使用多通道数据采集卡的实验方法
一种新型多路同步数据采集卡的设计与实现
Abstract : This paper presents t he principle and t he realization met hod of a new multiplex channel synchronization data acquisi2 tion board which is used for fault wave2recording device. This da2 ta acquisition board is triggered by GPS , can achieve synchro2 sampling of 24 digital input . The rate of sampling can achieve 250ksps per channel , and t he precision of sampling is 16 bit . Moreover , t his data acquisition board can easily administer t he working met hod of sampling channels in accordance wit h t he dif2 ference of wave2recording objects by t he hardware ISP ( In Sys2 tem Programming) technology of FP GA. The PCI bus ensures its real2time and universal character. Key words : fault wave2recording device ; PCI Bus ; FP GA ; GPS ; synchro2sampling ; ISP
多通道数据采集系统的使用与配置
多通道数据采集系统的使用与配置现代科技的快速发展使得各种数据的采集和处理变得愈加重要和复杂。
在许多领域,需要采集多个信号源或传感器的数据,以便进行分析和决策。
为了满足这样的需求,多通道数据采集系统应运而生。
一、多通道数据采集系统的概述多通道数据采集系统是一种集成多个采集通道的设备,用于采集和存储多个信号源的数据。
这些信号源可以是各种传感器、仪器或其他设备产生的模拟或数字信号。
多通道数据采集系统不仅能够采集数据,还能进行数据处理、分析和存储,为用户提供完整的解决方案。
二、多通道数据采集系统的配置配置一套多通道数据采集系统需要考虑以下几个方面:1. 硬件配置:选择适合实际需求的多通道数据采集硬件设备,包括采集卡、传感器和连接线等。
根据信号源和采集频率的不同,可以选择不同型号和规格的硬件设备。
2. 软件配置:多通道数据采集系统通常配套有专门的软件进行数据采集、处理和分析。
根据实际需求选择适合的软件,并进行相应的配置和参数设置。
3. 连接配置:将数据采集硬件设备与计算机或其他设备进行连接,并确保连接稳定和可靠。
根据实际情况选择合适的连接方式,如USB、PCI等。
4. 电源配置:多通道数据采集系统需要稳定的电源供应,因此需要考虑电源的配置和接口的选择,以确保设备的正常运行。
三、多通道数据采集系统的使用使用多通道数据采集系统可以采集和处理多个信号源的数据,为用户提供更全面的信息和更准确的分析结果。
使用多通道数据采集系统可以应用于多个领域,如医学、工程、环境监测等。
在医学领域,多通道数据采集系统可以用于采集和分析心电图、脑电图、血压等生理信号,用于监测和诊断疾病。
多通道数据采集系统的高精度和高灵敏度使得医生可以更准确地判断患者的病情,并做出相应的治疗方案。
在工程领域,多通道数据采集系统可以用于采集和分析各种工程测量信号,如温度、压力、流量等。
多通道数据采集系统的可靠性和稳定性使得工程师可以更好地了解和控制工程过程,提高产品质量和生产效率。
物理实验技术中的信号发生与采集方法
物理实验技术中的信号发生与采集方法在物理实验中,信号的发生与采集是实验成功的关键步骤之一。
信号的发生是指将被测量的物理量转换成可观测的电信号,而信号的采集则是将转换后的电信号进行处理和记录。
本文将分析一些常见的信号发生与采集方法,以及它们在物理实验中的应用。
一、传感器与转换器传感器是将被测量的物理量转换成电信号的关键设备。
不同的物理量需要使用不同的传感器。
例如,温度可以使用热敏电阻或热电偶进行测量,压力可以使用压力传感器进行测量,光强可以使用光敏电阻或光电二极管进行测量。
传感器的选择需要根据被测量的物理量以及实验的要求来决定。
传感器输出的电信号通常是微弱的,需要经过放大和转换才能被采集系统处理。
转换器的作用就是将传感器输出的微弱电信号放大成符合采集系统要求的电信号。
常见的转换器包括放大器、滤波器、模数转换器等。
放大器可以将传感器输出的微弱信号放大到合适的幅度范围内,滤波器则可以去除噪声和杂散信号,保证采集信号的准确性。
模数转换器可以将连续的模拟信号转换成数字信号,方便计算机进行处理。
二、多通道信号采集系统在实际的物理实验中,我们经常需要同时采集多个信号,这就需要使用多通道信号采集系统。
多通道信号采集系统可以同时采集多个传感器输出的信号,并将它们整合到一个统一的数据流中。
这种系统通常由采集卡和计算机组成。
采集卡是一种专门用于信号采集和处理的硬件设备,它可以通过各种接口与传感器和计算机进行连接。
采集卡上通常有多个模拟输入通道,可以接入多个传感器的信号。
它还可以进行模数转换、滤波、放大等处理工作,将采集到的信号转换成数字信号,并传输给计算机进行进一步处理。
计算机则是多通道信号采集系统的核心控制单元。
它可以通过采集卡的接口与采集卡进行通信,并接收和处理采集到的信号。
计算机上安装的采集软件可以将采集到的信号进行实时显示、存储和分析。
通过计算机,我们可以方便地对采集到的信号进行后续处理、统计和分析,得到实验结果。
多通道高速数据采集卡的设计
① 煤 粉 仓 的 设计
要 保 证 计 重 机 稳 定 连 续 地 计
量 , 粉仓 的煤 粉 下 料 通 畅 是 先 决 条 件 。 因 此 在 设 计 煤 煤 粉 仓 时 , 使得 煤 粉 仓 锥 部 的 倾 斜 角 大 于 煤 粉 的安 应 息 角 , 于煤 粉 整 体 流 动 , 匀 下 料 。否 则 , 形 成 漏 便 均 将 斗 形 流 动 , 成 煤 粉下 料 不 均 匀 。 造 ② 均 压 管 的 设 置 计 重 机 内部 如 果 发 生 压 力 变
魏 娜 智 力 事 南 先
( 长春光学精 密机械学院电信舟 院, 长春 1 0 2 3 2) 0
摘
要
通对对 多通道 高速 同步数据 采榘卡 的具 体设 I 制作 , 十、 对其基 本功能 、 特点 、 总体设 计方 词 数据 采集 同步 采集 高速采 集 多 路数据
在 0 5…0 6 .
