开关电源的测试步骤
开关电源双脉冲测试方法详解

开关电源双脉冲测试方法详解
引言
开关电源是电子设备中常用的一个电源类型,其性能指标的测
试是电子设备测试的重要内容之一。
其中,双脉冲测试是评估开关
电源负载能力和线路干扰的重要手段之一。
本文将详细介绍开关电
源双脉冲测试的方法和注意事项。
开关电源双脉冲测试方法
实验装置
双脉冲测试的实验装置如下图所示:

实验装置由主电源、开关电源、双脉冲发生器、示波器等组成。
其中,双脉冲发生器需满足频率范围、脉宽、幅度等参数要求,详
见相关标准。
测试步骤
1. 将双脉冲发生器连接至开关电源负载端,设置合适的脉宽、
重复频率、上升时间和下降时间等参数。
2. 打开主电源,启动开关电源。
3. 通过示波器观察负载电压波形和脉冲信号波形,记录参数数据。
4. 根据参数数据进行测量和分析。
注意事项
1. 测试前应对实验装置进行检查和校准,确保设备正确连接和
参数设置无误。
2. 实验室应具备良好的地线和屏蔽条件,防止线路干扰和快速
瞬变等问题。
3. 注意安全,避免电源过载和短路等危险。
4. 双脉冲测试时需选择合适的脉宽、频率和幅度等参数,实验
数据应具备可重复性和可信度。
结论
开关电源双脉冲测试方法是评估开关电源性能的重要手段之一,掌握正确的测试方法和注意事项,对于提高测试效率和准确性有重
要意义。
开关电源的测试步骤

开关电源的测试步骤开关电源的测试步骤?一、功能(Functions)测试:输出电压调整(Hold-onVoltageAdjust)电源调整率(LineRegulation)负载调整率(LoadRegulation)综合调整率(ConmineRegulation)输出涟波及杂讯( OutputRipple&Noise,RARD)输入功率及效率(InputPower,Efficiency)动态负载或暂态负载(DynamicorTransientResponse)电源良好/失效(PowerGood/Fail)时间起动(Set-Up)及保持(Hold-Up)时间常规功能(Functions)测试A.?输出电压调整:?当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。
此步骤完成后才能确保后续的规格能够符合。
?通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。
?B.?电源调整率:?电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。
此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。
在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。
?为精确测量电源调整率,需要下列之设备:·能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUIPCR系列电源能提供0--300VAC5-1000Hz?的稳定交流电源,0---400VDC的直流电源)。
一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量VAWPF。
?·一个精密直流电压表,具备至少高于待测物调整率十倍以上,一般应用5位以上高精度数字表。
开关电源常规测试步骤

二. 使用仪器设备 :
(1). AC SOURCE / 交流电源; 交流电源; (2). ELECTRONIC LOAD / 电子负载; 电子负载; (3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表; 数字式电压表;
三. 测试条件 :
Temp.环境温度 Temp.环境温度
四、 测试方法 :
(1). (2). (3). 依规格设定测试条件: 输入电压, 频率和输出负载. 依规格设定测试条件: 输入电压, 频率和输出负载. 从 POWER METER 读取 Pin and PF 值, 并读取输出电压, 计算 Pout. 并读取输出电压, 功率因素=PIN / (Vin*Iin), 效率=Pout / Pin*100%; 功率因素=PIN (Vin* 效率=Pout Pin* 100%; 待测品 POWER METER Vo SWITCH GND AC SOURCE ELECTRONIC LOAD
四、 测试方法 :
(1). (2). (3). (4). 依规格设定测试负载 LOAD 条件. 条件. 调整输入电压 AC LINE 和频率 FREQUENCY 值. 记录待测品输出电压值是否在规格内 . Line reg.=(输出电压的最大值(Vmax.)-输出电压的最小值(Vmin.))/Vrate volt.*100%. reg.=(输出电压的最大值(Vmax.)-输出电压的最小值(Vmin.))/Vrate volt.*
Fig1 Inrush Current -- 240Vac(50Hz) @ CC=0. 5A
4 H 7 z / 6
5. LINE REGULATION TEST / 电压调整率测试
一、目的 :
测试 S.M.P.S. OUTPUT LOAD 一定而 AC LINE 变动时, 其输出电压跟随变动之稳定性(常规定义≤1%). 变动时, 其输出电压跟随变动之稳定性 ( 常规定义≤
开关电源纹波测试标准

