质之一,也是植物细胞壁、淀粉等有机物质的重要原料。

5. 氧气的释放:在光合作用的过程中,水分子被分解为氧气和氢离子。

氧气释放到大气中,为地球上的有氧生物提供氧气。

总的来说,光合作用是植物生长和生存的基础过程,不仅为植物合成有机物质提供能量和原料,还能释放氧气维持生态系统的平衡。

同时,光合作用也为人类社会提供了大量的食物和能源资源。

因此,了解光合作用的原理和过程,对我们理解生态系统的运行机制和探索可持续发展的途径具有重要意义。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是指在光的作用下,植物通过光合系统将二氧化碳和水转化为有机物质和氧气的过程。

对于高中生物学学习来说,理解和掌握光合作用的知识点是非常重要的。

本文将通过以下几个方面对高中生物光合作用的知识点进行总结。

一、光合作用的基本过程光合作用的基本过程包括光能的吸收和转化、光合电子传递和产生ATP、光合固定二氧化碳和合成有机物质这三个关键步骤。

1. 光能的吸收和转化植物叶绿素能够吸收太阳光中的可见光,在叶绿体中沿着叶片内的光合色素分子进行能量传递。

其中,叶绿素a是光合作用的主要色素。

2. 光合电子传递和产生ATP光合作用过程中,光合电子传递链将来自光合色素的能量转化为化学能。

首先,光能被叶绿体中的叶绿素a吸收后,释放出电子。

然后,电子经由一系列电子受体的传递,最终在叶绿体内质膜上产生了氢离子浓度梯度。

利用氢离子浓度梯度,质膜上的ATP合酶酶活性使ADP和磷酸转化为ATP,这一过程被称为光合磷酸化。

3. 光合固定二氧化碳和合成有机物质在固定二氧化碳和合成有机物质的过程中,碳固定发生在叶绿体中的叶绿体基质中,将CO2转化为六碳的化合物再分解为两个三碳的PGA。

而PGA经过一系列酶催化和能量输入,逐渐合成为糖类等有机物质。

二、光合作用的调节因素1.光照强度光照强度是影响光合作用速率的重要因素。

光合作用速率随着光照强度的增加而增加,但在一定范围内,速率会饱和。

2.二氧化碳浓度二氧化碳是光合作用发生的重要底物,二氧化碳浓度的增加会促进光合作用速率的提高。

3.温度温度是影响光合作用速率的关键因素。

适宜的温度能够提高酶活性和化学反应速率,但过高或过低的温度都会对光合作用产生负面影响。

三、光合作用的产物和意义1. 氧气的产生光合作用产生的一个重要产物是氧气,这对地球上的生物有着重要的意义,维持了地球上的生态平衡。

2. 有机物质的合成光合作用还合成了植物体内的有机物质,如葡萄糖等,为植物的生长提供能量和物质基础。

高中生物知识点:光合作用

高中生物知识点:光合作用

高中生物知识点:光合作用
1. 光合作用的定义
光合作用是指植物利用光能将二氧化碳和水转化为有机物质和氧气的过程。

它是地球生物圈中最为重要的能量转化过程之一。

2. 光合作用的反应方程式
光合作用的反应方程式如下:
光合作用:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2
该方程式表示,光合作用将光能转化为葡萄糖(C6H12O6)和氧气(O2),同时消耗二氧化碳(CO2)和水(H2O)。