4 结束语
随着 水 泥 等 行 业 的 发 展 , 粉 料 计 量 显 得 越 来 越 对 重要 , 状天平计重机正是 这样一 种能够连 续、 确 、 环 精 稳 定 且 无 泄 漏 、 飞 扬 的 粉料 流 量 计量 系统 , 后 在 多 无 今 种 行 业 中必 将 得 到 更 加 广泛 的应 用 。
3 配套 设备 的设计
要 使 得 环 状 天 平 计 重机 稳 定 计 量 , 达到 设 计 精 度 , 其 前后 配套 设 备 设 计 的好 坏 , 得 至 关 重 要 , 显 主要 有 以
下两点:
传感 器 测 出 的 称重 信 号 和 转 速 信 号 , 控 制 器 内 算 出 在 流 量 值 , 经 过 PB运 算 , 出 2个 调 速 信 号 , 别 送 再 I 输 分 给 定 量供 给 机 和 流 量 计 重 机 的 电 机 变 频 器 , 节 电机 调 的转 速 , 而 使 得 实 际 的 给 料 量 与 设 定 的 给 料 量 相 一 从
多通道数据采集系统的设计与实现
多通道数据采集系统的设计与实现近年来,随着科技的不断发展和数据的迅速增长,对于多通道数据采集系统的需求越来越迫切。
多通道数据采集系统旨在通过多个输入通道同时采集、传输和处理多组数据,以满足大规模数据采集和处理的需求。
本文将详细介绍多通道数据采集系统的设计与实现。
1. 系统需求分析在设计多通道数据采集系统之前,首先要明确系统的需求。
根据具体的应用场景和目标,我们需要确定以下几个方面的需求:1.1 数据采集范围:确定需要采集的数据范围,包括数据类型、数据量和采集频率等。
这将直接影响系统的硬件选择和设计参数。
1.2 数据传输和存储要求:确定数据传输和存储的方式和要求。
例如,是否需要实时传输数据,是否需要数据缓存和压缩等。
1.3 系统的实时性要求:确定系统对数据采集和处理的实时性要求。
根据实际应用场景,可以确定系统对数据延迟和响应时间的要求。
1.4 系统的可扩展性:考虑系统的可扩展性,以满足未来可能的扩展需求。
这包括硬件和软件的可扩展性。
2. 系统设计在需求分析的基础上,我们进行多通道数据采集系统的设计。
系统设计主要包括硬件设计和软件设计两个方面。
2.1 硬件设计根据需求分析中确定的数据采集范围和要求,我们选择合适的硬件设备进行数据采集。
常用的硬件设备包括传感器、模拟信号采集卡和数字信号处理器等。
2.2 传感器选择根据需要采集的数据类型,选择合适的传感器进行数据采集。
不同的传感器适用于不同的数据类型,如温度传感器、压力传感器、光传感器等。
2.3 采集卡设计针对多通道数据采集系统的特点,我们需要选择合适的模拟信号采集卡进行数据采集。
采集卡应具备多个输入通道,并能够同时采集多个通道的数据。
2.4 数字信号处理器设计针对采集到的模拟信号数据,我们需要进行数字信号处理。
选择合适的数字信号处理器进行数据处理,如滤波、采样和转换等。
2.5 软件设计针对系统的需求和硬件的设计,我们需要进行软件设计,以实现数据采集、传输和处理。
NI采集卡的多通道不同功能采集的配置操作方法
NI采集卡的多通道不同功能采集的配置操作方法1. 打开NI采集卡的配置软件:首先需要打开NI采集卡对应的配置软件,例如NI-DAQmx或者LabVIEW,这些软件提供了图形化界面和API 接口来配置和控制采集卡。
2.确定采集通道数目:在软件界面上,需要确定采集的通道数目,即同时采集的信号源数量。
根据具体应用需求,可以选择多通道采集配置。
3.配置采集参数:针对每个通道,需要配置采集参数,例如采样率、量程、触发模式等。
采样率是指每秒采样的次数,量程是指信号的幅度范围,触发模式是指启动采集的条件。
4.设定物理连接:将各个信号源与采集卡的输入端口进行物理连接。
通常,使用BNC线缆将信号源连接到采集卡的输入通道。
5.配置数据存储方式:在采集卡配置软件中,可以选择数据存储的方式。
可以选择将数据保存在计算机的硬盘中,或者直接存储在采集卡的内存中。
6.设置数据处理功能:如果需要对采集到的数据进行进一步的处理,可以在配置软件中设置数据处理功能。
例如,可以选择进行滤波、数字信号处理、实时显示等操作。
7.验证配置:在完成配置后,可以进行配置的验证。
可以通过软件提供的测试功能,发送一个已知的测试信号,并观察是否能够正确采集到该信号。
8.启动采集:完成配置后,可以启动采集操作。
可以通过配置软件提供的开关按钮或者编程接口来启动采集操作。
一旦启动,采集卡将开始按照配置的参数进行数据采集。
9. 数据后处理:采集完数据后,可以进行数据后处理操作。
可以使用MATLAB、LabVIEW等软件进行数据分析、图像显示等。
总结:NI采集卡的多通道不同功能采集的配置操作方法包括打开配置软件、确定通道数目、配置采集参数、物理连接、配置数据存储方式、设置数据处理功能、验证配置、启动采集和数据后处理。
通过这些步骤,可以正确配置NI采集卡以满足不同应用的需求。
基于STM32单片机的多路数据采集系统设计
基于STM32单片机的多路数据采集系统设计概述:多路数据采集系统是一种用于采集和处理多种传感器信号的系统。
基于STM32单片机的多路数据采集系统具有低功耗、高精度、稳定可靠的特点,广泛应用于工业控制、环境监测和医疗设备等领域。
本文将介绍基于STM32单片机的多路数据采集系统的设计方案及实现方法。
设计方案:1.系统硬件设计:系统硬件由STM32单片机、多路模拟输入通道、数模转换器(ADC)和相关模拟电路组成。
其中,多路模拟输入通道可以通过模拟开关电路实现多通道选通;ADC负责将模拟信号转换为数字信号;STM32单片机负责控制和处理这些数字信号。
2.系统软件设计:系统软件可以采用裸机编程或者使用基于STM32的开发平台来进行开发。
其中,主要包括数据采集控制、数据转换、数据处理和数据存储等功能。
具体实现方法如下:-数据采集控制:配置STM32单片机的ADC模块,设置采集通道和相关参数,启动数据采集。
-数据转换:ADC将模拟信号转换为相应的数字量,并通过DMA等方式将数据传输到内存中。
-数据处理:根据实际需求对采集到的数据进行预处理,包括滤波、放大、校准等操作。
-数据存储:将处理后的数据存储到外部存储器(如SD卡)或者通过通信接口(如UART、USB)发送到上位机进行进一步处理和分析。
实现方法:1.硬件实现:按照设计方案,选择适应的STM32单片机、模拟开关电路和ADC芯片,完成硬件电路的设计和布局。
在设计时要注意信号的良好地线与电源隔离。
2.软件实现:(1)搭建开发环境:选择适合的开发板和开发软件(如Keil MDK),配置开发环境。
(2)编写初始化程序:初始化STM32单片机的GPIO口、ADC和DMA等模块,配置系统时钟和相关中断。
(3)编写数据采集程序:设置采集参数,例如采样频率、触发方式等。
通过ADC的DMA功能,实现数据的连续采集。
(4)编写数据处理程序:根据实际需求,对采集到的数据进行预处理,例如滤波、放大、校准等操作。
多通道采集器的设计