开关电源纹波测试标准一、引言。
开关电源是现代电子设备中常用的一种电源类型,其输出电压的稳定性和纹波水平对设备的正常运行和电磁兼容性具有重要影响。
因此,对开关电源的纹波进行准确、可靠的测试是非常必要的。
本文将介绍开关电源纹波测试的标准方法及相关注意事项。
二、测试仪器。
1. 示波器,用于观测开关电源输出的电压波形,通常需要具备较高的带宽和采样率,以确保准确捕捉纹波信号。
2. 电压源,用于提供稳定的电源给开关电源,确保测试的准确性和可靠性。
3. 负载,用于模拟实际工作状态下的电流负载,通常需要具备一定的调节范围和稳定性。
三、测试方法。
1. 准备工作。
在进行纹波测试之前,需要先对测试仪器进行校准,确保其准确度和稳定性。
同时,需要将开关电源连接至电压源和负载,并调节至工作状态。
2. 测试步骤。
a. 设置示波器参数,将示波器的触发方式设置为外部触发,触发电平设置为开关电源的输出电压,以确保波形的稳定和准确。
b. 观测波形,将示波器的通道1连接至开关电源的输出端,观测电压波形,并记录纹波水平。
c. 测量纹波水平,通过示波器测量功能,得到纹波的峰峰值或有效值,并记录下来。
四、测试标准。
1. 纹波水平,根据开关电源的不同应用场景和标准要求,纹波水平通常需要满足一定的限制要求,如IEC 61000-3-2对家用电器的纹波要求等。
2. 测试环境,在进行纹波测试时,需要确保测试环境的稳定性和准确性,尽量减小外部干扰对测试结果的影响。
3. 测试频率,纹波测试通常需要在一定的频率范围内进行,以确保开关电源在不同工作条件下的纹波性能。
五、注意事项。
1. 测试人员需要具备一定的电子电路知识和测试经验,以确保测试的准确性和可靠性。
2. 在进行纹波测试时,需要注意安全问题,避免电压和电流对人身的伤害。
3. 测试过程中需要注意观察示波器的波形稳定性和准确度,确保测试结果的可靠性。
六、总结。
开关电源纹波测试是确保电子设备正常运行和电磁兼容性的重要手段,通过准确的测试方法和标准要求,可以有效评估开关电源的纹波性能,为产品的设计和生产提供参考依据。
开关电源高压测试标准

开关电源高压测试标准
一、测试标准的制定。
1. 根据国家相关标准和法规,制定开关电源高压测试标准,明确测试的标准和
要求。
2. 参考行业内先进的技术和经验,结合产品的特点和用途,制定适合的测试标准。
3. 确定测试的电压、持续时间、波形等参数,并明确测试结果的判定标准。
二、测试流程。
1. 准备工作,确认测试设备的正常运行状态,检查测试线路和接地情况,确保
测试环境的安全性。
2. 设置测试参数,根据测试标准设置测试设备的电压、频率、持续时间等参数。
3. 进行测试,将待测试的开关电源连接到测试设备,按照标准要求进行高压测试。
4. 测试结果判定,根据测试结果,判断产品是否合格,记录测试数据并进行归档。
三、注意事项。
1. 安全第一,在进行高压测试时,必须严格遵守安全操作规程,确保人员和设
备的安全。
2. 设备检查,定期对测试设备进行检测和校准,确保测试结果的准确性和可靠性。
3. 数据记录,对每次高压测试的数据进行记录和保存,以备日后查询和分析。
4. 异常处理,如果在测试过程中出现异常情况,应立即停止测试并进行故障排除。
通过严格执行开关电源高压测试标准,可以有效地提高产品的质量和安全性,保障用户的使用体验和安全。
同时,也可以提升企业的竞争力和市场信誉,促进行业的健康发展。
因此,各生产企业应高度重视开关电源高压测试工作,严格执行相关标准和要求,确保产品质量和用户安全。
开关电源测试方案

开关电源测试方案1. 引言开关电源是一种常见的电源供应器件,广泛应用于各个领域。
为了确保开关电源的性能和质量,需要进行相关的测试。
本文档介绍了一种开关电源测试方案,旨在帮助测试人员准确、有效地进行开关电源的测试。
2. 测试目标开关电源测试目标主要包括以下几个方面: - 输出电压稳定性测试 - 输入电压范围测试 - 效率测试 - 负载调整测试 - 开机自检功能测试3. 测试工具和设备•直流电源•电压表•电流表•信号发生器•多用途仪表(如万用表)4. 测试步骤与方法4.1 输出电压稳定性测试1.将开关电源的输出引脚连接至负载,负载应符合开关电源的额定电流和电压要求。
2.设置直流电源的输出电压为开关电源的额定输出电压。
3.使用电压表测量开关电源的输出电压,并记录下来。
4.检查记录的输出电压是否在额定范围内,应符合开关电源的规格要求。
5.在负载上施加一定的额定电流,继续测量输出电压,并记录下来。
6.检查记录的输出电压是否在额定范围内,应符合开关电源的规格要求。
7.反复进行以上步骤,以确保输出电压的稳定性。
4.2 输入电压范围测试1.设置直流电源的输出电压为开关电源的额定输入电压上限。
2.使用电压表测量开关电源的输入电压,并记录下来。
3.检查记录的输入电压是否在额定范围内,应符合开关电源的规格要求。
4.逐步降低直流电源的输出电压,重复以上步骤,直到达到开关电源的额定输入电压下限。
5.观察开关电源的工作状态与性能,确保在额定输入电压范围内工作正常。
4.3 效率测试1.将开关电源的输出引脚连接至负载,负载应符合开关电源的额定电流和电压要求。
2.使用信号发生器模拟开关电源的输入信号。
3.测量输入功率(由直流电源提供)和输出功率(由开关电源提供),并计算开关电源的效率。
4.比较计算得到的效率与开关电源的规格要求,判断是否满足要求。
4.4 负载调整测试1.将开关电源的输出引脚连接至负载,负载应符合开关电源的额定电流和电压要求。
开关电源电性能测试标准和方法