3. 光合作用的过程
光合作用可以分为光能捕捉和光化学反应两个阶段。

光能捕捉阶段
光能捕捉阶段发生在叶绿素分子中的光合色素复合物中。

在这个阶段中,叶绿素分子吸收光能并将其转化为化学能,进而激发电子。

光化学反应阶段
光化学反应阶段发生在叶绿体中的光合体系中。

在这个阶段中,激发的电子经过光合色素分子间的传递,最终用于还原NADP+和
生成ATP。

4. 光合作用的条件
光合作用需要一定的条件才能正常进行:
- 光能:光合作用依赖于阳光提供的光能,因此只能在光照充
足的环境中进行。

- 光合色素:植物细胞内的叶绿素是光合作用的关键色素,它
能够吸收光能并驱动光合作用的进行。

- 二氧化碳和水:光合作用需要二氧化碳和水作为反应物质。

二氧化碳在植物叶片的气孔中进入叶绿体,水则从植物根部吸收,
并通过管道输送到叶绿体中。

高中生物光合作用知识点

高中生物光合作用知识点

高中生物光合作用知识点一、引言光合作用是生物学中的一个核心概念,它是植物、藻类以及某些细菌通过太阳能将二氧化碳和水转化为有机物和氧气的过程。

本文将总结高中生物课程中关于光合作用的关键知识点。

二、光合作用的基本理解1. 光合作用的定义:光合作用是生物体利用太阳光能将无机物质(二氧化碳和水)转化为有机物质(如葡萄糖)并释放氧气的过程。

2. 光合作用的重要性:光合作用是地球上生命存在的基础,它不仅为植物自身提供能量,而且是几乎所有生物能量的来源。

三、光合作用的类型1. 光依赖性反应(光反应):发生在叶绿体的类囊体膜上,依赖光能进行。

2. 光合磷酸化:在光反应中,通过电子传递链产生ATP的过程。

3. 光独立性反应(暗反应):发生在叶绿体的基质中,不依赖光能,通过固定二氧化碳合成有机物。

四、光合作用的过程1. 光反应:- 光系统II(PSII):水分子分解产生氧气、质子和电子。

- 电子传递链:电子通过一系列载体传递,产生ATP和NADPH。

- 光系统I(PSI):利用NADP+和ADP生成NADPH和ATP。

2. 暗反应(Calvin循环):- 二氧化碳的固定:通过RuBisCO酶将二氧化碳与RuBP结合形成3-磷酸甘油酸。

- ATP和NADPH的消耗:用于将3-磷酸甘油酸转化为葡萄糖等有机物。

五、光合作用的效率1. 光合作用效率的影响因素:光照强度、二氧化碳浓度、温度、水分等。

2. 光饱和点:光照强度达到一定水平后,光合作用速率不再增加。

3. 光补偿点:植物进行光合作用与呼吸作用相抵消时的光照强度。

六、光合作用的应用1. 农业生产:通过控制光照、温度和二氧化碳浓度提高作物产量。

2. 生态系统研究:了解不同生态系统中光合作用的变化,评估生态系统的生产力。

3. 气候变化研究:研究植物对气候变化的适应性和反馈机制。

七、结论光合作用是维持地球生态系统平衡的关键过程,对人类生活和生产具有重要意义。

了解光合作用的基本原理和过程,有助于我们更好地利用自然资源,保护生态环境,促进可持续发展。

生物光合知识点总结高中

生物光合知识点总结高中

生物光合知识点总结高中一、光合作用的基本原理光合作用是植物利用光能合成有机物质的过程。

它的基本原理包括光能的吸收、光合色素的作用和化学能的转化。

植物的叶绿素是最主要的光合色素,它具有吸收光能的能力。

当叶绿素吸收到光能后,会激发电子,然后通过光反应和暗反应,将这些光能转化成化学能,最终合成有机物质。

光合作用的化学方程式如下所示:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2在这个方程式中,CO2为二氧化碳,H2O为水,C6H12O6为葡萄糖,O2为氧气。

这个方程式概括了光合作用的基本过程,即植物利用二氧化碳和水,在光能的作用下,合成有机物质和氧气。

二、光合色素光合色素是植物叶绿色素和类囊体中的其他色素的统称。

其中,叶绿素是最主要的光合色素,它吸收不同波长的光能,从而激发电子,并参与光合作用的光反应过程。

叶绿素主要有叶绿素a和叶绿素b两种类型,它们的吸收光谱分别在绿色和黄绿色波段,因此可以更充分地利用太阳光的光谱。

除了叶绿素外,类囊体中还含有类胡萝卜素、类黄酮素和植物黄素等其他色素,它们也能吸收光能,参与光合作用的光反应过程,起到辅助和保护作用。

三、光反应光反应是光合作用中的第一步,它发生在叶绿体的类囊体膜上。

在光反应中,光能被吸收后,激发了类囊体膜上的叶绿素,激发的电子会被传递给电子接受体,然后通过一系列电子传递链,最终将光能转化成化学能。

同时,光反应还会释放氧气作为副产品。

光反应可以分为光系统Ⅰ和光系统Ⅱ两个部分。

光系统Ⅱ先吸收光能,激发了电子,然后经过一系列电子传递的过程,最终将这些光能转化成化学能,生成ATP。

而光系统Ⅰ则继续吸收光能,再次激发了电子,并最终将这些光能转化成化学能,生成NADPH。

总的来说,光反应是光合作用中,通过叶绿体的光系统Ⅱ和光系统Ⅰ,将光能转化成化学能,最终生成了ATP和NADPH,为暗反应提供了能量和电子供体。

四、暗反应暗反应是光合作用的第二步,它发生在叶绿体的基质中。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是植物体内发生的一种重要的生物化学反应,它是植物生长发育和生存的基础。

