金属材料力学性能

合集下载

金属材料的力学性能

金属材料的力学性能

(一)、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径的球体(淬火钢球或硬质合金球)以相应的试验力压入待测 材料表面,保持规定时间并达到稳定状态后卸除试验力,测量材料表面压痕直径, 以计算硬度的一种压痕硬度试验方法。
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力表示。 如: 120HBS 500HBW 600HBS1/30/20
它是设计和选材的主要依据之一,是工程技术上的主要强度。
二、刚度和弹性 由图1-2可测出材料的弹性模量,即可确定该材料的刚度和弹性。弹性模量
是指金属材料在弹性状态下的应力与应变的比值,即
在应力-应变曲线上,弹性模量就是试样在弹性变形阶段线段的斜率。它表 示了金属材料抵抗弹性变形的能力,工程上将材料抵抗弹性变形的能力称为刚 度。
金属材料的力学性能
材料的力学性能,是指材料在外力(载荷)作用下所表现出来的性能,或称机 械性能,包括强度、刚性、弹性、塑性、硬度及疲劳强度。
一、强度 金属材料抵抗塑性变形或断裂的能力称为强度。抵抗外力的能力越大,则强
度越强。 依据载荷的不同,可分为抗拉强度、抗压强度、抗弯强度、抗剪强度以及抗
扭强度等几种。
1、拉伸试样
Hale Waihona Puke 2、材料的拉伸曲线oe——弹性变形阶段:变形量与外加载荷成正比,当载荷去掉后试样变形 完全恢复。
es——屈服阶段:此阶段伴随着弹性变形,还发生了塑性变形,当去除载 荷后,试样部分形变恢复,还有一部分形变不能恢复,将这部分不能恢复的形 变称为塑性变形。s为屈服点。
sd——明显塑性变形阶段:该阶段中载荷不再增加或是微量增加,试样却 继续变形。
2、洛氏硬度值 用测量的残余压痕深度表示。可从表盘上直接读出。如: 50HRC

金属材料力学性能

金属材料力学性能

一.名词解释1,E,弹性模量,表征材料对弹性变形的抗力,2,δs:呈现屈服现象的金属拉伸时,试样在外力不增加仍能继续伸长的应力,表征材料对微量塑性变形的抗力。

3,σbb:是灰铸铁的重要力学性能指标,是灰铸铁试样弯曲至断裂前达到的最大弯曲里(按弹性弯曲应力公式计算的最大弯曲应力)4δ:延伸率,反应材料均匀变形的能力。

5,韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力(或指材料抵抗裂纹扩展能力)6低温脆性:某些金属及中低强度钢,在实验的温度低于某一温度Tk时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔集聚型变为穿晶解理型,断口特征由纤维状态变为结晶状,这就是低温脆性7 Kic:断裂韧度,为平面应变的断裂韧度,表示在平面应变条件下材料抵抗裂变失稳扩展的能力8 弹性比功(弹性比能):表示单位体积金属材料吸收变形功的能力9σ-1:疲劳极限,表明试样经无限次应力循环也不发生疲劳断裂所对应的能力10循环韧性(消振性):表示材料吸收不可逆变形功的能力(塑性加载)11Ψ:断面收缩率,缩经处横截面积的最大缩减量与原始横截面积的百分比,12Ak:冲击功、,冲击试样消耗的总能量或试样断裂过程中吸收的总能量13蠕变:材料在长时间的恒温应力作用下,(即使应力低于屈服强度)也会缓慢地产生塑性变形的现象。

14σtて:在规定温度(t)下,达到规定的持续时间(て)而不发生断裂的最大应力。

15:氢致延滞断裂:由于氢的作用而产生的延滞断裂现象。

17.δ0.2:屈服强度18.△K th:疲劳裂纹扩展门槛值,表征阻止裂纹开始扩展的能力19δbc:抗拉强度,式样压至破坏过程中的最大应力。

20.包申效应:金属材料经过预加载产生少量塑变,卸载后再同向加载,规定残余伸长应力增加,反向加载,规定残余应力减低的现象,称为包申效应。

21.NSR:缺口敏感度,缺口试样的抗拉强度δbn与等截面尺寸光滑试样的抗拉强度δb之比。

22.力学行为:材料在外加载荷,环境条件及综合作用下所表现出的行为特征。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能金属材料的力学性能引言:金属材料是一类具有良好力学性能的材料,广泛应用于工业生产和日常生活中。