开关电源电性能测试标准和方法开关电源是一种常用于电子设备中的电源供应器。
为了确保开关电源能够正常稳定地工作,并且符合安全要求,需要进行电性能测试。
下面将介绍开关电源电性能测试的标准和方法。
1.输出电压稳定性测试:输出电压稳定性是指开关电源在负载变化时的输出电压波动情况。
测试时需要将开关电源连接至标准负载,并进行负载变化测试。
测试时间通常为30分钟,记录每分钟的输出电压值。
测试结果应该符合下列标准要求:-输出电压小于等于额定值的2%;-输出电压波动小于等于额定值的1%。
2.输出电流稳定性测试:输出电流稳定性是指开关电源在负载变化时的输出电流波动情况。
测试方法与输出电压稳定性测试类似,将开关电源连接至标准负载,并进行负载变化测试。
测试时间通常为30分钟,记录每分钟的输出电流值。
测试结果应该符合下列标准要求:-输出电流小于等于额定值的2%;-输出电流波动小于等于额定值的1%。
3.输入电流波动测试:输入电流波动是指开关电源在输入电压变化时的电流波动情况。
测试时需要将开关电源连接至标准负载,并进行输入电压变化测试。
测试方法为在额定电压下,逐渐增加或减小输入电压,测试过程中记录每个输入电压下的输入电流值。
测试结果应该符合下列标准要求:-输入电流小于等于额定值的2%;-输入电流波动小于等于额定值的1%。
4.效率测试:效率是指输出功率与输入功率的比值。
测试时需要测量开关电源的输入功率和输出功率,计算出效率值。
测试条件包括额定负载、满载和轻载三种情况。
测试结果应该符合下列标准要求:-额定负载情况下,效率应大于等于额定值的80%;-满载情况下,效率应大于等于额定值的85%;-轻载情况下,效率应大于等于额定值的70%。
5.过电流保护测试:过电流保护是指在负载过大时,开关电源能够及时切断输出电流以保护负载和电源自身。
测试时需要将开关电源连接至过负载情况,记录开关电源的响应时间。
测试结果应该符合下列标准要求:-响应时间应小于等于额定值的10毫秒。
开关电源测试报告模板

开关电源测试报告模板1. 引言开关电源是一种常见的电源供应器件,用于将交流电转换为直流电,并提供给各种电子设备使用。
为了确保开关电源的性能和安全性,需要进行严格的测试和验证。
本报告旨在提供一个开关电源测试报告的模板,以便记录测试结果和评估开关电源的性能。
2. 测试设备和环境在进行开关电源的测试之前,我们需要准备以下设备和环境:•开关电源样品•交流电源•直流负载•示波器•电压表和电流表•温度计确保测试环境的温度和湿度适宜,并确保所有测试设备处于正常工作状态。
3. 测试步骤下面是进行开关电源测试的步骤:3.1 输入电压测试首先,将交流电源连接到开关电源的输入端,并逐步增加电压,记录每个电压值下的输出电压和输出电流。
通过这个测试,我们可以评估开关电源在不同输入电压下的输出性能和稳定性。
3.2 输出电压和电流测试在这个测试中,我们将固定输入电压,逐步增加负载,并记录每个负载值下的输出电压和输出电流。
通过这个测试,我们可以评估开关电源在不同负载条件下的输出性能和稳定性。
3.3 效率测试在效率测试中,我们将记录不同输入电压和负载条件下的开关电源的输入功率和输出功率,并计算出开关电源的效率。
这个测试可以帮助我们评估开关电源的能量转换效率,并判断其能源利用率。
3.4 温度测试在这个测试中,我们将记录开关电源在不同输入电压和负载条件下的温度变化。
通过这个测试,我们可以评估开关电源的散热性能和温度控制能力。
4. 测试结果和分析在进行完以上测试步骤后,我们将整理测试数据并进行分析。
可以根据测试结果来评估开关电源的各项性能指标,包括输出电压稳定性、输出电流稳定性、效率和温度控制等。
5. 结论通过以上的测试和分析,我们可以得出对于开关电源的性能评估和结论。
这些评估和结论可以帮助我们了解开关电源的工作状态和稳定性,以及是否符合预期的规格和要求。
以上是一个开关电源测试报告的模板,您可以根据实际的测试需求和结果,填写相关数据和分析,以得出最终的评估和结论。
开关电源适配器测试报告