㊀2021年㊀第2期仪表技术与传感器Instrument㊀Technique㊀and㊀Sensor2021㊀No.2㊀基金项目:浙江省自然科学基金项目(LY17F010012)收稿日期:2020-01-17多通道采集器的设计范㊀威,楼喜中,邢国鹏,辛崇丰,全大英(中国计量大学信息工程学院,浙江省电磁波信息技术与计量检测重点实验室,浙江杭州310018)㊀㊀摘要:为了满足声呐与语音信号处理中对多通道信号同步采集和采样率可变的应用需求,提出了一种基于高性能现场可编程逻辑门阵列(FPGA)的多通道采集器㊂该采集器使用FPGA作为控制器件进行模块化设计,采用24颗高精度模数转换器(ADC)AD7768,并结合上位机控制数据采集和数据处理,实现采样率可变的192通道并行数据采集功能㊂实验测试表明,该采集器同步性能优于25ns,采样率可通过上位机配置切换,数据记录速率高达196MB/s㊂关键词:多通道;同步采集;采样率;现场可编程逻辑门阵列;模数转换器;有效位数中图分类号:TN98㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1002-1841(2021)02-0041-06DesignofMulti⁃channelAcquisitionDeviceFANWei,LOUXi⁃zhong,XINGGuo⁃peng,XINChong⁃feng,QUANDa⁃ying(CollegeofInformationEngineering,ChinaJiliangUniversity,KeyLaboratoryofElectromagneticWaveInformationTechnologyandMetrologyofZhejiangProvince,Hangzhou310018,China)Abstract:Inordertomeettherequirementofsonarandspeechsignalprocessingformulti⁃channelsignalsynchronousac⁃quisitionandvariablesamplingrate,amulti⁃channelacquisitiondevicebasedonhigh⁃performancefield⁃programmablegatearraywasproposed.Theacquisitiondevicewasmodular⁃designed,usingFPGAasthecontroller,adopting24highresolutionanalog⁃to⁃digitalconvertersAD7768,andemployingahostcomputertocontroldataacquisitionanddataprocessing,thusthecapabilityof192-channelparalleldataacquisitionwithavariablesamplingratewasachieved.Experimentalresultsshowthattheacquisitiondevice'ssynchronizationisbetterthan25ns,thesamplingratecanbeconfiguredorswitchedbythehostcomputer,andthedatarecordingrateisupto196MB/s.Keywords:multi⁃channel;synchronousacquisition;samplingrate;FPGA;analog⁃to⁃digitalconverter;ENOB0㊀引言在声呐和语音信号处理设备的科学实验㊁研发㊁生产和应用中,多通道采集器扮演着重要的角色,用于实验室和外场数据采集㊁设备中性能评估和设备检验检定等㊂根据声呐和语音信号处理的特点,采集器的采集通道数一般达到几十个甚至一百个以上,语音信号和声呐的频率范围在3Hz 97kHz之间㊂为了满足上述要求,文献[1]设计的搭载于自主无人航行器的多波束声呐接收系统,选用16bit模数转换器AD7657,实现了最高采样率为250KSPS的108通道同步数据采集;文献[2]设计的多通道采集检测系统应用16bitADC芯片AD7606,实现了在强噪声环境下采样率为100KSPS的128通道并行实时数据采集功能㊂采集器除了通道数及采样率的要求外,还应考虑到采集器对于通道一致性㊁存储带宽和处理实时性的需求[3-5]㊂采集器的主控芯片可以在单片机㊁DSP和FPGA芯片中选取㊂FPGA与单片机和DSP对比,具有工作时钟频率高㊁高集成度㊁实时性强㊁丰富的内部逻辑资源且易于编程和研发周期短等很多优势[6-8]㊂采集器的采样精度和采样率取决于硬件设计所采用的ADC芯片,在ADC芯片选择的时候,需要在采样率㊁采样精度和复杂度之间折中㊂本系统采用高性能FPGA和高集成度的ADC,设计通道数为192个㊁最高采样率为256KSPS㊁采样精度为24bit的多通道信号采集器㊂该采集器能够同步采集声呐或语音信号,存储到存储板或者从主控板输出以完成进一步的分析和处理㊂1㊀总体设计多通道采集器的总体架构如图1所示㊂设备主要由采集板㊁存储板㊁主控板和标准6UVPX背板组成㊂将2个硬件上完全一致的96通道采集板配置成主和㊀㊀㊀㊀㊀42㊀InstrumentTechniqueandSensorFeb.2021㊀图1㊀采集器系统总体架构从采集板组合的方式,实现最多192通道的信号采集㊂主从采集板间通过SRIO和控制线GPIO接口进行通信㊂存储板用于存储采集数据,采集板采集的数据通过PCIe高速接口传输到存储板㊂主控板实现音频信号采集和上位机功能㊂上位机控制音频信号采集和采样率变换,并完成设备管理和存储管理㊂2㊀硬件设计基于多通道采集器的总体架构,采用高性能FPGA和高精度ADC器件并结合ANSI标准FMC(FP⁃GAmezzaninecard)载板与子卡互联结构,设计多通道采集器的硬件平台㊂2.1㊀硬件实现采集板设计为96通道,系统采用主㊁从2块采集板实现192路同步采集㊂采集板采用标准6UFMC采集载板加双宽度FMC子卡组合的模块化设计,以实现高集成度和模块通用化㊂6UFMC采集载板实现信号调理和模数转换等功能;FMC子卡实现数字信号处理㊁数据传输和数据缓存等功能㊂采集载板根据功能划分为96通道输入信号接口㊁信号调理单元㊁12颗ADC芯片㊁时钟单元和同步单元等㊂图2给出了采集载板的硬件原理框图㊂图2㊀采集载板硬件框图图3为采集载板硬件原型实物图㊂FMC子卡根据功能划分为电源㊁时钟单元㊁Flash模块和DDR3数据存储单元等㊂FMC子卡主控芯片选用Kintex-7系列FPGAXC7K410T;DDR3采用MT41J512M8RA颗粒,总容量为2GB,最高存取速率图3㊀采集载板硬件原型实物支持1600MT/s,主要用于采集数据的高速缓存;Flash模块采用NORFlash芯片MT25QL256ABA,用于固化和加载FPGA中bit镜像程序㊂图4为FMC子卡硬件实现框图㊂图4㊀FMC子卡硬件框图图5为FMC子卡硬件原型实物图㊂图5㊀FMC子卡原型实物2.2㊀信号调理电路设计信号调理电路包括直流隔离㊁单端转差分㊁衰减和ADC接口匹配,用于系统的信号处理和阻抗变换等㊂信号调理电路框图如图6所示㊂图6㊀信号调理电路原理框图图6中,系统输入信号频率为3Hz 97kHz,需经㊀㊀㊀㊀㊀第2期范威等:多通道采集器的设计43㊀㊀直流隔离以防止直流偏置在电路中的干扰㊂ADC芯片输入信号要求是差分输入,需将单端信号进行差分处理㊂外部输入信号电压范围为0 20V,而ADC芯片支持的单端输入信号电压范围为0 5V,因此将单端信号进行4倍衰减,以满足ADC芯片输入信号电压范围的需求㊂另外,需进行ADC接口适配,以满足ADC芯片输入高阻的要求㊂2.3㊀采样电路设计由于信号的带宽近100kHz,基于工程实现考虑选择256kHz的最高采样率;综合考虑性能㊁集成度和成本,选用8通道ADC芯片AD7768㊂AD7768的高集成度,降低了所需的PCB布局面积㊂采集单板采用12颗ADC芯片实现96通道采集㊂根据ADC芯片每通道单端输入信号范围为0 