它们具有高强度、高刚度和良好的塑性变形能力,使其在结构工程中发挥重要作用。

本文将介绍金属材料的力学性能,包括强度、刚度、韧性和延展性等方面的特性。

一、强度强度是金属材料的抵抗外力破坏和变形的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度、剪切强度等。

屈服强度是指金属材料开始塑性变形时的应力值,抗拉强度是金属材料抗拉应力下发生断裂的能力,抗压强度是金属材料抗压应力下发生断裂的能力,剪切强度是金属材料发生滑移断裂的能力。

强度与金属材料内部的晶体结构密切相关,晶体间的结合力越强,金属材料的强度越高。

二、刚度刚度是指金属材料抵抗外力变形的能力,也称为弹性模量。

刚度与材料的原子结构相关,原子之间的键合越紧密,材料的刚度就越高。

刚度是测量金属材料在受力作用下的弹性恢复能力。

常见的刚度指标是杨氏模量和剪切模量,取决于金属材料中原子之间的键合性质和晶体结构。

三、韧性韧性是指金属材料在受力作用下能够吸收大量能量而不断裂的能力。

韧性是将金属材料弯曲、扭转或拉伸时的表现,具有良好的韧性的材料可以获得较大的塑性变形能力。

韧性材料能够在受到冲击或震动时,通过塑性变形来吸收能量,从而减少外界力量对结构的破坏。

韧性与金属材料内部晶粒的细化、晶界的加强以及材料中的组织缺陷等因素有关。

四、延展性延展性是指金属材料在外力作用下能够发生塑性变形,较大程度延长而不发生断裂的能力。

延展性与金属材料的晶粒形态及其排列方式密切相关,也与材料中晶界的运动有关。

延展性较好的材料可以用于制造需要大变形的构件,如容器、管道等。

延展性较差的材料容易发生局部失稳和断裂。

结论:综上所述,金属材料具有优异的力学性能,包括强度、刚度、韧性和延展性等方面的特点。

这些性能是由金属材料的晶体结构和内部组织决定的。

对于不同的应用需求,可以选择不同力学性能的金属材料来满足要求。

金属材料力学性能

金属材料力学性能

低合金钢 奥氏体不锈钢
2.0~2.1 1.9~2.0
几为材料的屈服强度和抗拉强度的比值,即σs/σb。 比值σs/σb对材料成型加工极为重要, 较小的σs/σb值几乎 对所有冲压成型都是有利的,也可以说屈强比小的材料塑性较 高,屈强比高表示材料的抗变形能力较强,不易发生塑性变形。 当然对于可靠性而言, 钢材的屈服强度就应该以接近钢材的拉 伸强度为佳,也就是说 屈强比大的钢材用来做结构零件可靠性 高。
二、金属在冲击载荷下的力学性能
机件在冲击载荷下的失效类型和静 载荷一样,也表现为过量弹性变形、 过量塑性变形和断裂。 在静载荷下,塑性变形比较均匀地 分布在各个晶粒中,而在冲击载荷 下,塑性变形则比较集中在某些局 部区域,这反映了塑性变形是极不 均匀的(图3-1)。
冲击韧性
冲击韧性是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力, 用冲击吸收功Ak表示。反应材料的韧性。
(5)弹性模量E
工程上为材料的刚度,表征金属材料对弹性变形的抗力,其值愈大,则在相同 应力下产生的弹性变形就愈小。当应变为一个单位时,弹性模量即等于弹性 应力,即弹性模量是产生100%弹性变形所需的应力。
金属材料 铁 铜 铝
铁及低碳钢
E/105MPa 2.17 1.25 0.72 2.0
铸铁
1.7~1.9
1.碳素结构钢:用于制造各种工程构件和机械构件; 2.碳素工具钢:用于各种工具。 牌号则是体现其力学性能,Q+数字表示,其中“Q”为屈服点“屈”字的 汉语拼音字首,数字表示屈服点数值,例如Q275表示屈服点为275MPa。若牌号后 面标注字母A、B、C、D,则表示钢材质量等级不同,含S、P的量依次降低,钢材 质量依次提高。若在牌号后面标注字母“F”则为沸腾钢,标注“b”为半镇静钢, 不标注“F,’或“b”者为镇静钢。例如Q235-A·F表示屈服点为235MPa的A级沸 腾钢,Q235-C表示屈服点为235MPa的C级镇静钢。 Q195、Q215、Q235钢碳的质量分数低,焊接性能好,塑性、韧性好,有 一定强度,常轧制成薄板、钢筋、焊接钢管等,用于桥梁、建筑等结构和制造普通 铆钉、螺钉、螺母等零件。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能使用性能⎪⎩⎪⎨⎧性)高温。