开关电源适配器测试报告一、测试目的本次测试旨在验证开关电源适配器在不同负载条件下的性能和稳定性,以确保其满足相关标准和要求,同时为用户提供高品质的电源供应。
二、测试方法1.预热:在测试前,将开关电源适配器连续工作30分钟以达到正常工作温度。
2.输入电压测试:将电源适配器连接到电源电压测试仪上,记录不同输入电压下的输出电压和电流,并计算效率。
3.输出电压测试:将电源适配器连接到负载电阻上,分别测试不同输出电压下的输出电流,并测量输出电压波动和纹波。
4.过载保护测试:逐渐增加负载电流,直至达到适配器额定输出电流,观察适配器的过载保护功能。
5.短路保护测试:将适配器的输出端短路,测量短路时的电流和保护功能响应时间。
6.温度测试:在额定负载条件下,连续工作4小时,测量适配器的温度变化情况。
7.稳定性测试:在额定负载条件下,连续工作48小时,观察适配器的稳定性和可靠性。
三、测试结果1.输入电压测试:-在输入电压为100V时,输出电压为12V,输出电流为2A,效率为87%;-在输入电压为110V时,输出电压为12V,输出电流为2A,效率为90%;-在输入电压为220V时,输出电压为12V,输出电流为2A,效率为92%。
2.输出电压测试:-在输出电压为12V时,输出电流为1A,输出电压波动为±0.05V,纹波为5mV;-在输出电压为12V时,输出电流为2A,输出电压波动为±0.1V,纹波为10mV;-在输出电压为12V时,输出电流为3A,输出电压波动为±0.15V,纹波为15mV。
3.过载保护测试:-在额定输出电流2A时,适配器正常工作,过载保护功能未触发;-在输出电流大于额定电流2A时,适配器正常工作,过载保护功能及时触发。
4.短路保护测试:-在适配器输出端短路时,电流迅速增加至额定电流2.5A,保护功能迅速触发。
5.温度测试:-在连续工作4小时后,适配器温度上升约10℃,仍在安全范围内,无异常。
分享开关电源的6种检测方法

分享开关电源的6种检测方法1.重复短路检验◆ 检验说明在各种输入和输出情况下将模块输出短路,模块应能完结保护或回缩,重复屡次短路,毛病打扫后,模块应该能主动恢复正常工作。
◆ 检验办法a、空载到短路:在输入电压全范围内,将模块从空载到短路,模块应能正常完结输出限流或回缩,短路打扫后,模块应能恢复正常作业。
让模块重复从空载到短路不断的作业,短路时间为1s,铺开时间为1s,继续时间为2小时。
这今后,短路铺开,判别模块是否可以正常作业。
b、满载到短路:在输入电压全范围内,将模块从满载到短路,模块应能正常完结输出限流或回缩,短路打扫后,模块应能恢复正常作业。
让模块从满载到短路然后坚持短路情况2小时。
然后短路铺开,判别模块是否可以正常作业。
c、短路开机:将模块的输出先短路,再上市电,再模块的输入电压范围内上电,模块应能完结正常的限流或回缩,短路毛病打扫后,模块应能恢复正常作业,重复上述试验10次后,让短路铺开,判别模块是否可以正常作业。
◆ 判定标准上述试验后,电源模块开机能正常作业;开机壳检查,电路板及其他部分无异常现象(如输入继电器在短路的过程中触电是否粘住了等),合格;否则不合格。
2.重复开关机检验◆ 检验说明电源模块输出带较大负载情况下,输入电压分别为220v,(输入过压点-5v)和(输入欠压点+5v)条件下,输入重复开关,检验电源模块重复开关机的功用。
◆ 检验办法a、输入电压为220v,电源模块快带较大负载,用接触器操控电压输入,合15s,断开5s(或许可以用ac source进行仿照),连续工作2小时,电源模块应能正常作业;b、输入电压为过压点-5v,电源模块带较大负载,用接触器操控电压输入,合15s,断开5s(或许可以用ac source进行仿照),连续工作2小时,电源模块应能正常作业;c、输入电压为欠压点-5v,电源模块带较大负载,用接触器操控电压输入,合15s,断开5s(或许可以用ac source进行仿照),连续工作2小时,电源模块应能正常作业。
开关电源老化测试方法