光合作用是指植物利用光能将二氧化碳和水转化为有机物质的过程。

下面我们来总结一下高中生物中关于光合作用的相关知识点。

一、光合作用的基本反应方程式:一般来说,光合作用的基本反应方程式可用如下的化学方程式表示:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2这个方程式表示了光合作用的整体过程,即将6分子二氧化碳和6分子水在光照的条件下,经过一系列生物化学反应,形成1分子葡萄糖和6分子氧气。

这个方程式可以分解为两个子反应方程式:1、光反应:在叶绿体的类囊体膜内,光能被叶绿体色素吸收后,激发电子从叶绿体光系统Ⅱ(PSⅡ)经过一系列传递,最终被叶绿体色素I(PSⅠ)捕获。

在这一过程中,光能被转化为了化学能,同时释放氧气。

反应式如下:2H2O → 4H+ + 4e- + O2↑2、暗反应(Calvin循环):PSⅠ中的激发电子最终被用于将二氧化碳还原为葡萄糖。

暗反应的化学方程式如下:6CO2 + 12NADPH + 18ATP + 12H2O → C6H12O6 + 12NADP+ + 18ADP + 18Pi + 6H2O这两个子反应方程式共同构成了光合作用的整体过程。

二、光合色素:光合作用中起到捕获光能的关键作用的是光合色素,其中叶绿素是最重要的光合色素之一。

叶绿素分子有两个重要的部分,一个是色素分子本身,能够吸收光能,另一个是辅助基团,能够保持叶绿素分子的结构稳定和在光合作用中传递电子。

在植物体内,还存在其他的光合色素,比如叶黄素和类胡萝卜素等。

它们都能够吸收不同波长的光能,并参与光合作用的过程。

三、光合作用的影响因素:光合作用的效率受到许多因素的影响,主要包括光照、二氧化碳浓度和温度等因素。

1、光照:光合作用是一种依赖光能的生物化学反应,因此光照是光合作用最基本的影响因素。

光照充足时,光合作用效率较高;光照不足时,光合作用效率较低。

高中光合作用的知识点总结

高中光合作用的知识点总结

高中光合作用的知识点总结一、光合作用的概念光合作用是指植物利用光能将二氧化碳和水合成有机物(如葡萄糖)的过程。

这一过程是在叶绿体内进行的,它是植物维持生命活动所必需的基本代谢过程。

光合作用是植物生活的基础,没有光合作用就没有植物生长,也就没有其他所有生物的生存。

二、光合作用的化学方程式光合作用的化学方程式可以用下面的简化形式表示:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2这个方程式表达了光合作用的总体反应,即二氧化碳和水在光照下被光合色素捕获和利用光能,最终合成葡萄糖和氧气。

三、光合作用的过程1. 光合作用反应的两个阶段光合作用的反应分为光反应和暗反应两个阶段。

光反应发生在叶绿体的类囊体膜上,在叶绿体的基质和类囊体内膜空间进行。

当叶绿体受到光照刺激时,叶绿体内的叶绿体色素分子吸收光能激发,从而使得叶绿体内部的电子激发并跃迁。

这些激发的电子被传递给一系列蛋白质分子,最终被传递给最终受体NADP+,和被还原成NADPH。

暗反应是指在没有光照的情况下,由光反应产生的化合物被利用,将二氧化碳还原为碳水化合物的过程,也就是光合作用生成光合产物的过程。

暗反应主要是卡尔文循环,在这个过程中,水合碳酸被固定为三磷酸桔梗;随后,三磷酸桔梗经过一系列的反应转化为三磷酸甘油醛,最终再经过一系列的反应和还原,生成次磷酸腺苷,直到生成葡萄糖和其他有机物为止。