氧化性(热稳定化学性能:耐蚀性、抗密度、熔点等性、导热性、热膨胀、物理性能:电学性、磁、塑性、韧性、钢度等力学性能:强度、硬度工艺性能⎪⎪⎪⎩⎪⎪⎪⎨⎧切削加工焊接性压力加工(冲压性)铸造性可锻性金属材料的力学性能:金属材料在一定的温度条件和受外力作用下,抵抗变形、断裂的能力称材料的力学性能又称为机械性能。

主要有四大指标:1、 强度指标:抗拉强度b σ 屈服强度s σ:(疲劳强度、屈强比)2、塑性指标⎩⎨⎧断面收缩率伸长率(延伸率)δ 3、硬度指标⎪⎪⎩⎪⎪⎨⎧D HL HV HRC HB )里氏硬度()维氏硬度()洛氏硬度()布氏强度( 4、韧性指标⎩⎨⎧IC k k K A a 断裂韧度冲击韧性1、强度指标将规定尺寸的试棒在拉伸实验机上进行静拉伸实验,以测定该试件对外力载荷的抗力,可求强度指标和塑性指标。

(1)拉伸曲线图(2)应力应变图应力0A 外力=σ (单位面积所受力) 应变0L L ∆=ε (单位长度的变形量)对原材料、焊接工艺及焊接试板均有严格的标准进行规定。

对圆形拉伸试样分标准试样和比例试样,每种又分为长试样和短试样⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧===(短)(长)任意选用比例试样:短试样)长试样)标距标准试样:直径006000000065.53.11(5(1020A L A L d d L d L L d (3)拉伸试验分为四个阶段中碳钢 低碳钢(拉伸图) 变形量ΔL (应变ε)σ标距L 0①弹性变形阶段:变形量L ∆与外力(或应变和应力)成正比(即虎克定律)。

该阶段最高值:e ':P σ:称比例极限(即保持直线关系的最大负荷)。

e σ:弹性极限:我们把材料产生最大弹性变形时的应力称由于检测精度,国标规定以残余变形量为0.01%时的应力为弹性极限。

A F e e =σ 应力:单位面积上材料抵抗变形的力称为应力。

什么是金属材料的力学性能

什么是金属材料的力学性能

1.什么是金属材料的力学性能?它包括哪些项目?
金属的力学性能是指在力的作用下,材料所表现出来的一系列力学性能指标,反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力。

金属材料的力学性能包括强度、塑性、硬度、冲击韧度和疲劳等项目。

2.什么是强度?金属材料的强度指标有哪些?
材料在外力作用下,抵抗永久变形和断裂的能力称为强度。

金属材料的强度指标有抗拉强度和屈服点两大项。

3.什么是抗拉强度?什么是屈服点?
金属材料在拉断前所能随的最大标称拉应力,称为抗拉强度,以b σ表示,计算公式如下
S F b b =σ,b σ为抗拉强度(MPa );b F 为拉断前试样所承受的最大载荷;0S 为试样的原始横截面积2)(mm 。