开关电源老化测试方法嘿,你知道开关电源老化测试是咋回事不?其实啊,这开关电源老化测试可有讲究啦!先说说步骤吧。
把开关电源接上合适的负载,让它持续工作一段时间。
就像让一个运动员不停地跑步,看看能坚持多久不出问题。
在这个过程中,要时刻观察电源的各项参数,电压稳不稳呀,电流正不正常呀。
要是有啥不对劲,赶紧停下来检查。
这就好比你开车的时候,发现车子有点抖,那肯定得赶紧找问题呀,不然多危险。
注意事项也不少呢。
一定要选对负载,不能太大也不能太小。
太大了把电源给累垮了,太小了又测不出真正的性能。
这就跟你挑鞋子一样,得合脚才行呀。
还有,测试环境也很重要,不能太热也不能太冷。
热了电源可能会中暑,冷了又可能会冻僵。
哈哈,开个玩笑。
反正就是要保证环境合适。
安全性那可是重中之重。
在测试的时候,一定要做好防护措施。
万一电源出问题爆炸了咋办?这可不是闹着玩的。
就像你走在路上,突然有个炸弹爆炸了,那得多吓人。
所以,一定要小心再小心。
稳定性也很关键,要是电源一会儿正常一会儿不正常,那还怎么用?这就跟人的情绪一样,一会儿高兴一会儿难过,谁受得了。
那开关电源老化测试都用在啥场景呢?很多地方都能用啊。
比如电子产品生产厂家,他们得保证自己生产的电源质量过关吧。
还有一些科研单位,对电源的要求可高了。
这就好比厨师做菜,得用好的食材才能做出美味的菜肴。
开关电源老化测试的优势也很明显,能提前发现问题,避免在使用过程中出故障。
这就像你提前检查身体,有问题早治疗,总比生病了才去医院好吧。
给你举个实际案例。
有个电子厂,以前不重视老化测试,结果产品卖出去后经常出问题,客户投诉不断。
后来他们开始重视老化测试,问题就少了很多。
这就说明,老化测试真的很重要。
我的观点结论就是,开关电源老化测试绝对不能马虎,这是保证电源质量的重要手段。
一定要认真对待,让我们的电子产品都能稳定可靠地工作。
开关电源实验具体内容、方法及步骤

三、 产品定型/交收/例行检验的内容
1 一般性能 1.1 产品外观、结构、工作噪声测试实验 1.2 综合电气性能测试实验 2 产品机械性能实验 2.1 产品振动实验 2.2 产品跌落实验 2.3 产品撞击实验 3 产品环境可靠性实验 第 2 页 共 66 页
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
ቤተ መጻሕፍቲ ባይዱ
6.3 产品谐波电流实验 Harmonics ............................................. 6.4 产品静电抗扰度实验 ESD ................................................. 6.5 产品浪涌抗扰度实验 Surge ............................................... 6.6 产品电压跌落/短时中断抗扰度实验 DIP/i ................................. 6.6 产品电快速瞬变脉冲群抗扰度实验 EFT/B .................................. 五、产品定型/交收/例行检验规则 ................................................... a 定型检验规则 ................................................................ b 交收检验 .................................................................... C 例行检验 .................................................................... d 产品定型/交收/例行检验抽样表 ................................................ 附录一 元件裕度基准一览表 ........................................................ 附录二 抗电强度试验的试验电压表 .................................................. 附录三 设备的零部件的允许温升表 .................................................. 六.
电源开关的电压测试方法

电源开关的电压测试方法
如何测量开关电源的电压?
开关电源的两个输出电压分别为5V和16V。
如果开关电源上有输出电压标记,则直接由DC文件测量。
如果没有标记,则将开关电源的次级输出电路的电解电容器用作识别依据。
电解电容器具有高耐压。
16V输出,低压为5V输出,例如16V输出电路的电解电容为35V470UF,5V输出电路的电解电容为16V1000UF。
在这里,数字仪表不需要区分正电容和负电容,也不需要区分红色和黑色测试线。
输出电压消逝。
如何识别开关电源的工作状态
如果双向开关电源没有输出电压,请将万用表的直流齿轮更改为最小的直流齿轮,然后再次测量。
如果输出电压特别弱,则表示开关电源已开始振动,电源故障或负载故障。
如果断开开关电源的负载,则开关电源的输出仍为零输出,并且输出电路严峻短路,并且如果开关电源根本没有启动。
关闭开关电源,并马上测量开关电源的直流母线电压。
使用DC文件测量DC总线滤波电容器。
如果电压线性且缓慢下降,则开关电源开始振动。
如果可以长时间维持310V,则可以寻到电源。
不振动。
注意!关闭非振动开关电源的电源后,高压电源仍会保存,您必须戴上手套才能操作。
结论:
当怀疑开关电源工作异样时,开关电源的电压比较简单有用。
为了测量开关电源的关键点的电压,非常是对于一般电工,电源治理芯片的电压不简单,并且还需要开关电源。
只有深入的学问才能被操作。
开关电源测试规范(完整版)