5V,将基准参考电压设定为5V㊂图7给出了ADC芯片的详细电路设计㊂图7㊀AD7768配置电路设计2.4㊀时钟和同步电路设计同步采集要求各ADC的时钟和同步信号完全同源,以实现多通道同步采集㊂2.4.1㊀时钟分配电路主采集板选择32.768MHz或24.576MHz的参考时钟,该时钟通过高性能超低抖动缓冲器LMK00105后输出4路为主㊁从采集板提供时钟,主㊁从采集板再分别采用低抖动缓冲器CDCLVC1112输出12路为所有ADC芯片提供MCLK(主时钟)㊂同源时钟设计框图如图8所示㊂图8㊀时钟同源设计框图在图8中,LMK00105芯片输出偏斜为6ps;时钟在PCB等长布线设计中,误差不超过300mil,约为50ps的延迟误差;CDCLVC1112最大输出偏斜为50ps㊂由此可知,时钟的总延迟误差约为106ps㊂2.4.2㊀同步信号分配电路主采集板中ADC1产生同步信号SYNC_OUT,该同步信号通过CDCLVC1104输出2路为主㊁从采集板提供同步信号,主㊁从采集板再分别采用CDCLVC1112输出12路为所有ADC芯片提供同步信号㊂同步信号同源设计框图如图9所示㊂图9㊀同步信号同源设计框图在图9中,CDCLVC1104和CDCLVC1112输出的最大偏斜为50ps;同步信号在PCB等长布线设计中,误差小于600mil,约为100ps的延迟误差㊂在同步信号同源电路中,可计算得到同步信号的最大延迟误差约为200ps㊂2.5㊀FMC子卡设计FMC子卡中FPGA的I/O引脚数为900,其中可用的普通I/O引脚数约350,另有高速接口GTx16x㊂而单个ANSI57.1-2008标准的HPC(多管脚数)FMC支持4对标准时钟管脚㊁80对标准差分管脚或者160个单端管脚㊁2对高速时钟管脚以及20对高速差分管脚㊂合理安排FPGA与FMC接口的连线后,FPGA的引脚连线分配如图10所示㊂FMC标准将子卡FPGA与载板I/O口分离设计,简化了FPGA接口电路设计,更好地实现系统的通用性和灵活性,且该设计支持高速口PCIe和SRIO通信㊂3㊀软件设计采集器软件主要包括采集板间SRIO数据传输㊁㊀㊀㊀㊀㊀44㊀InstrumentTechniqueandSensorFeb.2021㊀图10㊀FMC与FPGA的连线设计DDR3数据缓存和上位机软件㊂运行于采集板的软件设计为主从板兼容的形式,能够自动识别工作的模式,进而实现代码的可重用和可移植㊂设备工作时,通过VPX背板连线的管脚信息判断是主96通道还是从96通道采集板,主采集板SRIO配置为接收数据模式,从采集板SRIO配置为发送数据模式㊂DDR3高速缓存主从板采集数据,上位机通过PCIe接口控制数据采集和数据处理㊂3.1㊀采集数据传输机制采用的ADC芯片AD7768支持八通道同步采集,采集数据的精度为24bit,最高位为符号位㊂为了方便上位机处理数据,软件设计中对每个采样点通过符号位扩展的方式,将采样数据由原本的24bit位宽扩展成32bit,故一颗ADC芯片在每个采样时刻输出8个32bit数据㊂设计使用FIFO作为缓冲区缓存采集数据㊂如图11所示,从采集板每颗ADC芯片对应一个命名为FIFO0的缓冲区,每个缓冲区的读写数据的位宽为256bit㊂主采集板建立12个命名为FIFO1的FIFO缓冲区对传输得到的从采集板采集数据进行缓存,主㊁从采集板之间通过SRIO接口完成FIFO0到FIFO1缓冲区数据传输㊂主㊁从采集板间数据传输设计如图11所示㊂图11㊀采集板间数据传输设计2块采集板FPGA之间通信采用5GbpsSRIO4x进行通信㊂实测SRIO4x接口的传输速率为1.2GB/s,而从采集板的最大采集数据速率约为96MB/s㊂SRIO4x接口传输速率超过从采集板数据采集速率,可以满足采集数据传输的需求㊂3.2㊀采集数据存储为了满足192通道同时工作的需求,软件中主采集板一共设计24个命名为FIFO2的FIFO缓冲区缓存采集数据,通过软件配置使能需要使用的FIFO2㊂主从采集板一起工作时,从采集板的采集数据按照时序通过SRIO接口送到主采集板,主采集板将2块采集板的采集数据整理好并缓存在主采集板的DDR3中,当DDR3缓存的数据量大于等于1MB时,上位机开启PCIe的DMA读数据通道,读取这1MB数据后关闭读数据通道,等待DDR3缓存数据量再次达到1MB时重复以上步骤㊂同时上位机将数据连续存入存储板或作进一步处理㊂192通道采集数据存储设计如图12所示㊂图12㊀采集数据存储设计图12中,当设备192通道全部开启时,系统最大的并行采集速率约为92MB/s,而DDR3实际的读写速率为10GB/s㊂可知,实时采集数据速率远远小于DDR3的读写速率,即DDR3性能满足系统实时缓存采集数据的要求㊂采用的高性能FPGA芯片XC7K410T支持Gen2PCIe4x接口,PCIe4x接口传输速率为2GB/s,故采用PCIe4x接口传输满足系统最大的并行采集数据速率要求㊂PCIe接口通信有2种模式:采集板与上位机之间数据批量传输采用PCIe的DMA通信模式;而对于上位机与采集板之间控制信号的接收和下发,采用PCIe的读写寄存器通信模式㊂4㊀实验信号源为采集板提供输入信号,上位机通过PCIe控制系统采样率并控制处理采集数据,采集板采集的数据通过PCIe保存到存储板,USB从主控板中导出采集数据,在调试PC利用MATLAB分析采集器的性能㊂用于采集器性能测试的实验系统如图13所示㊂㊀㊀㊀㊀㊀第2期范威等:多通道采集器的设计45㊀㊀图13㊀采集器性能测试实验系统4.1㊀采集功能验证4.1.1㊀采集板数据采集功能测试按图13搭建实验系统,配置采集器正常采集数据,通过FPGA调试实时采集数据㊂采用Vivado2017.4ILA抓取2块采集板ADC数据采集时序,其中master_flag为1是主96通道采集板,master_flag为0是从96通道采集板㊂2块采集板的数据采集时序如图14所示㊂图14㊀采集板数据采集时序从图14可以看出主从采集板能够正常采集数据㊂进一步通过比较主从采集板间硬件连接的同步信号,可以发现两板实现了同步采集㊂4.1.2㊀上位机采集测试启动设备,打开如图15所示的上位机软件㊂图15中,实测数据记录速率为196MB/s,与192通道数据最大并行采集速率一致㊂系统选取了ADC的4种抽取工作模式,再结合FPGA控制ADC所处的PIN模式并选择ADC芯片的MCLK频率,能够实现采样率在图15㊀系统上位机采集测试界面256㊁192㊁128㊁96㊁64㊁48㊁32㊁24KSPS之间的任意改变㊂4.2㊀采集精度测试信号源SMA100B提供输入信号1kHz正弦波,任意选择ADC芯片AD7768的一个通道,在采样率为256KSPS下采集数据,导出数据后得到如图16所示的信号频谱㊂(a)没有加滤波器的频谱(b)加滤波器的频谱图16㊀AD7768采集获得的频谱图16中,有效位数(ENOB)和信纳比(SINAD,单位dBc)的关系由ENOB=(SINAD-1.763)/6.02(bits)得到㊂图16(a)为没有加滤波器采集结果,图16(b)为加滤波器后的结果,所加的滤波器为8阶低通滤波器,其截止频率为8kHz㊂由图16(a)和图16(b)的测试结果对比可知信号源的二次谐波(2kHz)性能差,导致SFDR(无杂散动态范围)指标整体偏低㊂AD7768在快速工作模式时,最高采样率为256KSPS㊂表1列出了AD7768数据手册针对输入信号1kHz正弦波主要的动态性能参数:信噪比(SNR)㊁SINAD㊁SFDR和总谐波失真(THD)㊂表1㊀AD7768数据手册给定的动态参数采样率/KSPS输入信号/kHzSNR/dBFSSINAD/dBcSFDR/dBcTHD/dBc2561ȡ106.2ȡ109ȡ106ɤ-113㊀㊀㊀㊀㊀46㊀InstrumentTechniqueandSensorFeb.2021㊀图16(b)显示的结果与表1对比,虽然在实验中采用了最大截止频率为8kHz的滤波器,但是由于信号源输出的二次谐波性能差,所以导致AD7768中SFDR和THD的测试结果与器件手册给出的参数相比稍差,而其他动态性能指标与手册中给出的参数相当㊂4.3㊀同步性能测试信号源输出1kHz正弦波信号,在功分后输入ADC完成采样率为256KSPS的同步采样㊂同步采集得到