2. 光合作用的位置光合作用主要是在植物叶绿体内进行的。

叶绿体是植物细胞内的细胞器,其主要功能就是进行光合作用。

叶绿体内含有大量的叶绿体色素,这些叶绿体色素能够吸收太阳光能并将其转化成化学能。

三、光合作用的影响因素1. 光照光照是光合作用进行的必要条件。

光合作用主要是在叶绿体内进行的,叶绿体中的叶绿素可吸收光能,转化成化学能,进行光合作用反应。

光合作用的速率一般随着光照变强而增加,但是当光照强度达到一定程度后,光合作用速率将趋于稳定,不再增加。

2. 温度温度是影响光合作用速率的重要因素之一。

高考生物必考之光合作用

高考生物必考之光合作用

高考光合作用辅导讲义 一、知识点讲解知识点一:光合作用的基本过程本节知识点讲解1、叶绿体的结构与功能(1)结构模式图(2)结构(3)功能:进行 光合作用 的场所2、影响叶绿素合成的三大因素3、光合作用的基本过程概念:指绿色植物通过 叶绿体 ,利用光能,把 二氧化碳和水 转化成储存着能量的有机物,同时释放出氧气的过程、答案:叶绿体类囊体的薄膜、[H]+O2、叶绿体基质、稳定的化学能反应式(写出反应式并标出元素的去向)(1) 若有机物为(C H2O):(2) 若有机物为C 6H 12O6:※重难点突破①光反应和暗反应之间的联系(1) 光反应为暗反应提供两种重要物质:[H ](NAD PH)和A TP,[H]既可作还原剂,又可提供能量;暗反应为⎩⎪⎪⎪⎨⎪⎪⎪⎧ 外表:① 内部⎩⎪⎪⎨⎪⎪⎧ ②基质:含有与 有关的酶③ :由类囊体堆叠而成,分布有 和与光反应有关的酶光反应也提供三种物质:ADP 、P i以及NAD P+,注意产生位置和移动方向(2)暗反应有光无光都能进行。

若光反应停止,暗反应可持续进行一段时间,但时间不长,故晚上一般认为只进行呼吸作用,不进行光合作用。

(3)相同光照时间内,光照和黑暗间隔处理比一直光照有机物积累得多,因为[H ]、ATP 基本不积累,利用充分;但一直光照会造成[H ]、A TP 的积累,利用不充分、例如:若同一植物处于两种不同情况下进行光合作用,甲一直光照10分钟,黑暗处理10分钟;乙光照5秒,黑暗5秒,持续20分钟,则光合作用制造的有机物:甲〈乙(暗反应时间长)②利用同位素示踪法判断光合作用C 、H 、O 的转移途径(1)H :3H 2O ———→光反应[3H ]———→暗反应(C 3H 2O)。

(2)C :14CO 2—————→CO 2的固定14C 3————→C 3的还原 (14CH 2O)。

(3)O :H 182O ———→光反应18O 2;C 18O 2—————→CO 2的固定C 3————→C 3的还原 (CH 182O)。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是生物体中一种重要的能量转化过程,通过光合作用,植物能够利用太阳能将二氧化碳和水转化为有机物质,并释放出氧气。

以下是关于高中生物光合作用的几个重要知识点的总结:1. 光合作用的基本方程式:光合作用的基本方程式可以用化学式表示为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2。