开关电源功能测试之基本项目2007-09-27 14:05开关电源功能测试之基本项目一、输出电压调整:当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。
此步骤完成后才能确保后续的规格能够符合。
通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然後以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位於要求之范围内。
二、电源调整率:电源调整率的定义为电源供应器於输入电压变化时提供其稳定输出电压的能力。
此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。
在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。
为精确测量电源调整率,需要下列之设备:·能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUI PCR系列电源能提供0--300VAC 5-1000Hz 的稳定交流电源,0---400V DC的直流电源)。
·一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V A W PF。
·一个精密直流电压表,具备至少高於待测物调整率十倍以上,一般应用5位以上高精度数字表。
·连接至待测物输出的可变电子负载。
*测试步骤如下:於待测电源供应器以正常输入电压及负载状况下热机稳定後,分别於低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。
电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示:V0(max)-V0(min) / V0(normal)电源调整率亦可用下列方式表示之:於输入电压变化下,其输出电压之偏差量须於规定之上下限范围内,即输出电压之上下限绝对值以内。
开关电源测试方法

开关电源测试方法开关电源测试方法一.耐电压(HI.POT,ELECTRIC STRENGTH ,DIELECTRIC VOLTAGE WITHSTAND)KV1.1 定义:于指定的端子间,例如:I/P-O/P,I/P-FG,O/P-FG间,可耐交流之有效值,漏电流一般可容许10毫安,时间1分钟。
1.2 测试条件:Ta:25摄氏度;RH:室内湿度。
1.3 说明:1.3.1 耐压测试主要为防止电气破坏,经由输入串入之高压,影响使用者安全。
1.3.2 测试时电压必须由0V开始调升,并于1分钟内调至最高点。
1.3.2 放电时必须注意测试器之Timer设定,于OFF前将电压调回0V。
1.3.3 安规认证测试时,变压器需另行加测,室内,温度25摄氏度,RH:95摄氏度,48HR,后测试变压器初/次级与初级/CORE。
1.3.5生产线测试时间为1秒钟。
二.纹波噪声(涟波杂讯电压)(Ripple & Noise)%,mv2.1定义:直流输出电压上重叠之交流电压成份最大值(P-P)或有效值。
2.2测试条件:I/P: NominalO/P : Full LoadTa : 25℃2.3说明:2.3.1示波器之GND线愈短愈好,测试线得远离PUS。
2.3.2使用1:1之Probe。
2.3.3 Scope之BW一般设定于20MHz,但是对于目前的网络产品测试纹波噪声最好将B W设为最大。
2.3.4 Noise与使用仪器,环境差异极大,因此测试必须表明测试地点。
2.3.5测试纹波噪声以不超过原规格值+1%Vo。
三.漏电流(洩漏电流)(Leakage Current)mA3.1定义:输入一机壳间流通之电流(机壳必须为接大地时)。
3.2测试条件:I/P:Vin max.×1.06(TUV)/60HzVin max.(UL1012)/60HzO/P: No Load/Full LoadTa: 25 ℃3.3说明:3.3.1 L,N均需测。
开关电源测试步骤图文解说

开关电源测试步骤(图文解说)一、开关电源工作原理1、开关电源是一种高频开关式的能量变换电子电路,常作为设备的电源供应器,常见变换分类有:AC-DC、DC-DC、DC-AC 等。
2、开关电源原理框图(1) 市电进入电源后,首先经过是最前级的EMI 滤波电路部份,EMI 滤波的主要作用是滤除外界电网的高频脉冲对电源的干扰,同时还有减少开关电源本身对外界的电磁干扰。
实际上它是利电感和电容的特性,使频率为50Hz 左右的交流电可以顺利通过滤波器,而高于50Hz 以上的高频干扰杂波将被滤波器滤除。
(2) 经过EMI 滤波,所得到较为平整的正弦波交流电被送入前级整流电路进行整流,整流工作都由全桥式整流二极管来担任。
经过全桥式整流二级管整流后,电压全部变成正相电压。
不过此时得到的电压仍然存在较大的起伏,这就必须使用高压滤波电容进行初步稳压,将波形修正为起伏较小的波形。
(3) 把直流电转化为高频率的脉动直流电,这一步由控制电路来完成。
输出部分通过一定的电路反馈给控制电路,控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
控制电路目前已集成化,制成了各种开关电源用集成电路。
(4) 把得到的脉动直流电,送到高频开关变压器进行降压。
再由二极管和滤波电容组成的低压滤波电路进行整流和滤波就得到了设备上使用的纯静的低压直流电。
3、开关电源特点:(1) 开关电源是一种非线性电源,体积和重量轻。
(2) 功率晶体管工作在开关状态,晶体管上的功耗小,转化效率高二、开关电源测试方法1、测试项目:环路增益、输出阻抗、输出纹波、开关噪声等2、环路增益测试:开关电源电路可以看作是一个简单的反馈控制系统一个负反馈回路,当GH=-1 的时候会产生自激(GH 称为开环增益)。
分解为:幅度条件:|GH|=1、相位条件:GH 的相位Φ=-180º开环特性是一个很重要的参数,表征反馈系统的稳定性。
通常用增益裕量和相位裕量来表示:增益裕量:Φ=-180º时,0-Gain(dB)相位裕量:Gain=0 时,Φ-(-180º)通常用波特图来表示在测试开环特性时,开关电源应工作在闭环状态,以保证系统状态的稳定。
开关电源变压器测试方法