的信号波形如图17所示㊂㊀(a)32通道同步测试波形(b)放大后32通道同步测试波形图17㊀采集数据同步波形因测试条件限制,测试192通道同步时需切换6次完成所有通道间的同步性能测试㊂以通道1㊁33㊁65㊁97㊁129㊁161为参考基准,每次进行FFT分析,并计算正弦波的相位,可以得到其他31个通道与参考基准间的通道延迟和角度偏差㊂测试通道间同步性能结果如表2所示㊂表2㊀通道间同步测试结果测试通道通道间最大延迟/ns通道间最大角度偏差/(ʎ)ch1-3214.1141.301ch33-6416.6151.531ch65-9622.9442.115ch97-12812.8721.186ch129-16015.7541.452ch161-19217.3111.595㊀㊀表2的实测结果表明,系统通道间同步性能小于25ns,满足大部分声呐及语音信号处理要求㊂4.4㊀性能分析表3列出了近年来多通道采集器所采用的主控芯片㊁采集通道数㊁最高采样率和采样精度㊂本文所设计的采集器的采集通道数为192个㊁最高采样率为256KSPS且采样精度为24bit,与表3列出的设备比较,该采集器在采集通道数和采样精度上表3㊀已有多通道采集器性能对比表文献主控芯片采集通道数最高采样率/KSPS采样精度/bit[1]FPGA10825016[2]FPGA12820016[3]FPGA128200016[4]FPGA1806500012[6]FPGA9614424[7]FPGA6040018有一定的优势,但在采样率方面作了折中处理㊂这是由声呐与语音信号的特点决定的,在大部分场合语音信号对采样率的要求并不高,本文所设计的采集器在通道数㊁采样精度和采样率等方面可以满足声呐与语音信号应用的需求㊂5㊀结束语采用双宽度FMC结构,选用高性能FPGA和高精度ADC并结合上位机软件控制,设计了一种通用性强的高精度多通道采集器系统㊂测试结果表明,该采集器支持192通道并行数据同步采集,通道延迟误差小㊁采样率可配置切换㊁数据吞吐速率和实时性高㊂满足在声呐与语音信号处理中的应用需求㊂对多通道采集器的研究设计与工程实现,具有一定的参考价值和借鉴意义㊂参考文献:[1]㊀阚成良.AUV载多波束声呐接收系统硬件平台设计与实现[D].哈尔滨:哈尔滨工程大学,2019.[2]㊀易志强,韩宾,鲜龙,等.旋转环境下基于FPGA的多通道数据采集系统设计[J].电子技术应用,2019,45(9):60-64.[3]㊀唐亮,刘晓东,刘治宇.一种通用多通道高频相控发射和采集系统[J].声学技术,2016,35(2):174-179.[4]㊀杨成,夏伟杰,杨康,等.多波束成像声呐调理采集电路的设计[J].电子测量技术,2013,36(12):108-117.[5]㊀杨博,张加宏,李敏,等.基于ARM的多通道数据采集系统[J].仪表技术与传感器,2015(2):104-107.[6]㊀张理京.基于96通道同步数据采集系统的软硬件设计与实现[D].西安:西安电子科技大学,2014.[7]㊀董卫珍,衡总,张磊磊.基于FPGA的多通道采集传输模块的设计[J].电子技术与软件工程,2017(17):117-118.[8]㊀韩宾,易志强,江虹,等.一种高精度多通道实时数据采集系统设计[J].仪表技术与传感器,2019(9):42-45.作者简介:范威(1992 ),硕士研究生,主要研究领域为数字信号处理实现㊂E⁃mail:s1703081001@cjlu.edu.cn通信作者:楼喜中(1976 ),副教授,博士,主要研究领域为无线定位㊁MEMS传感器导航定位㊁多天线技术㊁信道编码㊂E⁃mail:lou999@cjlu.edu.cn(上接第35页)[10]㊀ZHAOC,WOODGS,XIEJ,etal.Aforcesensorbasedonthreeweaklycoupledresonatorswithultrahighsensitivity[J].Sensors&ActuatorsAPhysical,2015,232:151-162.作者简介:修日(1994 ),硕士研究生,主要研究方向是基于模态局域化的微型电场传感器㊂E⁃mail:xiuri@mail.ustc.edu.cn杨鹏飞(1986 ),讲师,博士,主要研究方向是微传感器与微系统㊁新型电学量传感器㊁低频电场探测㊂E⁃mail:yang330650591@126.com。
多通道数据采集卡同步功能的设计与实现_高健
第25卷第1期2008年1月机 电 工 程M EC HAN ICAL &ELECTR ICAL ENG INEER I NG M AGA Z I NE V o.l 25N o .1Jan .2008收稿日期:2007-07-24作者简介:高 健(1982-),男,浙江安吉人,主要从事嵌入式系统设计方面的研究。
多通道数据采集卡同步功能的设计与实现高 健,杨成忠,唐明明(杭州电子科技大学自动化学院,浙江杭州310018)摘 要:介绍了多通道数据采集卡同步功能的实现方法,讨论和处理了实现同步功能的相关问题。
该设计采用一种二级时钟分配方案,不仅实现了板内各通道的真正实时的同步采集,并且可以方便灵活地实现多块板卡的板间同步,具有高速、高精度、多路同步采集的特点,可广泛应用于对信号的同步性能要求较高的数据测量系统中。
关键词:数据采集;同步触发;A /D 转换中图分类号:TP393 文献标识码:A文章编号:1001-4551(2008)01-0082-04D esign and rea lization of t he si m ult aneous f unction in t he m ult-i channel data acquisition cardGAO Jian ,YANG Cheng -zhong ,TANG M ing -m i n g(C ollege of A uto m ation ,H angzhou D ianzi University,H angzhou 310018,China)Abstrac t :The design and rea lization of the s i m u ltaneous f unc ti on i n the mu lt-i channe l data acqu isiti on card w ere i ntroduced .A nd also the corre l a ti ve po i nts o f t he si m ultaneous function w ere d iscussed and d i sposed .The desi gn used a t w o -step c l ock distr-i bu tion ,which not only rea lized the rea-l ti m e mu lt-i channe l si m u ltaneous acqu isiti on i n one card ,bu t also rea lized t he si m u ltane -ous acqu i sition f uncti on i n m ore t han one card v ery conven ientl y.The ca rd has the feat ures o f h i gh -speed ,h i gh precision and mu lt-i channel si m ultaneous acqu i s ition ,can be w i de l y used in t he da ta acqu isiti on system w hich has h i gh request of t he si m ulta -neous si gna.lK ey word s :data acquisiti on ;si m u ltaneous tri gge r ;A /D conve rt0 前 言随着电子技术的深入发展和科研生产的需要,人们已经不再满足于用单路A /D 数据采集来分时采集多路测试信号。