这个方程式表明,光合作用需要二氧化碳、水和光能作为原料,产生葡萄糖和氧气。

2. 光合作用的两个阶段:光合作用可以分为光反应和暗反应两个阶段。

光反应发生在叶绿体的基质中,需要光能作为驱动力,将光能转化为化学能,生成ATP 和NADPH。

而暗反应则发生在叶绿体基质和细胞质中,利用ATP 和NADPH将二氧化碳还原为葡萄糖。

3. 光合作用的光反应:光反应主要发生在叶绿体的光合体中,包括光系统I和光系统II。

光系统II先被激发,将光能转化为化学能,生成ATP。

随后,光系统I被激活,将光能转化为化学能,生成NADPH。

同时,在光系统II 的过程中,水分子被光解,释放出氧气。

4. 光合作用的暗反应:暗反应发生在叶绿体基质和细胞质中,不需要光能直接参与。

暗反应的关键步骤是卡尔文循环,包括碳同化、还原和再生三个阶段。

在碳同化阶段,光合固定二氧化碳生成3-磷酸甘油酸,然后通过还原和再生阶段将3-磷酸甘油酸转化为葡萄糖。

5. 光合作用的调控因素:光合作用的速率受到许多因素的影响。

光强、温度、二氧化碳浓度和水分等因素都会影响光合作用的进行。

光合作用速率随着光强的增加而增加,但在一定光强下会达到饱和。

温度的升高可以促进光合作用,但超过一定温度则会抑制光合作用。

二氧化碳浓度的增加可以增加光合作用速率,但也会达到饱和。

水分不足会导致气孔关闭,限制二氧化碳的进入,从而影响光合作用。

6. 光合作用的意义:光合作用是地球上最重要的能量转化过程之一,对维持生态平衡和气候稳定起着重要作用。

通过光合作用,植物能够吸收二氧化碳,释放氧气,净化空气。

光合作用知识点归纳总结

光合作用知识点归纳总结

光合作用知识点归纳总结光合作用是植物体内进行的一系列化学反应,将光能转化为化学能,将二氧化碳和水转化为有机物质。

以下是光合作用的知识点的归纳总结。

1.光合作用的定义:光合作用是植物体内利用光能将无机物转化为有机物的过程。

它是能量的转换过程,通过光能的吸收和利用,将二氧化碳和水合成为有机物质,同时释放出氧气。

2.光合作用的反应方程式:光合作用的整体反应方程式为六氧化碳加上十二水生成六氧化糖和六氧化碳。

简化反应方程式为:6CO2+6H2O+光能→C6H12O6+6O23.光合作用的反应环境:光合作用主要发生在植物体内叶绿体中。

叶绿体是光合作用的主要场所,其中的叶绿素是吸收光能的主要色素。

4.光合作用的两个阶段:光合作用可以分为光能转化阶段和化学能转化阶段。

光能转化阶段发生在叶绿体的光依赖反应中,利用光能将水分解为氧气和电子供应给化学能转化阶段。

化学能转化阶段发生在叶绿体的暗反应中,利用电子和能量来合成有机物质。

5.光能转化阶段的过程:光能转化阶段包括光合色素的吸收和电子传递的两个过程。

光合色素(叶绿素)吸收光能之后,激发电子跃迁到较高能级,形成光合色素阳离子。

光合色素阳离子释放出电子,经过一系列电子传递过程,最后供给化学能转化阶段。

6.化学能转化阶段的过程:化学能转化阶段主要发生在叶绿体的光独立反应中,其中的核酸和蛋白质参与其中。

该过程包括碳同化和光反应两个过程。

碳同化是将二氧化碳固定为有机化合物,最终形成六碳糖。

光反应则是利用供给电子和能量,在醣类和脂类的合成过程中释放出二氧化碳和水。

7.光合作用的调节:光合作用受到光强、温度和二氧化碳浓度等环境因素的调节。

光强越强,光合作用速率越快,温度也会影响光合作用速率,适宜的温度有利于酶的活性。

另外,较高的二氧化碳浓度也会促进光合作用速率的增加。

9.影响光合作用的因素:光照、温度、水分等环境因素对光合作用有着重要的影响。

光合作用的速率随着光照的增加而增加,在适宜的范围内提高温度可以增强光合作用,但过高的温度会导致光合作用速率下降。

高中光合作用知识点总结

高中光合作用知识点总结

高中光合作用知识点总结1.光合作用的定义光合作用是一种由植物草本植物和一些微生物(如细菌和蓝藻)特有的过程,其中利用太阳能将二氧化碳和水经过光转化,生成有机物质,特别是糖和植物的籽粒,即糖,最后产生的氧放出光合作用的吸收。

2.光合作用的主要特征(1)属于生物化学反应:光合作用是一种生物化学反应,过程中物质发生变化,物种富集物质,释放出能量。

(2)有机物质变成无机物质:光合作用是一种将二氧化碳和水转化为有机物质(如六环糖)的过程,同时也会消耗受激光能量,促使氧化物质变成无机物质,如水杂质和二氧化硫等。