开关电源变压器测试方法1、通过观察变压器的外貌来检查其是否有明显异常现象。
如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。
2、绝缘性测试。
用万用表R乘以10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。
否则,说明变压器绝缘性能不良。
3、线圈通断的检测。
将万用表置于R乘以1挡,电机试验测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。
4、判别初、次级线圈。
电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。
再根据这些标记进行识别5、空载电流的检测。
a、直接测量法。
将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。
当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。
此值不应大于变压器满载电流的10%~20%。
一般常见电子设备电源变压器的正常空载电流应在100mA左右。
如果超出太多,则说明变压器有短路性故障。
b、间接测量法。
在变压器的初级绕组中串联一个/5W的电阻,次级仍全部空载。
把万用表拨至交流电压挡。
加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。
空载电压的检测。
将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。
6、电源变压器短路性故障的综合检测判别。
电源变压器发生短路性故障后的主要症状是发热严重和次级绕组输。
万用表检测开关电源的方法

万用表检测开关电源的方法
要检测开关电源的方法,你可以按照以下步骤进行:
1. 关闭开关电源,并确保其与电源插座断开连接。
2. 将万用表的选择旋钮拨到直流电压测量模式(一般标有"V"或"DCV")。
3. 将万用表的测试引线插入万用表的电压测量插孔中,一般为红色插孔。
4. 将红色测试引线连接到开关电源的正极,黑色测试引线连接到开关电源的负极。
5. 打开开关电源,并观察万用表上显示的电压数值。
正常情况下,开关电源应该输出稳定的直流电压值。
6. 如果万用表显示的电压数值为0,可能是开关电源故障,请检查开关电源的连接是否正确,是否有短路或其他故障。
7. 如果万用表显示的电压数值不稳定或明显偏离标称电压,可能是开关电源内部元件损坏,请停止使用该开关电源,并送修或更换。
请注意,以上步骤仅适用于直流开关电源的测试。
对于交流开关电源的测试,需要使用交流电压测量模式,并按照类似的步骤进行操作。
此外,为了确保安全,请在进行任何电气测试前,确保了解相应的电气知识和安全操作规范,并遵循正确的安全操作程序。
最有效的开关电源测试方法