多通道压力测量方法
参数
1000pa 1.5 倍量程
±0.3% ±0.5%F.S/年 ±0.03%F.S/℃ ±0.03%F.S/℃
-30-80℃ -40-125℃
24V 0-10V G1/4 螺纹
不锈钢
500Hz
变送箱:
变送箱用于将传感器激励电源、数据采集模块进行封装,封装后,传感器与变送箱采用航空插头直 连,变送箱输出 USB 与计算机连接,实现物理信号与数字信号的转换。
软件
变送箱
软件用于测量压力的数据显示、曲线显示、数据记录、历史数据查询、传感器标定,可根据客户要
求进行设计与编程。
软件界面仅供参考
14 位 差分输入 max±20V
8
传感器: 压力传感器采用硅压阻芯体为敏感元件,利用半导体硅的压阻效应测量压力,实现差压信号与电信
号的转换。产品经过严格测试与老化筛选,性能稳定可靠。
压力传感器
技术参数
序号
1 2 3 4 5 6 7 8 9 10 11 12 13
项目 量程 过载 精度 长期稳定性 零点温度漂移 满度温度漂移 工作温度 存储温度 电源 输出信号 接口 外壳材质Leabharlann 响应频率多通道压力测量系统
上海冉赛检测技术有限公司 作者:马忠新
测量系统介绍
数据采集卡 数据采集卡是 USB 数据采集模块,不需要打开机箱来安装 DAQ 模块。只要插入模块,然后获取数
据。它简单又有效。工业应用的可靠和足够坚固,导轨安装,适合工业测量系统集成,有外部控制信号, 用于控制外部电机、电磁阀、继电器等动作。集成了 8 通道 AI 输入模块,抗隔离性能优异,同步采集, 适合工业压力、力、流量等信号测量。
数据采集卡
采集卡参数
序号
多通道数据采集卡同步功能的设计与实现
多通道数据采集卡同步功能的设计与实现
高健;杨成忠;唐明明
【期刊名称】《机电工程》
【年(卷),期】2008(025)001
【摘要】介绍了多通道数据采集卡同步功能的实现方法,讨论和处理了实现同步功能的相关问题.该设计采用一种二级时钟分配方案,不仅实现了板内各通道的真正实时的同步采集,并且可以方便灵活地实现多块板卡的板间同步,具有高速、高精度、多路同步采集的特点,可广泛应用于对信号的同步性能要求较高的数据测量系统中.【总页数】4页(P82-85)
【作者】高健;杨成忠;唐明明
【作者单位】杭州电子科技大学,自动化学院,浙江,杭州,310018;杭州电子科技大学,自动化学院,浙江,杭州,310018;杭州电子科技大学,自动化学院,浙江,杭州,310018【正文语种】中文
【中图分类】TP393
【相关文献】
1.振动信号多通道同步整周期数据采集卡设计 [J], 杨世锡;梁文军;于保华
2.基于PC/104总线与FPGA的多通道同步数据采集卡的研究 [J], 刘朝华;戴怡;石秀敏
3.利用FPGA实现的多通道同步数据采集卡 [J], 田多华;邱宏安;陆宇鹏;邵立群
4.一种多接口多通道的同步数据采集卡的设计与实现 [J], 郑晨曦;吴次南;蒋小菲
5.凌华科技推出高密度多通道同步数据采集卡 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
基于USB的高精度多通道数据采集卡设计
时间是 32 s . ,对 应 的采集 时间是 0 8I 。因此 ,为 . s x
了得 到最 大 的输 出数 据率 ,读取 数据 可 以在 下一 个转 换期 间进 行 。
A S34 中 的 采 样/ 持 模 块 以 最 大 吞 吐 率 D 86 保
2 0k 工 作 ,它 的输 入 带 宽 大 于 A C的奈 奎 斯 特频 5 B D
1 多通道 , 高精度的 AD转换 /
A S 34是美 国 T 公 司生 产 的高 速 、低功 耗 ,6 D 86 I 通道 同步采样 1 6位模 数转换 器 。A S 3 4采用 + D 86 5V 工 作 电压 ,并带 有 8 B共模抑 制 的全差 分 输入 通 道 0d 以及 6个 4 s 连续 近似 的模数转 换器 、6个差 分采样
Deino B- ae gl rc in Mut C a n l t q i t n C r s f g US B sdHilP ei o l - h n e DaaAc us i a d - s i io
La g Z e g, LiXi oe g n h n a fn
(c ol f c ne i a n esy in7 0 7 ,C i ) Sho o i c ,Xd nU i rt,X’ 0 h a Se i v i a 1 1 n
Ab ta t Th a e e cie l — y sn h o iain d t c usto ad ma e u fUS c n rle sr c e p p r d s rb s a mut wa y c r nz t aa a q ii n c r d p o B o tolr i o i CY7C 8 1 n 6 0 3 a d AD o v re c n etrADS 3 4. I rn — n i uta d te F GA o to rc s r ie . Th aaa — 86 t fo te d cr i n h P s c c nrlp o e sa egv n ed t c
利用FPGA实现的多通道同步数据采集卡
PCI04作为一种国际标准的控制总线,在测试和控 制中得到了广泛应用,但目前市场上与之配套的同步 数据采集卡还很少。基于PCI04总线的高精度数据采集 卡的主要功能是把外界模拟信号的电压参量经过A/D 转换器转换成数字量,并把转换结果存储以便分析处 理。本文所述采集卡采用了AD公司推出的高速、低功 耗、四通道同步采样12位并行接口的A/D转换器 AD7864,用FPGA进行逻辑功能控制和数据缓存,使得 该数据采集卡硬件电路极为简单。 1数据采集卡的原理及组成
降沿来表示。此时片选信号/CS端接地,由读信号/RD读出
数据。当读信号/RD和片选信号/CS同时保持低电平时
才可读数据,读操作在工作时要确保写信号,WR处于高
电平。每次读数据操作增加输出数据寄存器指针,读完
最后一个转换数据时,将输出数据寄存器指针复位。写
操作主要完成工作模式的设置,一般只在初始化或转换
‘OR2
图3中断产生电路
2.2.3主机读取数据电路 当主机响应了读中断请求之后,就会开始从FIFO
中取数,但是六个FIFO的工作基本保持一致,所以存在 主机先从哪一个FIFO中读取数据的问题,因此需要设 计一个数据选择读取电路,如图4所示。
图中数据选择电路通过三位地址a0、a1、a2来对六 个FIFO的六路数据选择输出。 2.2.4 AID转换启动信号发生电路
品中。系统通过FPGA来实现高速数据缓存及逻辑控
制。采用的器件是FI正X1K系列的EPIK30TCl44—1器
件,其最大工作频率为40MHz,消耗1 533个LC,平均编
码时间为20个时钟周期。FPGA除了要满足相应的时
序要求外,还要求控制数据的位数和A/D转换器的位
多通道数据采集卡设计
作者简介 :陈光辉 ( 1 9 8 3 一) ,男 ,四川资阳人 ,湖南科技学院 电子与信息工程学 院教师 ,主要研 究方向 : 集成 电路设 计与 验证 ,系统设计 ,数字信号处理 。
3 7
参 考文 献 :
[ 1 】 裴喜龙, 童莉. 基于 P C I 总线的高速数据采集卡系统设计与实现 [ J 】 _ 北京 : 微计算机信息, 2 0 0 6 : 1 . 5 . [ 2 ] 王勉 . 高效2 0 1 2 , ( 0 2 ) : 1 0 8 . 1 1 1 .