(3)光合作用有光致受激过程:光合作用在受激光的驱动下,细胞内的光敏物质——类胡萝卜素可以将辐射分子中的光能量转化为受激能量,这就是光致受激过程。

3.光合作用的反应过程(1)光呼吸:光呼吸是光合作用的一部分,它是利用植物叶绿体内的呼吸酶活化二氧化碳,把二氧化碳分解成碳水化物和氧气的反应过程。

(2)光合成:光合成又称——羧化链,是对经古氨酸(Glyceraldehyde-3-Phosphate)逐步合成有机物质(糖)的过程。

(3)叶绿素脱氢反应:这个反应是叶绿素把氢原子从分子内脱去,加到植物体内的甘油激酶上,来负责水分子分解过程。

(4)质子泵:光合作用的最终生成氧的步骤,把质子从细胞内的叶绿体循环出来,泵入周围的细胞膜中,促使氢原子和氧气结合,生成水分子,从而完成光合作用。

4.光合作用的生物学意义(1)光合作用能改变大气中的气体组成:光合作用使二氧化碳在植物细胞里转变为有机物,效率高达4%~8% for plant leaves,大大减少了大气中的二氧化碳的排放;另外它也使大量的氧放出,从而改变了大气的气体组成,缓解了温室效应。

(2)丰富生物地球:光合作用产生的糖和有机物是生物的主要能源和营养物质,从而丰富了生物地球,造就了生物多样性;光合能使氧气在地球上分布,供生物及其他物种生存所必需,同时它也使水受到能量的激励,其作用不可小觑,以致于也影响到全球气候,造就了我们现在这美好的地球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物知识点:光合作用
1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。

②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。

过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。

证明:绿色叶片在光合作用中产生了淀粉。

③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。

证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。

④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。

第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。

光合作用释放的氧全部来自来水。

2、叶绿体的色素:①分布:基粒片层结构的薄膜上。

②色素的种类:高等植物叶绿体含有以下四种色素。

A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(黄绿色);B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素(橙黄色)和叶黄素(黄色)
3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。

4、光合作用的过程:①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能─→ATP(为暗反应提供能量)②暗反应阶段:a、CO2的固定:CO2+C5→2C3b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5
5、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。

②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。

③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。

④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。

⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。

6、光合作用的意义:①提供了物质来源和能量来源。

②维持大气中氧和二氧化碳含量的相对稳定。

③对生物的进化具有重要作用。

总之,光合作用是生物界最基本的物质代谢和能量代谢。

7、影响光合作用的因素:有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。

这些因素中任何一种的改变都将影响光合作用过程。

如:在大棚蔬菜等植物栽种过程中,可采用白天适当提高温度、夜间适当降低温度(减少呼吸作用消耗有机物)的方法,来提高作物的产量。


如,二氧化碳是光合作用不可缺少的原料,在一定范围内提高二氧化碳浓度,有利于增加光合作用的产物。

当低温时暗反应中(CH2O)的产量会减少,主要由于低温会抑制酶的活性;适当提高温度能提高暗反应中(CH2O)的产量,主要由于提高了暗反应中酶的活性。

8、光合作用过程可以分为两个阶段,即光反应和暗反应。

前者的进行必须在光下才能进行,并随着光照强度的增加而增强,后者有光、无光都可以进行。

暗反应需要光反应提供能量和[H],在较弱光照下生长的植物,其光反应进行较慢,故当提高二氧化碳浓度时,光合作用速率并没有随之增加。

光照增强,蒸腾作用随之增加,从而避免叶片的灼伤,但炎热夏天的中午光照过强时,为了防止植物体内水分过度散失,通过植物进行适应性的调节,气孔关闭。

虽然光反应产生了足够的ATP和[H],但是气孔关闭,CO2进入叶肉细胞叶绿体中的分子数减少,影响了暗反应中葡萄糖的产生。

9、在光合作用中一些考点:a、由强光变成弱光时,[产生的H]、ATP数量减少,此时C3还原过程减弱,而CO2仍在短时间内被一定程度的固定,因而C3含量上升,C5含量下降,(CH2O)的合成率也降低。

b、CO2浓度降低时,CO2固定减弱,因而产生的C3数量减少,C5的消耗量降低,而细胞的C3仍被还原,同时再生,因而此时,C3含量降低,C5含量上升。

光合作用需要记住那些知识点呢
1.形象的用“四个车轮”来理解光合作用的过程
从图中可以看出:“四个车轮”是同时转动,若有一个停止,则四个车轮同时受影响。

在日常生活中很容易观察到这一现象。

用形象事物来比喻光合作用的光反应阶段和暗反应阶段,以及两个阶段的相互联系,中间的两个“车轮”分别是ATP和NADPH的形成,如果暗反应停止,这两种物质的形成也会受影响,最终停止。