最有效的开关电源测试方法一.耐电压(HI.POT,ELECTRIC STRENGTH ,DIELECTRIC VOLTAGE WITHSTAND)KV 1.1 定义:于指定的端子间,例如:I/P-O/P,I/P-FG,O/P-FG间,可耐交流之有效值,漏电流一般可容许10毫安,时间1分钟。
1.2 测试条件:Ta:25摄氏度;RH:室内湿度。
1.3 说明:1.3.1 耐压测试主要为防止电气破坏,经由输入串入之高压,影响使用者安全。
1.3.2 测试时电压必须由0V开始调升,并于1分钟内调至最高点。
1.3.2 放电时必须注意测试器之Timer设定,于OFF前将电压调回 0V。
1.3.3 安规认证测试时,变压器需另行加测,室内,温度25摄氏度,RH:95摄氏度,48HR,后测试变压器初/次级与初级/CORE。
1.3.5生产线测试时间为1秒钟。
二.纹波噪声(涟波杂讯电压)(Ripple & Noise)%,mv2.1定义:直流输出电压上重叠之交流电压成份最大值(P-P)或有效值。
2.2测试条件:I/P: NominalO/P : Full LoadTa : 25℃2.3说明:2.3.1示波器之GND线愈短愈好,测试线得远离PUS。
2.3.2使用1:1之Probe。
2.3.3 Scope之BW一般设定于20MHz,但是对于目前的网络产品测试纹波噪声最好将BW设为最大。
2.3.4 Noise与使用仪器,环境差异极大,因此测试必须表明测试地点。
2.3.5测试纹波噪声以不超过原规格值 +1%Vo。
三.漏电流(洩漏电流)(Leakage Current)mA3.1定义:输入一机壳间流通之电流(机壳必须为接大地时)。
3.2测试条件:I/P:Vin max.×1.06(TUV)/60HzVin max.(UL1012)/60HzO/P: No Load/Full LoadTa: 25 ℃3.3说明:3.3.1 L,N均需测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源的测试步骤良好的开关电源必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO,长城等等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他之特定需求等。
开关电源包括下列之型式:AC-DC:如个人用、家用、办公室用、工业用(电脑、周边、传真机、充电器) ·DC-DC:如可携带式产品(移动电话、笔计本电脑、摄影机,通信交换机二次电源) ·DC-AC:如车用转换器(12V~115/230V) 、通信交换机振铃信号电源·AC-AC:如交流电源变压器、变频器、UPS不间断电源开关电源的设计、制造及品质管理等测试需要精密的电子仪器设备来模拟电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。
开关电源有许多不同的组成结构(单输出、多输出、及正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。
电气性能(Electrical Specifications)测试当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下:一、功能(Functions)测试:输出电压调整(Hold-on Voltage Adjust)电源调整率(Line Regulation)负载调整率(Load Regulation)综合调整率(Conmine Regulation)输出涟波及杂讯(Output Ripple & Noise, RARD)输入功率及效率(Input Power, Efficiency)动态负载或暂态负载(Dynamic or Transient Response)电源良好/失效(Power Good/Fail)时间起动(Set-Up)及保持(Hold-Up)时间常规功能(Functions)测试A. 输出电压调整:当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。
此步骤完成后才能确保后续的规格能够符合。
通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。
B. 电源调整率:电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。
此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。
在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。
为精确测量电源调整率,需要下列之设备:·能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUI PCR系列电源能提供0--300VAC 5-1000Hz 的稳定交流电源,0---400V DC的直流电源)。
一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V A W PF。
·一个精密直流电压表,具备至少高于待测物调整率十倍以上,一般应用5位以上高精度数字表。
·连接至待测物输出的可变电子负载。
测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。
电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示V0(max)-V0(min) / V0(normal) 电源调整率亦可用下列方式表示之:于输入电压变化下,其输出电压之偏差量须于规定之上下限范围内,即输出电压之上下限绝对值以内。
C. 负载调整率:负载调整率的定义为开关电源于输出负载电流变化时,提供其稳定输出电压的能力。
此项测试系用来验证电源在最恶劣之负载环境下,如个人电脑内装置最少之外设卡且硬盘均不动作(因负载最少,用电需求量最小)其负载电流最低和个人电脑内装置最多之外设卡且硬盘在动作(因负载最多,用电需求量最大)其负载电流最高的两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。
* 所需的设备和连接与电源调整率相似,唯一不同的是需要精密的电流表与待测电源供应器的输出串联。
示:测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vmax与Vmin),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示: V0(max)-V0(min) / V0(normal) 负载调整率亦可用下列方式表示:于输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内,即输出电压之上下限绝对值以内。
D. 综合调整率:综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。
这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。
综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。
E. 输出杂讯(PARD):输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。
输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。
一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz(或其它更高之频宽如100MHz等)。
开关电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。
例如5V输出,其输出杂讯要求为50mV以内(此时包含电源调整率、负载调整率、动态负载等其它所有变动,其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)。
在测量输出杂讯时,电子负载的PARD必须比待测之电源供应器的PARD值为低,才不会影响输出杂讯之测量。
同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果,日本计测KEISOKU GEIKEN 的PARD 测试仪具备此种功能。
F. 输入功率与效率:电源供应器的输入功率之定义为以下之公式: True Power =Pav(watt) = V1 Ai dt = Vrms x Arms x Power Factor 即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常电源供应器的功率因素在0.6~0.7左右,而大功率之电源供应器具备功率因素校正器者,其功率因素通常大于0.95,当输入电流波形与电压波形完全相同时,功率因素为1,并依其不相同之程度,其功率因素为1~0之间。
电源供应器的效率之定义为:ΣVout x lout / True Power (watts)即为输出直流功率之总和与输入功率之比值。
通常个人电脑用电源供应器之效率为65%~80%左右。
效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。
由于近年来对于环保及能源消耗愈来愈重视,如电脑能源之星「Energy Star」对开关电源之要求:于交流输入功率为30Wrms 时,其效率需为60%以上(即此时直流输出功率必须高于18W);又对于ATX架构开关电源于直流失能(DC Disable)状态其输入功率应不大于5W。
因此交流功率测试仪表需要既精确又范围宽广,才能合乎此项测试之需求。
G. 动态负载或暂态负载一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。
由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。
若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。
实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。
可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载组件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。
H. 电源良好/失效时间(Power Good、Power Fail或Pok)电源良好信号,简称PGS(Power Good Signal或Pok High),是电源送往电脑系统的信号,当其输出电压稳定后,通知电脑系统,以便做开机程序之 C 而电源失效信号(Power Fail或Pok Low)是电源供应器表示其输出电压尚未达到或下降超过于一正常工作之情况。
以上通常由一「PGS」或「Pok」信号之逻辑改变来表示,逻辑为「1或High」时,表示为电源良好(Power Good),而逻辑为「0或Low」时,表示为电源失效(Power Fail),请叁考图5之时序图:电源的电源良好(Power Good)时间为从其输出电压稳定时起到PGS信号由0变为1的时间,一般值为100ms到2000ms之间。
电源的电源失效(Power Fail)时间为从PGS信号由由1变为0的时间起到其输出电压低于稳压范围的时间,一般值为1ms以上。