'
第3 6卷 第 5 期
湖 南科 技 学 院 学报
J o u ma l o f Hu n a n Un i v e r s i t y o f S c i e n c e a n d En g i n e e r i n g
V. 0 l - 3 6 NO . 5
集 系统 是监控 系统的核心部分 。本数据采集卡 就是用于解决如何采集 实时信息 ,跟换不 同数据接受模 块可 以完成不同信
息 的采 集 ,能有效降低设计成本 。
1 硬 件整 体设 计 方案
本数据采集卡使用 P C I 接 口芯片与 F P G A相结合 的方案,系统硬件 结构 图如 图 1所示。数据 采集卡只能处理数字信号 ,
些存储单元来缓存数据 ,既减少开发周期 ,又能减 少开 发成 本。数据采集到后 ,要传输给数据处理芯片 ,本设计采 用 P C I
总线协议 ,支持 3 2 位/ 3 3 MH z ;本地端可编程实现 8 、1 6 、3 2 位数据 宽度, 传输速率最高可到 1 3 2 M 字节/ 秒 ,本地 总线 端时 钟最高可达 5 0 MH z , 支持复 用( J 模式) 和 非复 用 3 2 位地址/ 数据 ( c模式) ,还直接主模式, 直接 从模 式和 D M A 模式 。缓存到存 储单元 中的数据按 照 P C I 协议传输给主机 ,从而 完成数据 的采集 和传输 过程。数据采集卡包括模数转换模块、数据缓存模
动力后坐试验台多通道数据采集系统
Or na e I u t y A u o a i n d nc nd s r t m t o
201 08 2.
3 () 18
动 力后坐试 验 台多通道 数据 采集 系统
赵 世 峰 ,刘 白林
( 安 工业 大学 人 工智 能与 仿真 研 究所 ,西 安 7 03 ) 西 1 0 2
强 冲 击 以模 拟 火 炮 发 射 过 程 中 反 后 坐装 置 的 后 坐 复
路 拉 压 力 传 感 器 采 集 试 验 过 程 中 身管 及 反后 坐 装 置 各 部 位 的 受 力 变 化 情 况 ,其 中 2路传 感器 电压 输 出
范 围 为± 0 V,其 余 4路 为 0 5V。 拉压 力传 感 器 l ~
r s ls s o t a h yse r a i e h e i n r q ie n , h i h s e d mu tc a n id t c u sto n h u v s e u t h w h tt e s t m e l st e d sg e u r me t t e h g — p e li h n e a a a q i i n a d t e c r e z i
(nt ueo Arfca tlg n e& Sm lt n Xi nT c n lgc l nv ri , ’n7 3 , hn ) Isi t t f t il nel e c i i I i i uai , ’ e h oo ia i st Xi 0 2 C ia o a U e y a 1 0
射 击 相 同 的后 坐 动 态 效 应 , 以测 试 反后 坐装 置 的各
处理。 1 系统 构成 及 工作 原理
数 据 采 集 系 统 的 硬 件 主 要 包 括 传 感 器 、采 集 卡
一种新型多路同步数据采集卡的设计与实现
一种新型多路同步数据采集卡的设计与实现
余丹;王庆
【期刊名称】《电力科学与工程》
【年(卷),期】2004(000)003
【摘要】介绍了一种用于故障录波的新型多路同步数据采集卡的原理和软硬件实现方法.该数据采集卡采用接受GPS触发方式,可实现24路信号的同步采样,采样速率为单通道最高为250 ksps,采样精度为16位.该装置可以通过基于FPGA的硬件在系统可编程技术根据录波对象的不同而方便地管理采样通道,PCI总线接口保证了其实时性和通用性.