由于不少金属材料在作拉伸试验过程中没有明显的塑性变形,通常以变形量达到试样标距部分残余伸长率0.2%时的应力,定义为该钢材的屈服强度,心2.0σ表示。

4.什么是塑性?金属材料的塑性指标有哪些?
材料断裂前,发生不可逆永久变形的能力称为塑性。

金属材料的塑性指标有伸长率、断面收缩率和弯曲角。

焊接接头的塑性指标常用弯曲角表示。

金属材料的力学性能-课件

金属材料的力学性能-课件
❖ 金属材料旳力学性能是指在承受多种外加载荷(拉 伸、压缩、弯曲、扭转、冲击、交变应力等)时, 对变形与断裂旳抵抗能力及发生变形旳能力。
强度与塑性
❖ 强度是指金属材料在静载荷作用下,抵抗塑性 变形和断裂旳能力。
❖ 塑性是指金属材料在静载荷作用下产生塑性变 形而不致引起破坏旳能力。
❖ 金属材料旳强度和塑性旳判据可经过拉伸试验 测定。
断后伸长率( δ )
l1-l0
δ=
×100%
l0
l1——试样拉断后旳标距,mm; l0——试样旳原始标距,mm。
断面收缩率(ψ)
ψ= S0-S1 ×100% S0
S0——试样原始横截面积,mm2; S1——颈缩处旳横截面积,mm2 。
屈服现象
❖ 在金属拉伸试验过程中, 当应力超出弹性极限后, 变形增长较快,此时除 了弹性变形外,还产生 部分塑性变形。当外力 增长到一定数值时忽然 下降,随即,在外力不 增长或上下波动情况下, 试样继续伸长变形,在 力-伸长曲线出现一种 波动旳小平台,这便是 屈服现象。
强度
屈服点
在伸长过程中力不增长(保持恒定),试样仍能继续
伸长时旳应力,单位为MPa,即:
S
FS Ao
式中:Fs——材料屈服时旳拉伸力,( N ); Ao——试样原始截面积,( mm2 )。
要求残余延伸强度
❖ 对于高碳淬火钢、铸铁等材料,在拉伸试验 中没有明显旳屈服现象,无法拟定其屈服强 度。
❖ 国标GB228-2023要求,一般要求以试样到 达一定残余伸长率相应旳应力作为材料旳屈 服强度,称为要求残余延伸强度,一般记作 Rr。例如Rr0.2表达残余伸长率为0.2%时旳 应力。
要求残余延伸应力
F0.2 A0

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。

常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。

其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。

延展性可以通过材料的延伸率、断面收缩率等指标来描述。

3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。

韧性也可以通过断裂韧性、冲击韧性等指标来描述。

4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。

硬度可以通过洛氏硬度、布氏硬度等进行测量。

5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。

弹性模量可以描述材料的刚
度和变形的程度。

6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。

疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。

以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。

这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料力学性能 Prepared on 24 November 2020
常见的金属材料力学性能一. 金属材料相关概念
任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。

这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。

诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。

强度
强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。

一般用单位面
积所承受的作用力表示,符号为σ,单位为MPa。

工程中常用的强度指标有屈服强度和抗拉强度。

屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。

抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。

对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。

刚度
刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。

对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。

硬度
硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表
注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。

二.材料的失效与许用应力
通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu
表示。

对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。

为了机械零件使用的安全性,对于机械构件要有足够的强度储备。

因此,实际是使用的最大应力值必须小于材料的极限应力。

最大使用应力称为许用应力,用[σ]表示。

许用应力与极限应力的关系如下:
[σ]=
σu n
, σu ={
σs σb
式中,n 为大于1的因数,称为安全因数。

对于塑性材料n 为,σu=σ
s ;对于脆性材料n 为,σu=σb 。

强度条件
σmax =(F
A )max ≤[σ]
式中,F ,机械零件所承受的最大载荷作用力,单位N ;
A,承受载荷作用的面积,单位mm2;[σ],材料的许用应力,单位MPa;。

相关文档
最新文档