增强了学生的记忆和理解效果,同时培养学生事物是相互联系,发展变化的世界观。

2.分析“四个车轮”中的物质变化
“车轮一”中:少数的叶绿素a在光的激发下失去电子,变成强氧化剂,从而夺取水中的电子,使水分子氧化成氧分子和氢离子,叶绿素a由于获得电子而恢复原状,这样往复循环,形成电子流,将光能转化成电能。

“车轮二”中:ATP在光反应中合成,在暗反应中水解并释放出能量,供能给暗反应阶段中合成有机物。

“车轮三”中:NADP+在光反应中得到叶绿素a提供的电子(e)和“车轮一”中水分解产生的H+,就形成了NADPH。

NADPH是很强的还原剂,在暗反应中将二氧化碳还原为糖类等有机物,自身氧化成NADP+。

“车轮四”中:CO2被固定后形成三碳化合物(C3),经过一系列复杂的变化,并最终形成糖类等有机物。

从图中分析可知如果光合作用形成1molC6H12O6,,则“车轮四”中物质的量变化,只需在原来的基础上乘以系数6即可。

3.“四个车轮”中的能量转化
“车轮一”中:光能转化为电能。

“车轮二、三”中:电能转化为活跃的化学能ATP、NADPH。

“车轮四”中:活跃的化学能ATP、NADPH转化为稳定的化学能储存在糖类等有机物中。

4.书写“四个车轮”中的化学反应式
“车轮一”中:
“车轮二”中:
“车轮三”中:
“车轮四”中:
5.“四个车轮”中的条件及联系
“车轮一”中:必须提供光能,H2O作为原料,与光能转化相关的色素的形成需要某些矿质元素,如Mg。

“车轮二、三”中:酶是必要的条件,如:N、P是ATP、NADPH、NADP+的构成元素。

“车轮四”中:CO2是光合作用的原料,需要多种酶的催化完成反应,同时需要“车轮二、三”中提供ATP、NADPH。

这样分析得知光合作用必需H2O、CO2作为原料,需要光,矿质元素,酶活性受温度的影响,,从而影响光合作用,所以需要适宜的温度等。

6 .“车轮一”中的四种色素
参与光合作用光反应的四种光合色素,都溶于有机溶剂。

叶绿素包括叶绿素a和叶绿素b,主要吸收红橙光和蓝紫光;少数处于特殊状态的叶绿素a能吸收、转化光能,多数的叶绿素a和全部的叶绿素b能吸收、传递光能。

类胡萝卜素包括叶黄素和胡萝卜素,主要吸收蓝紫光;都能吸收、传递光能。

7.“四个车轮”中的应用
理解了影响光合作用的因素,在农业生产中要提高农作物光合作用效率,就要根据影响光合作用的因素,合理的控制某些条件。

根据不同植物对光的需求,适当的控制光照条件或选择适合的种植区域。

在生产上应用如:合理密植、温室大棚使用玻璃或薄膜的选材(若要降低光合作用使用有色的玻璃或薄膜)
根据温度直接影响酶的活行,从而影响光合作用。

在生产上适时播种、温室栽培适当的控制白天、晚上的温差。

根据二氧化碳是光合作用的原料。

在生产上采取措施提高CO2浓度(如施用有机肥)。

必需矿质元素直接或间接影响光合作用,要合理施肥。

水分是光合作用的原料之一。

预防干旱、合理灌溉。

8.四种典型的图形(影响光合速率的因素)
光照强度
一定范围内光合作用的速率随光照强度提高而加快,达到一定光照强度不再增加。

CO2浓度
一定范围内随CO2浓度增加光合作用速率加快,达到一定浓度光合作用速率不再增加。

温度
温度直接影响酶活性、从而影响其他相关代谢而影响光合作用。

叶龄
随叶龄的改变,光合作用的速率也发生变化。

9.光合作用的四点重要意义
物质合成:将无机物合成有机物
能量转化:将太阳能转化为化学能
环境保护:维持大气中O2和CO2含量的相对稳定对生物进化具有重要意义。

相关文档
最新文档