【总页数】5页(P47-50,54)
【作者】余丹;王庆
【作者单位】武汉大学,电气工程学院,湖北,武汉,430072;武汉大学,电气工程学院,湖北,武汉,430072
【正文语种】中文
【中图分类】TP274+.2
【相关文献】
1.一种新型多接口E1数据采集卡的设计与实现 [J], 马忠孝;陈明;何鹏举;毋建宏
2.基于Spartan-6的多路网络数据采集卡设计与实现 [J], 田丹;李浩;鄢林;陈曦
3.一种基于PCI总线的多路数据采集卡 [J], 荣思远;景新幸;陈用昌
4.一种基于PCI总线的多路数据采集卡 [J], 荣思远;景新幸;陈用昌
5.一种多接口多通道的同步数据采集卡的设计与实现 [J], 郑晨曦;吴次南;蒋小菲
因版权原因,仅展示原文概要,查看原文内容请购买。
多通道数据采集系统的操作技巧
多通道数据采集系统的操作技巧多通道数据采集系统是一种广泛应用于科学研究、工业控制和生物医学等领域的数据采集装置。
它能够同时采集多个通道的数据,并通过计算机进行实时分析和处理。
为了充分发挥多通道数据采集系统的作用,掌握一些操作技巧是非常重要的。
操作技巧一:确保设备正确连接在使用多通道数据采集系统之前,首先要确保设备正确连接。
通常,多通道数据采集系统包括传感器、信号调理器和数据采集卡。
在连接传感器时,要注意每个传感器与信号调理器之间的正确对应。
在连接信号调理器与数据采集卡时,要确保插头与插孔完全插合,并保持连接稳定。
通过仔细检查连接情况,可以避免数据采集中的错误和故障。
操作技巧二:选择合适的采样率采样率是多通道数据采集系统进行数据转换的关键参数之一。
采样率过低会导致数据损失和失真,而采样率过高会增加系统负担和数据存储需求。
因此,在进行数据采集时,要根据实际需要选择合适的采样率。
一般情况下,采样率应调整至能够满足信号特征的最低要求,既能保证数据完整性又节省系统资源。
操作技巧三:进行适当的滤波处理多通道数据采集系统所采集的信号中常常包含大量噪声和干扰。
为了提取出有效信号并减少噪声的影响,需要进行适当的滤波处理。
一种常用的滤波方法是数字滤波器。
通过选择合适的滤波器类型和设置滤波器参数,可以对信号进行低通、高通、带通或带阻滤波,以消除不需要的频率成分。
操作技巧四:合理设置参考电平参考电平在多通道数据采集系统中起着至关重要的作用。
它可以用于校准和标定采集的信号,以提高数据的准确性和可靠性。
在设置参考电平时,首先应选用稳定的参考电压源,并通过校准操作将其与实际电压进行对比调整。
此外,还需根据采集的信号范围和精度需求进行适当的范围分配和调整,以保证准确的数据采集和分析。
操作技巧五:减少电磁干扰电磁干扰是影响多通道数据采集系统性能的常见问题之一。
为了减少电磁干扰对采集信号的影响,可以采取一些措施。
例如,选择低噪声的电源供电,使用屏蔽良好的信号线缆,远离电磁辐射源,保持设备与其他电子设备之间的适当距离等。
振动信号多通道同步整周期数据采集卡设计
振 动信 号 多通 道 同步 整 周 期 数 据 采集 卡 设 计
杨 世 锡 。 , 梁 文 军 , 于保 华
( 1 . 浙 江 大 学 液 压 传 动 及 控 制 国家 重 点 实 验 室
摘要
.
杭州 , 8 1 0 0 2 7 ) ( 2 . 浙 江 大 学 机 械 工 程 学 系 杭 州 , 3 1 0 0息 , 通 过 振 动分 析 得 出机组 当前 的
工作状况, 确定 运 行 和 维 修 计 划[ 2 ; 因此 , 需 要 根 据 转 子振 动信 号 的特点 设计 一款 适用 于转 子振 动信 号 采 集 的高速 、 可 靠 的数据 采集 卡来 满足 这种 需求 。 对 于 汽 轮发 电机 组 这类 大型 旋 转机 械 设 备 , 转
对 汽 轮 发 电 机组 转 子 的振 动 信 号 进 行 整 周 期 采 集 有 利 于 提 高 频 谱 分 析 的精 度 、 提 高设备状 态监测 的水平 。
研 究 了整 周 期 采 集 技 术 , 提 出 了一 种 基 于现 场 可编 程 门 阵 列 ( f i e l d p r o g r a mma b l e g a t e a r r a y , 简称 F P G A) 的 转 子 振 动 信 号 多 通 道 同步 整周 期 数 据 采 集 卡 的设 计 方 案 。 该方案采用 F P G A 技 术设 计 了 基 于 键 相 倍 频 法 的 整 周 期 采 集 控 制算法 , 对 两 片 高 速 A/ D转换芯片进行整 周期采集控制 , 采 用 乒 乓 操 作 的方 式 将 A/ D转 换数据保存 在双 口R AM
片maxl320进行控制ad转换的控制时序采用状该芯片的数字供电电压范围为35v故可以使用态机编程主要状态的作用为复位ad芯片初始与fpga相同的工作电压33v可以免去两者之间化等待ad启动信号等待触发采样信号向ad为了匹配电平而增加的电平转换芯片减小电路开芯片发送采样保持信号等待ad转换完毕信号销使电路更加精简和可靠
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用多通道数据采集卡的实验方法
随着科技的不断进步,数据采集在许多领域中扮演着重要的角色。
多通道数据采集卡的出现,使得同时采集多个信号成为可能。
本文将介绍使用多通道数据采集卡的实验方法,帮助读者更好地了解和应用这一技术。
1. 什么是多通道数据采集卡
多通道数据采集卡是一种硬件设备,用于采集多个信号。
它通常包括多个输入通道、模拟至数字转换器(ADC)、时钟源和接口等组件。
通过连接传感器、测量设备等到不同的通道上,数据采集卡可以将多个信号同时转换为数字信号,并提供给计算机进行存储、处理和分析。
2. 数据采集前的准备工作
在进行实验之前,我们需要做一些准备工作。
首先,明确实验目的和所需的采集信号类型。
例如,如果需要监测温度和湿度,我们需要选择合适的传感器,并将它们连接到数据采集卡的相应通道上。
其次,确保数据采集卡和计算机之间的连接正常。
一般来说,数据采集卡通过USB、PCIe等接口与计算机连接。
根据设备型号和接口类型,我们可以选择合适的连接线缆,并确保稳定的连接。
另外,对于模拟信号的采集,我们需要进行校准和滤波处理。
校准可以提高信号的测量精度,滤波处理可以减少噪音对信号的干扰。
因此,在实验开始之前,我们应该对采集卡的设置进行调整,并根据需要进行校准和滤波操作。
3. 实验过程及应用案例
在实验过程中,我们可以使用软件或编程语言来控制和接收数据。
许多数据采集卡提供了自带的软件,可以用于实时数据监测和保存。
此外,我们也可以使用LabVIEW、Python等编程语言进行数据采集和处理。
对于应用案例,我们以心电信号采集为例进行说明。
在实验中,我们可以将心
电传感器连接到多通道数据采集卡的相应通道上,然后通过软件接收和记录心电信号。
通过设置采样频率和时间间隔,我们可以获取不同时间段内的心电数据。
然后,我们可以使用信号处理算法对心电信号进行滤波、去噪、心律分析等操作,以获得更有用的信息。
除了心电信号的采集,多通道数据采集卡还可以应用于许多其他领域,如振动
分析、声音信号处理、工业自动化等。
通过合理选择传感器和实验参数,并结合适当的数据处理方法,我们可以从复杂的多通道信号中提取出有价值的信息。
4. 数据后处理和分析
实验结束后,我们需要对采集到的数据进行后处理和分析。
根据实验目的,可
以选择合适的数据处理算法和统计手段。
例如,我们可以使用MATLAB进行时域
分析、频域分析、相关性分析等,并画出相应的图表和曲线。
此外,我们还可以使用Python的科学计算库进行数据可视化和机器学习等分析。
5. 实验安全和注意事项
在进行实验时,我们需要注意实验安全和数据完整性。
首先,合理安装和连接
设备,确保实验仪器和电路的正常运行。
其次,遵守实验操作规范,避免人为失误和操作不当导致的事故。
最后,及时备份和保存数据,以防止数据丢失和损坏。
总结
多通道数据采集卡为科学研究和工程应用提供了便利。
通过了解和应用多通道
数据采集卡的实验方法,我们可以更好地进行信号采集、处理和分析,为解决实际问题和提升应用价值提供有力支持。
希望本文能够帮助读者更好地理解和应用多通道数据采集卡的实验方法。